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Abstract—Drones are effective for reducing human activity
and interactions by performing tasks such as exploring and
inspecting new environments, monitoring resources and deliv-
ering packages. Drones need a controller to maintain stability
and to reach their goal. The most well-known drone controllers
are proportional-integral-derivative (PID) and proportional-
derivative (PD) controllers. However, the controller parameters
need to be tuned and optimized. In this paper, we introduce
the use of two evolutionary algorithms, biogeography-based
optimization (BBO) and particle swarm optimization (PSO), for
multi-objective optimization (MOQ) to tune the parameters of
the PD controller of a drone. The combination of MOO, BBO,
and PSO results in various methods for optimization: vector
evaluated BBO and PSO, denoted as VEBBO and VEPSO;
and non-dominated sorting BBO and PSO, denoted as NSBBO
and NSPSO. The multi-objective cost function is based on
tracking errors for the four states of the system. Two criteria
for evaluating the Pareto fronts of the optimization methods,
normalized hypervolume and relative coverage, are used to
compare performance. Results show that NSBBO generally
performs better than the other methods.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), such as drones and
quadrotors, have gained significant attention during the last
decade. UAVs can be used in many fields, for instance,
inspecting and exploring new environments, monitoring
weather patterns to predict tsunamis and earthquakes, con-
struction, monitoring gas and oil resources, and performing
jobs in dangerous environments with the advantages of high
robustness, reliability, stability, and low resource consump-
tion [1], [2], [3].

During the COVID-19 pandemic and similar outbreaks in
the future, drones can be set up to improve the everyday
lives of people. Drones are effective at reducing human
interaction, which is crucial in times of pandemic. To reduce
the risk of coronavirus infection, governments have asked
and encouraged people to remain in their homes. But then,
there should be a way to provide services and support for
people in their homes. Drones can be used for that pur-
pose by facilitating contact-free interactions with healthcare
professionals, such as transporting blood or urine samples,
and delivering medical supplies like medicine or healthcare
devices. During a pandemic, hospitals are potential vectors
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of contamination, so drones provide an efficient contact-
free way to transport critical and necessary medical supplies.
Although medical supply delivery has been achieved by the
commercial company DJI [4], there are still many challenges,
some of which we focus on in this paper.

Considering system and environmental noise, many re-
search studies have focused on developing a drone controller
to maintain stability, to reach the defined objective, or to tune
the controller’s parameters. The most well-known controllers
for drones are proportional-integral-derivative (PID) and
proportional-derivative (PD). Since they are widely applied
for drone control, there are a lot of studies on tuning
the parameters of these controllers. PID control includes
three adjustable gain parameters: the proportional gain K,
integral gain K; and derivative gain K. Algorithms pro-
posed for this tuning problem mostly used aggregation-based
multi-objective optimization, which uses a weighted sum of
different cost functions to tune the controller parameters.
These tuning algorithms require the arbitrary determination
of weight coefficients, which may result in an undesirable
solution, and they also require high computational effort [5].

Ant colony optimization (ACO), invasive weed optimiza-
tion (IWO), genetic algorithms (GA), neural networks (NN),
particle swarm optimization (PSO) and biogeography-based
optimization (BBO) are examples of bio-inspired optimiza-
tion methodologies that have been used for tuning the pa-
rameters of drone controllers [6], [7]. In [8], ACO was used
to tune fuzzy PID controller parameters. The results show
performance comparable to PID control, but the proposed
method simplified parameter tuning. In [9], GA was applied
for tuning the PID controller parameters for pitch control of
an aircraft. In [10], [11], an NN was used to tune the PID
controller parameters for ship roll reduction.

We choose BBO and PSO as two algorithms that are
representative of a typical evolutionary algorithm and a
swarm algorithm, respectively, so we focus on extending
these two algorithms to MOO for drone control optimization
in this paper. PSO is based on candidate solutions sharing
positions in solution space with each other. Each candidate
solution, or particle, evolves its position in solution space
based on the locations of other particles, until a desirable
solution is found [12]. BBO is based on islands sharing



(or migrating) suitable features, which represent independent
variables in the problem solution [13]. Each island is consid-
ered as a possible solution for the problem. Islands gradually
evolve by migrating other islands’ features to become better
habitats (i.e., better solutions) until a desirable solution is
found. Both PSO and BBO are able to be implemented as
a multi-objective optimization method for a wide variety of
applications [14].

