Published under CC BY 4.0 International
https://creativecommons.org/licenses/

PARODIS: One MPC framework to control them all. Almost.

Thomas Schmitt!, Jens Engelm, Matthias Hoffmann'3, Tobias Rodemann?

Abstract— We introduce the MATLAB framework PARODIS,
the Pareto optimal Model Predictive Control framework for
distributed Systems. It is a general-purpose, flexible and easy-to-
use framework for discrete state space models. Special features
are the support of distributed (hierarchical) systems, scenario-
based optimization and built-in methods for determination of
the Pareto front and selection of a solution. It uses the popular
MATLAB framework YALMIP for the symbolic formulation of
optimization problems and models.

I. INTRODUCTION

Model Predictive Control (MPC) has seen rapid developments
over the last decade, both in theory and applications. To
validate new MPC algorithms in extensive simulation studies,
researchers face the challenge of implementing both control
algorithms and system models. Therefore, they need a
framework which is i) general enough to cover their problem
class and common control approaches, ii) flexible enough
to also allow implementation of new specialized algorithms
and iii) easy enough in use to maintain a reasonable time
investment.

However, current MPC frameworks have a different use case,
are very specific or lack important features to satisfy these
requirements. Multiple frameworks have been developed for
real-time control, e. g. ACADO [1] or GRAMPC [2]. Usually
based on C/C++ and designed to run on embedded hardware,
they are very strong in controlling highly dynamical nonlinear
systems, even with sampling times in the (sub)millisecond
range. While they are very apt to perform this task, they
do not generalize well and are not suitable for prototyping
more complicated algorithms such as economic or distributed
MPC.

Other frameworks are specialized in a specific field of
application, e. g. robotics [3] or, commonly, building control
[4], [5]. In this case, they usually employ more sophisticated
MPC algorithms and might also feature co-simulation with
simulation tools such as Modelica or EnergyPlus. However,
their use is limited to the respective application. They do not
support a more general form of system classes and are not
flexible enough for implementation of new control algorithms.

LControl ~ Methods & Robotics
versity of Darmstadt, Darmstadt,
thomas.schmitt@rmr.tu-darmstadt.de
Thomas Schmitt acknowledges the financial support from the Honda
Research Institute Europe.

2Honda Research Institute Europe GmbH, Offenbach, Germany. E-mail:
{jens.engel, tobias.rodemann}@honda-ri.de

3Systems Modeling and Simulation, Systems Engineering, Saarland Uni-
versity, Germany. E-mail: matthias.hoffmann@uni-saarland.de.
Work was done while author was at the Technical University of Darmstadt.

Lab, Uni-

E-mail:

Technical
Germany.

The official MATLAB MPC toolbox [6] is powerful and
can be used for more than just tracking MPC, but the
implementation complexity rises significantly with deviation
from this standard case, e. g. distributed systems. With the
popular MATLAB toolbox MPT3 [7], regulation or tracking
MPC for linear, (piecewise) affine and mixed logical dynamic
systems can be set up extremely easily. However, despite
some impressive features like automatic conversion to explicit
MPC, it does not support economic MPC in general and is
not designed for implementation of more complex algorithms,
i.e. not flexible. MPCTools [8] is an Octave interface
to the popular optimization framework CasADi [9] with
means to simplify the definition of nonlinear MPC systems.
While there are no significant explicit limitations due to
the use of CasADi, it lacks general features such as direct
support for parametrization with external data or distributed
systems. Another framework that makes use of CasADi
is do-mpc [10], based on Python. It is more capable than
MPCTools, as it allows for full parameterization of the system
dynamics. It focuses on nonlinear time-continuous systems,
but does support discrete system formulations. It has a very
modular system structure and offers various features. Overall,
flexibility and ease of use are given. However, there are no
pre-defined interfaces for distributed systems and usage of
large data sources.