Bio-inspired algorithms have been used in previous re-
search to tune drone control parameters. For instance, in [15],
PSO, bacterial foraging optimization (BFO) and BF-PSO
were used to tune PID drone control parameters for roll,
pitch and yaw. In [16], multi-objective PSO (MOPSO) with
an accelerated update methodology was studied to tune PID
parameters for the Ar.Drone. They proposed multi-objective
functions for the problem and modified the PSO update
method for better performance. The objective function was
based on settling time T, rise time 7)., overshoot OS and
steady state error SSE. They provided experimental results
but did not compare their work with other population based
algorithms like BBO. Also, they considered an aggregation-
based multi-objective cost function, which defines an ag-
gregate cost function as an arbitrarily weighted sum of
individual cost functions. In [17], four decentralized PID
controllers were designed to stabilize quadrotor angles and
height. A PSO algorithm was used to tune the parameters of
the four controllers. Again, this paper did not compare their
results with other methods. In [18], BBO was studied to tune
PID parameters to control a hexapod robot to avoid hitches
and to follow a wall. This paper considered only the single
objective of distance from a wall as the objective function.

The contribution of this paper is using multi-objective
optimization along with evolutionary and swarm algorithms
to tune the parameters of the PD controller of a drone. The
combination of MOO with BBO or PSO results in four
different algorithms which will be the focus of this paper:
VEBBO, NSBBO, VEPSO and NSPSO. The multi-objective
function is based on the tracking error of the four states of
the system. Two evaluation criteria, normalized hypervolume
and relative coverage of the Pareto front, are used to compare
the performance of the methods.

In Section II we introduce the dynamic model of the
system. In Section III we explain the BBO and PSO algo-
rithms. In Section IV we introduce the MOO methods that
we combine with BBO and PSO, which include aggregation,
VEBBO, VEPSO, NSBBO and NSPSO. In Section V we
compare these methods using two evaluation criteria: nor-
malized hypervolume and relative coverage.

II. DYNAMIC MODEL OF THE DRONE

We used the Euler-Lagrange model to derive the equations
of the drone [2], [19], [20]. The linear and angular position
of the drone are defined in relation to the inertial reference
frame z-y-z (Figure [I). The angular velocities p, ¢, r are
defined in relation to the body reference frame zg-yp-2p.
The pitch rotation of the drone around the y-axis is denoted
by 6, the roll rotation around the z-axis is denoted by ¢,

Fig. 1.

Body frame and inertial frame

TABLE I
DRONE PARAMETERS AND THEIR DEFINITION

[ Parameters | Definition ]
m Drone mass
1 Inertia matrix (diagonal)
l Distance from rotor to center of mass
0 Pitch angle; rotation around the y-axis
1) Roll angle; rotation around the x-axis
(] Yaw angle; rotation around the z-axis
Ozpypzp Reference of body frame
Ogyz Reference of inertial frame
D, q, T Body frame angular velocities
T,Y, 2 Inertial frame linear positions
Az, Ay, A, Coefficients of drag force
fi Forces of four rotors
M; Torques of four rotors

and the yaw rotation around the z-axis is denoted by . The
center of mass of the drone is located at the origin of the
body frame. Vector € = [x,y, z]T represents linear position,
n = [¢,0,v]" represents angular position, and v = [p, ¢, |7
represents angular velocity in the body frame. The drone
contains four rotors which induce angular velocities w;,
torques M; and forces f;. Thrust T = f1 + fo + f3 + f4 is
created by the combined force in the z axis, and torques 7 =
[To, Ty, Ty] T are created in the body frame [20], [21]. Table
shows the parameters of the drone with their descriptions.

The linear and angular components of the drone can be
defined in two separate subsystems. The linear components
of the system are described as

i 0 0 L[4 0 07 [i
gl =10 +Ret| 0 |==]0 4, 0] |7
F —g T/m| ™0 0 A |z

where A,, A,, and A, denote the drag force coefficients
in the z, y, and z directions respectively of the inertial
frame. The rotation matrix R,.,; is defined in [2]. The angular
components of the system are described as

i = J (= Cln,m) < 1) )
where 7 = [7g, Ty, Ty|T is the torque in the body frame and
J is a positive definite Jacobian matrix; J(n) = WTIW,
where W is a rotation matrix [2] and I is defined in Table [l
as the diagonal inertia matrix containing I, Iy, and I,.
The Coriolis matrix C'(n,7) is defined in [2].



III. PSO AND BBO ALGORITHMS

PSO: Particle swarm optimization (PSO) is an evolution-
ary algorithm based on the concept of collective intelligence
in social animals [12]. The most significant characteristics of
PSO are its fast convergence behavior and its inherent adapt-
ability. In PSO, each individual particle of a swarm, which
is initially randomly scattered throughout the problem space,
can be considered as a potential solution. Particles broadcast
their observation, which is based on their current position,
to neighboring particles. There are many implementations of
PSO. In each iteration of the PSO version that we implement
in this paper, there are two important factors that influence
particle positions in the next iteration: the personal best
position and the global best. The best observation among the
previous observations of each particle is called the personal
best, and the best previous observation among all particles
is called the global best. Individual particles adjust their
positions and velocities in proportion to the global best and
personal best.

V3,a(t + 1) =wv; a(t) + c1714,a(t) (Yi,a(t) — 2i,a(t))+

exra, o (O)(Gat) — zi.a(t)) ®

xi,d(t + 1) = xi,d(t) + ’Uiyd(t + 1) 4)

where v; 4(¢) is the velocity of the d-th dimension of particle
i at iteration ¢, x; 4(t) is its position, y; 4(¢) is its personal
best position, and §4(t) is the best global position of the
swarm. Parameters ci, co, and w are constants (tuning
parameters), and r1; ¢(t) and rg; q(t) are random numbers
that are uniformly distributed between 0 and 1.

BBO: BBO is a recent heuristic algorithm that was first
introduced in [13]. Its performance has proven to be com-
petitive with other optimization algorithms, e.g., differential
evolution, GA, PSO, stud GA, and many other algorithms,
which motivates us to apply BBO to optimize the PD drone
controller and then compare its results with PSO. BBO
works based on sharing suitable features of candidate prob-
lem solutions in the way that biological species on islands
randomly emigrate and immigrate. Each island is considered
as a possible solution to the problem. Islands gradually
evolve their features to become better-suited habitats until a
desirable habitat is found, which corresponds to a desirable
problem solution. In BBO, the environment is an archipelago
and each island represents a possible solution to the problem.

IV. MULTI-OBJECTIVE OPTIMIZATION

While the goal of single-objective optimization is find-
ing the minimum value of a cost function, multi-objective
optimization methods consider several performance metrics,
which in our case are captured by the tracking errors of the
four states of the system. In general, the solution of a multi-
objective optimization problem is a set of points which is
known as a Pareto set where no solution is dominated by
any other solution. The combination of MOO with either
BBO or PSO results in different algorithms: vector evaluated
BBO (VEBBO), non-dominated sorting BBO (NSBBO),

vector evaluated PSO (VEPSO), and non-dominated sorting
PSO (NSPSO). VEBBO and VEPSO are based on using
one objective function for each recombination to create the
population at the next generation. In NSBBO and NSPSO,
the cost function of each individual is assigned based its
domination level. These methods are explained in more detail
in [13].