Here, we present an alternative MATLAB framework, called
PARODIS - Pareto optimal MPC framework for distributed
systems. It provides generality to a great extent while
maintaining flexibility and easy usage and distinguishes it
from other MPC frameworks by i) supporting distributed
(hierarchical) systems, ii) providing convenient interfaces to
use large-scale datasets for predicted and actual disturbances,
iii) respecting scenarios for uncertain disturbances and
parameters in a customizable fashion and iv) as its main
innovation, the integrated support for multiple objectives by
automated generation of the Pareto front and selection of
solutions. Note that the Pareto optimization functionality is an
optional feature. The complete functionality and its concept,
showing its wide generality while maintaining flexibility, is
explored in detail in Section II. The basic usage is explained in
Section III and an exemplary case study is given in Section I'V.
We end with a conclusion in Section V.

II. FUNCTIONALITY AND CONCEPT
A. Functionality

PARODIS allows fully parameterized (and thus time-variant)
descriptions of discrete state space systems in the form

w(k+1) = f(z(k), u(k),d(k), k), (D

(Simulation 0
[Shared]
(Agent Agent
>
Controller —
) Model - —
= ‘ CostFunction ‘
2 i : !
Agent
Config ‘ CostFunction ‘ -, [:]g
_ o []
TimeSeries TimeSeries
2 ‘ Line Plot ‘ ‘ Heatmap Plot
~ g g
Line Plot Heatmap Plot

2. A al

Initialization

[Create Models]

(]

l Create Agents l

Simulation

Negotiation (optional)

¥ Negotiation Order

N

Fig. 1: Structure of a simulation setup in PARODIS. Boxes with
a bold title represent an instance of the respective class. An agent
fully defines a system and consists of a model, a Controller
instance and some optional configuration. Every TimeSeries
instance creates one figure with an arbitrary number of subplots
and may contain elements of any agent. In the simulation’s shared
struct, agents can store information of any kind. It is cleared after
every iteration.

where z, v and d are the state, input and disturbance vectors,
respectively. Multiple systems, in PARODIS called agents,
can be defined and controlled in a distributed (or hierarchical)
fashion. Model predictive controllers are defined for every
agent by default, whereby the cost functions can be defined
arbitrarily, i.e. as in economic MPC. However, controllers
could easily be exchanged. There are two specialties of
PARODIS. First, it distinguishes not only between predicted
and real disturbances d, but it also supports the consideration
of multiple scenarios in the prediction of disturbances and
parameters, thus advocating it for the use of scenario-based
stochastic MPC. As sources, either function handles or csv-
files can be defined, thus allowing for easy import of large data
sets for long-term simulations. In contrast to do-mpc [10], the
scenarios can be chosen freely (not only as a full scenario-tree
of all possible combinations of distinct values). Furthermore,
the incorporation of scenarios in the optimization problem
is customizable. Second, it ships with algorithms for multi-
objective optimization, i.e. both methods for determining the
Pareto front for multiple objectives and methods for automatic
selection of a solution, which is repeated at every time step.
PARODIS utilizes YALMIP [11] and its symbolic variables
to formulate the optimization problem, which makes the large
selection of solvers supported by YALMIP accessible.!

B. Concept

PARODIS is object-oriented. All necessary information
is wrapped in an instance of the Simulation-class,
which may contain multiple instances of the Agent- and
TimeSeries-classes (figures), as illustrated in Figure 1.

A simplified flow chart diagram is shown in Figure 2. In

ISee
overview.

https://yalmip.github.io/allsolvers/ for an

User-defined
Agent.doNegotiation() Interaction
22 . .
. O simulation.
+ getOptimallnput() negotiationHandle()
«updatePredictions()

« callbackNegotiation()

1
1
1
1
1
1
i
' « callbackMeasureState()
1
1
1
1
1
1
1
1
1

s Execution Order

i

‘ Agent.doStep()

i « callbackMeasureState()
E « getOptimallnput()

1 « updatePredictions()

i « updatePlots()

E « updateHistory()

Fig. 2: PARODIS starts with the initialization of all agents. In the
actual simulation, every step of the for-loop consists of an optional
negotiation between the agents and the actual iteration, where every
agent executes its step. The results are stored at the end.