The simplest MOO approach is to combine all objective
functions into a single scalar objective function, in which
case we do not consider Pareto optimization. In Section
we discuss the aggregation method for drone PD parameter
optimization. We then discuss multi-objective Pareto opti-
mization using VEBBO and VEPSO in Section [[V-B| and
NSBBO and NSPSO in Section

A. Aggregation Method

The main advantages of the aggregation method are sim-
plicity and computational efficiency. But it also has disad-
vantages; for example, determining the appropriate weight
coefficients is difficult and time-consuming. The choice of
the weight functions is somewhat arbitrary and may not result
in a desirable solution [5]. The aggregated objective function
based on the four most important criteria in the PD controller
is defined as

F(X) = wlFl(X) +WQF2(X) +w3F3(X) +W4F4(X)

where w; is the weight for each individual objective function
and since we desire the impact of each individual cost
function to be the same, w; is set equal to 1. Each component
of F(X) is defined as

Fi(X) = / X, — X, ] dt 5)
t

where ¢ € [1,2,3,4] indexes the objective, the state
X; € {¢,60,9, 2}, and the desired (reference) state X; 4 €
{¢a,04,%a, 24} t represents the integration time, which
indicates the time of the drone simulation. The objective
function is set to minimize the difference between actual
and desired value of the state which in turn reduces settling
time, overshoot, rise time and steady state error.

B. Vector Evaluated Evolutionary Algorithms

One common way to solve multi-objective optimization
problems is by keeping a collection of the best solutions in
a repository and updating the repository each iteration. In
this method, the best solutions are defined as non-dominated
solutions or Pareto optimal solutions [22].

VEBBO is based on using one objective function at a
time for recombination to create the population at the next
generation [23]. This method is explained in more detail
in [24].

VEPSO evaluates each candidate solution using only one
of the objective functions of the problem. Then, information
based on this single objective function is communicated to
the other members of the swarm as a representation of its
best solution [25]. In VEPSO, several swarms are employed



to search the space and information is exchanged among
them [26]. Each swarm is exclusively evaluated with one of
the objective functions, but information coming from other
swarms is used to influence its motion in the search space.
The best position found by each particle separately, as well
as the best among these positions, are the main guiding
mechanisms of the swarm. Communicating this information
between swarms leads to Pareto optimal solutions.

C. Non-Dominated Sorting Evolutionary Algorithms

In NSBBO, the cost function of each individual is assigned
based on its domination level. This method is explained in
more detail in [24].

NSPSO compares all particles, while considering their
positions in the search space both before and after their
position updates, in terms of their personal best [27]. NSPSO
leverages non-dominated sorting and two parameter-free
niching methods. At each iteration, NSPSO performs non-
dominated sorting for all particles which are distributed in a
number of subsets in the main set (population). In the next
step, niche count [28], global best, velocity, and position
are computed for each particles in each subset. Then, novel
population of size 2N is generated and sorted. Finally, a novel
set of N solutions is created by picking fronts particles in
each sorted subset.

V. SIMULATION RESULTS AND COMPARISONS BETWEEN
DIFFERENT M OO METHODS

We evaluate the performance of MOBBO and MOPSO
on the drone controller via computer simulation using
MATLAB/Simulink. We used the following parameters for
MOBBO.

ps =50, I, =30, N.=2, I, =1—E,

where pg, I, E., I, and N, are population size, iteration
limit, emigration rate, immigration rate, and number of elites.
N, is the number of the best solutions to keep from one
generation to the next. For MOPSO,

ps = 50, I; = 30, w = 0.5,
wg =0.99, ¢ =2, cg =2

(6)

(7

where ps, I;, w, wg, c¢; and cy are population size, it-
eration limit, inertia weight, inertia weight damping ratio,
personal learning coefficient and global learning coefficient.
The desired position zg of the drone is fixed at z4 =
0, and the desired angular positions are fixed at 6; =

¢a = g = 0 with the initial positions and Euler an-
gles selected as [zo, o, Zo]T = [0, O, —I]T, and
(60, 0, wo]" = [-0.7, —0.7, —0.7]". The drone

parameters in our simulations are shown in Table

A. Simulation Results of Aggregation Method

To simplify notation, we refer to the BBO aggregation
method as simply BBO, and the PSO aggregation method
as simply PSO. Figure 2] depicts the mean and standard
deviation of the best cost function value for each algorithm

TABLE I
PARAMETER VALUES FOR SIMULATION

m 0.468 kg
g 9.81 m/s2
I 0225 m
Iz | 4.856 x 10~3 kg:m?
I,y | 4.856 x 10~3 kg:m?
I.. | 8.801 x 10~3 kg-m?