distributed or hierarchical MPC approaches, agents usually
interact with each other and negotiate what actions they
should take in the current time step. In PARODIS, this
interaction is called the negotiation and is separate from
the agents’ actual step. There are two options for this
negotiation: The first one is for the agents to execute their
negotiation step in a fixed order. Here, their optimal control
problem is solved as usual and a user-defined callback is
called afterwards. Using this callback, agents can exchange
information freely. The second option is a user-defined
interaction using simulation.negotiationHandle:
This is a user-defined function, where any arbitrary al-
gorithm can be implemented. In this function, all agents,
controllers and simulation data can be accessed. After
the negotiation, the actual simulation step is executed.

https://yalmip.github.io/allsolvers/

A
2 4AT D » (Al)
£
N
g
E > s
S 2AT) -) » (A2)
% AT—»L»L»L»L» (A3)
o0
<
l | -
T Ll
ksim ksim+1

Simulation Step

Fig. 3: Exemplary iteration for a simulation with 3 agents and
sampling times 4AT (Al), 2AT (A2), and AT (A3). Slower
agents step first. Thus, the execution order would be [Al, A2,
A3, A3, A2, A3, A3].

Note that multiple optional callback-functions exist and
enable the user to adjust the standard simulation flow,
e.g. agent.callbackMeasureState () to update an
agent’s state before optimization.

PARODIS supports different agent sampling times, as long
as the first steps of the agents’ horizons are multiples of
each other. Thus, an execution order is determined at the
beginning. Figure 3 illustrates this. Within the iteration of a
simulation step, every agent’s doStep () -function is called
following this execution order. Thereby, all disturbances and
parameters are set. Then, the optimal trajectory is determined,
plots are updated and the first input is applied.

In PARODIS, the Controller-class handles the formu-
lation and solving of the optimization problem. There
are currently three different controller classes avail-
able in PARODIS, the SymbolicController, the
ExplicitController and the ParetoController.
All controllers are easily interchangeable, as they all provide
the same interface.

Both the symbolic and explicit controller formulate a standard
optimization problem, where the objective function is the
(weighted) sum of the configured cost functions. The differ-
ence between the two controllers is the representation of the
optimization problem: The symbolic controller pre-compiles
a fully parameterized optimization problem using YALMIP’s
optimizer feature, while the explicit controller re-builds
the problem at each time step and replaces all parameters
with explicit values. The SymbolicController is to
be considered the default controller, as it is very efficient
for smaller problems, while the ExplicitController
is suited for larger problems and debugging purposes as
it scales much better and is more transparent in its model
representation.

C. Pareto Optimization

Pareto optimization refers to the optimization of multiple
(competing) objectives. Usually, the set of Pareto-optimal
(or non-dominated) solutions is derived. A solution is non-
dominated, if there exists no other solution which is better in
objective ¢ without being worse in at least one other objective
7 [12]. This set is also called Pareto front, from which a

compromise is then selected. The ParetoController
provides such functionality. In the same way as any other
controller, it derives an optimal input to be applied to
the system. It does so in three steps. First, an extreme
point function calculates the extreme points, i.e. the Pareto
optimal points minimizing single objectives. Second, a
front determination scheme systematically samples points
on the Pareto front, using YALMIP optimizer objects for
increased efficiency. Finally, a Pareto optimal solution with its
corresponding trajectories is selected. While metric functions
select a solution automatically, the implemented interactivity
tool enables the user to instead select a point manually (for
Nebj = 2 or 3 objectives). For each category, PARODIS
provides a set of predefined functions, which can be selected
within the ParetoController’s configuration. Due to the
modular implementation, users can alternatively define their
own methods. Table I summarizes the functions currently
implemented.

III. USAGE

In this section, we give a brief explanation of how problems
are implemented in PARODIS. For a detailed explanation,
the user is referred to the documentation.

A. Installation

Installing and setting up PARODIS is very straightforward.
Simply download the latest release from the GitHub reposi-
tory,” unpack the archive and add the directory to the MATLAB
path. As PARODIS is built on YALMIP, it has to be installed
separately in the same way. PARODIS itself does not depend
on any MATLAB toolboxes.