Az 0.25 kg/s

Ay 0.25 kg/s )

A, 0.25 kg/s
TABLE III

PD TUNING COMPARISON. THE FIRST SUBSCRIPT, p OR d, INDICATES
THE PROPORTIONAL OR DERIVATIVE GAIN. THE SECOND SUBSCRIPT, ¢,
0, ETC., INDICATES THE STATE OF THE SYSTEM.

| [Min [ Max | PD | PSO | BBO |
Kp, | 0 [200 ] 6 | 14015 | 19.7704
Kg, | 0 | 10 [ 175 10 | 96322
Kp, | 0 | 10 | 6 | 27624 | 3.04
Kgp | 0 [ 10 [ 175 10 | 9.6105
Kp, | 0 | 10 | 6 | 64304 | 149
Kg, | 0 | 10 [ 175 ] 10 | 99945
Kp, | 0 3 [ 15 3 28141
Kq 0 3 | 25 | 27755 | 289

over 30 iterations for 5 trials. BBO converges faster, but
the mean value of the two algorithms are almost the same
at the final iteration; 0.2646 for PSO and 0.2701 for BBO.
These results are more than 30% better (smaller) than the
conventional PD controller cost, which is 0.3911, which was
obtained using the PD parameters from [21], and which
provided the initial PD values for both PSO and BBO. In
Table the Min and Max columns show the search space
bounds for the PD parameters, the PD column shows the
values used for the conventional PD controller which are
chosen manually [21], and the PSO and BBO columns show
the mean values of the PD parameter that PSO and BBO
converged to after 30 iterations and 5 trials.

Figure [3] shows the mean and standard deviation of state
z for both PSO and BBO with 0.05 and 0.1 m overshoot,
respectively. PSO has a better rise time, about 1 sec, and a
better settling time, about 3 sec.

Figure [] illustrates approximately the same performance
for BBO and PSO in terms of 6, showing an overshoot of
about 0.05 rad, a rise time of about 0.5 s, and a settling time
of about 1.5 s. However, Fig. 5] shows that PSO gives better
results in terms of both overshoot and settling time for ¢:
the settling time for BBO is about 4 s while PSO settles in
about 2 seconds, and the overshoot for BBO is about 0.2 rad
while PSO overshoots about 0.1 rad.

Figure E] shows the log;yp of mean of total thrust for 5
trials of BBO and PSO. We used logig to better visualize
the differences between PSO and BBO. The beginning of
the simulation shows a large spike due to initialization, and
trying to move the drone from zg = —1 to z4 = 0.



—— PSO Best Cost +/- std. value
0.38 —— BBO Best Cost +/- std. value

Best Cost

15
Iteration Number

Fig. 2. Mean and standard deviation (shaded) of best cost of 5 trials of
BBO and PSO

—— z +/- std. value - BBO

02 —— z +/- std. value - PSO

0.0

-0.2-

z(m)

-0.4

-0.6-

-0.8

time (s)

Fig. 3. Mean and standard deviation (shaded) of z of 5 trials of BBO and
PSO

0.1 y - —— theta +/- std value - BBO
—— theta +/- std value - PSO

theta (rad)
s
w

-0.4

time (s)

Fig. 4. Mean and standard deviation (shaded) of 6 of 5 trials of BBO and
PSO

—— phi +/- std. value - BBO
—— phi +/- std. value - PSO

phi (rad)

time (s)

Fig. 5. Mean and standard deviation (shaded) of ¢ of 5 trials of BBO and
PSO

~— Total Thrust - BBO
2.25 —— Total Thrust - PSO

log_10 (Total Thrust)

0.75 \
0.50 l/’i
o 2 a 6 8 10
time (s)
Fig. 6. Mean of thrust of 5 trials of BBO and PSO

TABLE IV
RUN TIME FOR SEQUENTIAL AND PARALLEL BBO

[ [ Run Time (s) |
Sequential BBO 1505
Parallel BBO 930

B. Parallel Computation for Aggregation Method

To enhance computational efficiency, we use the MATLAB
Parallel Computing Toolbox. For each iteration, the BBO
algorithm needs to run a simulation for each individual
in the population, along with its PD parameters, and then
compute the cost. This operation can be done in parallel
rather than sequentially to save time. Table shows the
time savings when we run BBO with and without the parallel
computing toolbox. This approach to saving time can be
especially helpful in more complicated problems. For this
scenario, we use population size ps, = 32, iteration limit
I; = 30 and linear emigration. The CPU is an Intel(R)
Core(TM) i5-8300H with 8 logical processors (4 physical and
4 virtual). The population size should ideally be a multiple
of the number of physical cores because each core works
independently and runs its own simulation. Here, we have
a population size of 32, so each core (worker) handles 8
simulations, i.e., 8 BBO individuals.

C. Sensitivity, Robustness and Repeatability for Aggregation
Method

In this section, we provide some statistical results to com-
pare BBO and PSO in detail. First, we check the repeatability
of PSO and BBO over 10 trials; Table[V]shows the minimum,
maximum and average objective function value of these 10
trials. The standard deviation (Std Dev) column shows that
there are small differences between the results of the 10
trials, which shows small variability or dispersion around the
average. Next, we check the sensitivity of BBO and PSO
to their parameters, like population size. Table [VI| shows
the cost for different population sizes, where the number
of iterations remained equal to 30 for each population size.
The population size affects BBO more than PSO.

Another parameter that we investigate is the emigration
rate function and its effect on BBO cost. Table shows
the average cost and stand deviation values for 10 runs of



TABLE V
REPEATABILITY OF BBO AND PSO OVER 10 TRIALS

[ [ Min | Max [ Avg [ Std Dev |
BBO | 0.2674 | 0.2804 | 0.2713 0.0040
PSO | 0.2645 | 0.2672 | 0.2656 0.0009

TABLE VI

SENSITIVITY OF BBO AND PSO TO POPULATION SIZE

[ Population Size | BBO Cost | PSO Cost |

10 0.3021 0.2698
25 0.2743 0.2658
50 0.2722 0.2656
60 0.2730 0.2650
80 0.2688 0.2657
100 0.2673 0.2649

the algorithm for two different kinds of emigration functions.
The table shows that the linear emigration function that we
introduced in Equation [§] works better and gives a better cost
that the sinusoidal emigration function [24].

For PSO, we have three different variables for which
we check sensitivity: inertia weight w, personal learning
coefficient c¢; and global learning coefficient cy. Finding
the appropriate values for c¢; and cg is tricky and we used
the recommended baseline values in [24]. Table shows
PSO performance for different values of c¢; and co for
10 simulations. This table shows that the cost values are
relatively independent of the values of c¢; and cy. That is,
there is no need to put much effort into finding appropriate
values of c¢; and cy, as long as they remain within well-
established limits. Table |IX] shows the sensitivity of PSO to
inertia weight. This table shows that PSO is not sensitive to
inertia weight, as long as it remains within well-established
limits [24].

D. Performance metrics for comparing VE algorithms with
NS algorithms

Two performance criteria that are used to evaluate the
performance of our Pareto-based optimization algorithms are

TABLE VII
SENSITIVITY OF BBO TO EMIGRATION RATE FUNCTION

[ [ Linear | Sinusoidal ]

Avg BBO Cost 0.2696 0.3037
Std Dev BBO Cost | 0.0014 0.0109
TABLE VIII

SENSITIVITY OF PSO TO ¢1 AND c2

c1 3 2 2 2 1

c2 2 3 2 1 2
Avg PSO Cost 0.2657 | 0.2653 | 0.2656 | 0.2663 | 0.2655
Std Dev PSO Cost | 0.0006 | 0.0005 | 0.0009 | 0.0007 | 0.0006