B. Creating Agents

The agent is the core of PARODIS. It represents a system
and fully determines its optimal control problem. To create
an agent, a model and a controller need to be defined first.
For the model, the user has to implement a function which
receives the sampling time 7 and returns the corresponding
ordinary difference equations, the number of states n,, inputs
n,, and disturbances ng4.

function [ode, n_x, n_d]= model_fun(T_s)
ode = @(x, u, d)(...
[Tos*x(x(1)"2 + u(l) + d(1)); ...
T_s*x(sin(x(2)) + u(2) + d(2)) 1);
nx = 2; n.u = 2; n.d = 2;

end

n_u,

The model itself is then created using the createModel ()
function with additional information of the time horizon
vector T_hor and the number of scenarios be considered.

numScen = 1;
T_hor = 30xones(N_pred, 1);
model = createModel (model_fun , T_hor ,numScen);

For the controller, one of the three available types presented
in Section II-B can be used, e. g.

controller = SymbolicController (numScen);

2https://github.com/teamparodis/parodis

https://github.com/teamparodis/parodis

TABLE I: List of extreme point functions, front determination schemes and metric functions.

Method Type Name Description

Extreme Point Lexicographic Approach as constraints [12].
Miniscule Weight Approx.

Optimization in lexicographic order, i.e. minimizing a single objective J; with optimal values for J;;

Approximation of the extreme points with weights w; = 1 and wj; = 1072,

Method Normalized Miniscule Miniscule Weight Approximation with prior normalization of the objectives to a range of 0 to 1 for a
Weight Approximation better conditioning of the optimization problem.
Normal Boundary The boundary plane, i.e. the hyperplane connecting all extreme points, is evenly sampled. These plane
Front Intersectign points are then p.roj.ected onto the Pareto fror.lt in the boundg.ry Planes’ normal vector direction.[lz].
Determination Focus qut Boundary szlf—dfzveloped‘ Similar scalarization method like NBI, but with different plane sampling and projection
Scheme Intersection direction.

Adaptive Weight
Determination Scheme

Geometric interpretation of the weighted sum method. From n,y,; parents, weights are determined for
which the new solution lies between the parents [13].

Closest-to-Utopia-point
Angle to extreme points
Angle to neighbors
Radius of curvature

Metric Function

Compromise solution: Minimal (normalized) Euclidean distance to the Utopia Point.
Compromise solution: Minimal n.p,;-dimensional angle to the extreme points.

Knee point metric: Minimal n,;-dimensional angle to n,p; neighbor points.

Knee point metric (self-developed): Minimal (approximated) radius of curvature.

Herein lies one of the strengths of PARODIS: switching to
Pareto optimization is as easy as swapping the controller.

controller = ParetoController (numScen);

With the model and controller defined, the optimization
problem can be configured by adding parameters, which
can either be scenario-dependent or not (scenDep).

controller .addParam (...

name, [rows cols], source, scenDep);

The source can be a function handle, a csv-file or static values.
Parameters can be used both in the constraints and the cost
functions. Adding constraints to the optimization problem
is just as simple. Box constraints, constraints on differences
Az = z(k + 1) — x(k) or Au, as well as free YALMIP
constraint expressions are supported.

Ibl, ubl);
1b2, ub2);

controller.addBoxConstraint(’x’,
controller.addDeltaConstraint(’du’,
controller.addConstraint(expression)
In PARODIS, cost functions are user-defined classes, which
define a cost expression and may define additional slack
variables and constraints. This is very useful for, e.g.,
reformulations or constraint relaxations.

classdef myCostFcn < CostFunction

[slacks] = getSlacks(...)
[constraints] = getConstraints(...)
[expr] = buildExpression(...)
[horizon] = evaluateHorizon(...)

end
They have to be assigned to the controller, too.

controller.addCostFunction (
>costsNamel °, myCostFcnl);

For possible disturbances d(k) on the system, sources for
both predictions and the real values can be defined. Again,
these can be either function handles, csv-files or static values.