TABLE IX
SENSITIVITY OF PSO TO w

| w [ 05 | 02 [ 02 | 07 |
Avg PSO Cost | 0.2650 | 0.2645 | 0.2645 | 0.2646
Std Dev Cost | 0.0003 | 0.0004 | 0.0002 | 0.0007

normalized hypervolume and relative coverage [24].
Normalized Hypervolume: This criteria is defined as

S(pr) = ‘ 11 fiCzj)/nm

where M is the number of points in the Pareto front, f
is the k_dimensional objective function of the optimization
problem, and a smaller value of S(p) indicates better MOO
performance.

Relative Coverage: Another way to compare Pareto front
approximations is by computing the number of individuals in
one approximation that are weakly dominated by at least one
individual in the other approximation. The relative coverage
for two Pareto fronts is computed as follows.

C(ps(1),p£(2)) =
laz € pr(2);Jar € pr(1) 1 a1 > az|/[pf(2)]

Equation (8| defines the coverage of p¢(1) relative to pf(2) as
the number of individuals in 5 ;(2) that are weakly dominated
by at least one individual in ps(1).

®)

E. Comparison of VE algorithms with NS algorithms

We used the following parameters for NSPSO and
VEPSO:

Gs=7, a=01, =2, v=2, u=0.1 9)

where G, «, 8, v and p are number of grids per dimension,
inflation rate, leader selection pressure, deletion selection
pressure, and mutation rate. Four different cost functions
were uses, as introduced in Equation E}

Table [X| shows the comparison of relative coverage be-
tween the multi-objective optimization algorithms. For in-
stance, the entry 3/45 for the relative coverage of NSBBO
to VEBBO means that 3 points out of 45 total NSBBO Pareto
front points are weakly dominated by at least one point in
the VEBBO Pareto front. Based on this table, NSBBO has
better results in terms of smaller relative coverage, which
means it has better a Pareto front set that is less dominated
by the other Pareto front points.

Table [XI| shows the simulation results relative to normal-
ized hypervolume. It shows NSBBO works better in terms
of smaller normalized hypervolume.

VI. CONCLUSIONS

In this paper, we chose BBO and PSO as two algorithms
that are representative of a typical evolutionary and swarm
algorithm, respectively, and we extended them to multi-
objective optimization to tune the parameters of the PD



TABLE X
COMPARISON OF MOBBO WITH MOPSO IN TERMS OF RELATIVE
COVERAGE

[ [ VEBBO | NSBBO | VEPSO | NSPSO |

VEBBO - 3/45 720 0/20
NSBBO 15/47 - 5/20 0/20
VEPSO 1/47 0/45 - 6/20
NSPSO 21/47 0/45 0/20 -
Tot. % of Dom. Pts. 79% 7% 35% 30%
TABLE XI

COMPARISON OF MOBBO AND MOPSO IN TERMS OF NORMALIZED
HYPERVOLUME

[ [ Normalized hypervolume [ No. of Pareto Points |

VEBBO 0.0024 47
NSBBO 0.0016 45
VEPSO 0.0152 20
NSPSO 0.0056 20

controller of a drone. The multi-objective function is defined
based on the tracking errors of the four states of the system,
which in turn help reduce settling time, overshoot, rise time
and steady state error. VEBBO, NSBBO, VEPSO, NSPSO
and aggregation methods were applied to the dynamic model
of the drone. Two evaluation criteria, normalized hypervol-
ume and relative coverage, were used to compare the per-
formance of the multi-objective optimization methods. The
results showed improved results compared to conventional
PD control. Also, we investigated the robustness, sensitivity
and repeatability of the aggregation method. To speed up op-
eration, we used the MATLAB Parallel Computing Toolbox
to parallelize the aggregation method.

For future work, we plan to conduct flight tests with an
open source drone to test the controller with the optimized
parameters we found with MOBBO and MOPSO. Also, we
will investigate different weights for the aggregation method
and we will investigate the effect of trajectory disturbances
and noise in the PD parameters tuning process.
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