controller . predDisturbanceSource=@pred_d;
controller .realDisturbanceSource="real_d .csv ’;

Finally, the agent instance can be created with its initial state.
agentl=Agent(name, model, controller , T_hor,x0);

Another feature of PARODIS are so-called eval-functions,
with which arbitrary values can be calculated during the

simulation. These are user-defined functions that can evaluate
the simulation during runtime. They are added to an agent,
since they may evaluate both its status (predictions at the
current time step) and history (past trajectories).

agentl.addEvalFunction (name, fcnHandle , scenDep)

C. Plotting

Plotting is handled by the TimeSeries class. Every instance
represents a figure and can have multiple rows and columns
of subplots.

figl = TimeSeries(name, rows, cols)
To each subplot, either line plots or heatmap plots can be

added, which may display information from different agents.

figl .addLine (agent, var, index, labels, ...);

figl .addHeatmap (...);

The first argument defines from which agent data should
be displayed. Using var, the user can plot any states,
inputs, disturbances, eval- or cost functions. All plots can
be configured to be plotted live during the simulation and/or
at the end. This can be defined either individually for each
figure, or globally for all figures.

D. Running a Simulation

With agents and plots defined, creating and running a
simulation is very straightforward. Note that agents and
figures have to be added to the simulation instance.

agentl = createAgent (...);
figl = TimeSeries (...);

simulationTime = 24x%60;

sim = Simulation (name, simulationTime);
sim.config.livePlot = true;
sim.addAgent(agentl);
sim.addPlot(figl);

sim.runSimulation ();

IV. EXEMPLARY HIERARCHICAL SYSTEM

To illustrate the most important features of PARODIS, we
present the model of an energy management system of an
office building, which is controlled using a hierarchical MPC
approach.

A. Higher Level

The main model, in the following called the higher level
(HL), contains the energy E of a stationary battery and the
building’s overall temperature v, as states. The system’s
inputs are the electrical power obtained from the power grid
Py1iq, the electrical power Py, from the building’s combined
heat and power plant (CHP), the thermal power from a gas
heating unit (raq and the thermal cooling power from a
heating, ventilation and air conditioning system Qcool. As
uncontrollable disturbances acting on the system, the electrical
power from a photo-voltaic plant P..,, the electrical power

demand Py, and the air temperature ¥,;; are considered.

With these, the system’s dynamic is given by

E(k+1) = E(k)+T; - <Pgrid(k)+Pchp(k)+QC(;)1(k)>

T (Pren(k) + Pdem(k))) (2)
'ur b
Ip(k+1)=— T (k) + ...
P (k . .
- (hp() + Qrad(k) + Qcool(k) + Hair,b . ﬁair(k)) (3)
CCHP

— Hair

with p = HHi”‘ T is the sampling time, Ciy, 1, the

building’s total thermal capacity, H,;, 1, the total heat transfer
coefficient, . the energy efficiency ratio of the cooling
machine and ccyp the CHP’s current constant. For the higher
level, Pareto optimization is applied with the monetary costs
and the quadratic temperature deviation from 21 °C as two
objectives. For a detailed insight into both modeling and the
Pareto approach, the reader is referred to [14], [15].

B. Lower Level

As a second (sub)model, in the following called the lower
level (LL), the building’s thermal energy system is split up
into 9 different temperature zones (neglecting the electrical
energy system). In the time-continuous case, the temperature
Uy, of zone ¢ is described by

g Hairi

Opi(t) = — " (9,i(t) — Dair(t)) . .. @
l 1 .)

_;C J 19]31 ﬁb]()+ @(heatxi(t>+Qcool,i(t)).

where Ciy, ; is the thermal capacity from zone i, Hyiy; is
the heat transfer coeffienct between zone i and the outside air,
Bij is the heat transfer by coefficient between zones 4 and j,
and Qheat ; and QCOO1 i are the respective heating and cooling
powers allocated to zone ¢. For brevity, we omit stating the
(discretized) state space model used for implementation. Note
that Z?:l Oth,i = Oth,b and Z?:l Hair,i =

air,b-

The lower level’s task is to distribute the heating and cooling
power produced on the higher level between the 9 temperature
zones. Thus, its only objective (and cost function) is to
minimize the temperature deviation of all zones from the

desired 21 °C,

9
(k) = 3" Cung (Bb,i(k) — 21)°. 5)
Note that the deviation for every zone is scaled by its capacity
to prevent the preferred regulation of smaller zones.

C. Communication

For a simple hierarchy, the negotiation loop is not necessary.
The higher level executes first. At the beginning, it updates v,
with an agent .callbackMeasurement function, where
it reads the states v}y, ; of the lower level and updates its ¥y,.
states_LL =

simulation.agents .LL. history .x(:,end);
agent. history .x(2,end) = w_th % states_LL;

Cln,i
Cin,p

w_th is a weighting vector with elements wyy, ; =
Afterwards, the step is performed as usual.

The lower level has to use the total produced heating and
cooling powers as constraints for its own input variables, i.e.

Z Qheat z PChp(k)

CCHP
§ Qcool %

ThlS is realized by adding 2 parameterized constraints to the
controller in its definition before simulation:

Qrad() 7Vk € [07 Npred_1]7 (6)

Qcool() Vk € [

pred 1] (7)

LLController.addConstraint (
(sum(LLModel.u(1:9,:),1)==
)3
LLController.addConstraint(...
(sum(LLmodel .u(10:18,:),1)==QcoolFromHL {1})
)3
The parameters’ sources are defined as function handles and
the values are automatically updated at the beginning of every
step, €. g.:

QcoolFromHL = ...
{agents .HL. previousStatus.uPred (4,:)};

QhéatFromHL {1})

D. Results

For both systems a prediction horizon of 24 h is used. The
first 8h are split in 15 min steps, the second 8h in 30 min
steps and the last 8h in 1h steps, i.e. a total of Npreq = 56
steps. On the higher level, the resulting optimization problem
(including, e.g., epigraph reformulations [14]) consists of
338 decision variables and 1066 constraints. The lower level
results in 1521 decision variables and 3649 constraints. With
GUROBI as the solver, the simulation of 2 days with realistic
data from April 2020 (and Pareto optimization on the higher
level) takes 247s on an Intel i7-8550U notebook CPU.
Without Pareto optimization, it reduces to 58s.

Figure 4 shows the resulting trajectories for the higher level,
Figure 5 the Pareto fronts for its two objectives (monetary
and comfort costs). Figure 6 shows the temperature and
corresponding heating power progressions of the lower level
agent’s zones.

Battery Storage

§ 100 -
~ - - - Limits
.8 — F
>
M 0 500 1,000 1,500 2,000 2,500
9 Building vs. Air temperature
= P e il I
5 20 = : o
E v ‘e)" Tl--- 19air
S 10 |- 2 e
5} b P !
B ML | | | |
=t 0 500 1,000 1,500 2,000 2,500
Inputs
3 600 ¥ I:
400 [s, ' Pgria
£ 200 L3
5 0
% —200
a —400 i -
0 500 1 000 1,500 2,000 2 500 Qcool
. Disturbances
o~ 0 Pren
£ - Pdcm
§ —100 L"”—-.,rr_ I”"‘I lﬁp‘J“""'"n.‘” o Pl e
2 ' n i Ll
A —200 &= | L | | 1) |
0 500 1,000 1,500 2,000 2,500
Time in min

Fig. 4: Trajectories of the higher level agent. ¥, is kept closely at
the desired 21 °C. For Pgiq > 100kW, peak costs would apply
and are thus avoided. The MPC successfully keeps Pygriq within this
limit by utilizing the stationary battery.

Pareto Fronts
T

——— Pareto Front

% Selected Solution

Normalized Comfort Costs

0
0 0204 06 08 1
Normalized Monetary Costs

Fig. 5: Generated Pareto Fronts of the higher level agent for every
time step in normalized space, i.e. the Utopia point is at the origin
and the extreme points are at (0,1) and (1,0). AWDS’ has been
used as front determination scheme, ' CUP’ as metric. On average,
one Pareto front consists of 22.92 points.

Zone Temperatures Iy, ;

21.1
1
20.9
20.8
20.7

500 1,000 1,500 2,000 2,500
Heating Powers Qheat i

.

1,000 1,500 2,000 2,500
Time in min

Fig. 6: Heat maps for the zone temperatures ¥; and corresponding
heating powers Qneat,; Of the lower level agent. Differences between
zones occur from different heat transfer coefficients Hair,; and 5.

Zone Index
'—‘NM-&KIIO\IOO\D
[N}
Temperature in °C

200

100

Zone Index
wapmoqmo

0

Thermal Power in kW

V. CONCLUSION

We present the MATLAB MPC framework PARODIS of which
we hope that it will support researchers in both implemen-
tation and testing of newly developed MPC algorithms as
well as empirical verification of applications by data-based
simulation studies. It is the first of its kind with built-in Pareto
optimization methods. Even if permanent multi-objective
optimization is not intended, they can be used as an automatic
setup for finding appropriate weights for multiple objectives.
The modular object-oriented structure of PARODIS allows
for easy adaption for both new models and control algorithms.
Thus, PARODIS is not limited to its present scope.

[1]

[2]

[3

=

[4

=

[5

—_

[6

=

[7

—

[8

=

[91

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—an open-
source framework for automatic control and dynamic optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298-312,
2011.

T. Englert, A. Volz, F. Mesmer, S. Rhein, and K. Graichen, “A
software framework for embedded nonlinear model predictive control
using a gradient-based augmented lagrangian approach (GRAMPC),”
Optimization and Engineering, vol. 20, no. 3, pp. 769-809, 2019.

M. Giftthaler, M. Neunert, M. Stiduble, and J. Buchli, “The control
toolbox — An open-source C++ library for robotics, optimal and
model predictive control,” in 2018 IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), 2018, pp. 123-129.

D. Blum and M. Wetter, “MPCPy: An open-source software platform
for model predictive control in buildings,” in In Proceedings of the
15th Conference of International Building Performance Simulation,
San Francisco, CA, 2017.

M. Baranski, L. Meyer, J. Fiitterer, and D. Miiller, “Comparative study
of neighbor communication approaches for distributed model predictive
control in building energy systems,” Energy, vol. 182, pp. 840 — 851,
2019.

The MathWorks, Inc., MATLAB and Model Predictive Control Toolbox
Release 2020a, Natick, Massachusetts, United States, 2020.

M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-parametric
toolbox 3.0,” in Proc. of the European Control Conference, Ziirich,
Switzerland, Jul. 2013, pp. 502-510, http://control.ee.ethz.ch/~mpt.
M. Risbeck and J. Rawlings, “MPCTools: Nonlinear model predictive
control tools for casadi (octave interface),” 2016.

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi — A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1-36, 2019.

S. Lucia, A. Tétulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid
development of modular and sustainable nonlinear model predictive
control solutions,” Control Engineering Practice, vol. 60, pp. 51 — 62,
2017.

J. Lofberg, “YALMIP : A toolbox for modeling and optimization
in MATLAB,” in In Proceedings of the CACSD Conference, Taipei,
Taiwan, 2004.

R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and Multidisciplinary Optimiza-
tion, vol. 26, no. 6, pp. 369-395, Apr. 2004.

N. Ryu and S. Min, “Multiobjective optimization with an adaptive
weight determination scheme using the concept of hyperplane,” In-
ternational Journal for Numerical Methods in Engineering, vol. 118,
no. 6, pp. 303-319, 2019.

T. Schmitt, T. Rodemann, and J. Adamy, “Multi-objective model
predictive control for microgrids,” at - Automatisierungstechnik, vol. 68,
no. 8, pp. 687 — 702, 2020.

T. Schmitt, J. Engel, T. Rodemann, and J. Adamy, “Application of pareto
optimization in an economic model predictive controlled microgrid,”
in 2020 28th Mediterranean Conference on Control and Automation
(MED). IEEE, 2020, pp. 868-874.

http://control.ee.ethz.ch/~mpt

