
ar
X

iv
:2

10
1.

10
35

1v
2

 [
ee

ss
.S

Y
]

 1
1

M
ay

 2
02

1

A Receding Horizon Approach for

Simultaneous Active Learning and Control using Gaussian Processes

Viet-Anh Le and Truong X. Nghiem

School of Informatics, Computing, and Cyber Systems

Northern Arizona University

{vl385,truong.nghiem}@nau.edu

Abstract— This paper proposes a receding horizon active
learning and control problem for dynamical systems in which
Gaussian Processes (GPs) are utilized to model the system
dynamics. The active learning objective in the optimization
problem is presented by the exact conditional differential
entropy of GP predictions at multiple steps ahead, which is
equivalent to the log determinant of the GP posterior covariance
matrix. The resulting non-convex and complex optimization
problem is solved by the Sequential Convex Programming
algorithm that exploits the first-order approximations of non-
convex functions. Simulation results of an autonomous racing
car example verify that using the proposed method can signif-
icantly improve data quality for model learning while solving
time is highly promising for real-time applications.

I. INRODUCTION

Modeling the system dynamics play a pivotal role in

the performance of model-based control techniques such

as Receding Horizon Control (RHC, also known as Model

Predictive Control). Nevertheless, for many complex dy-

namical systems, obtained mathematical models are often

insufficiently accurate due to the existence of uncertain-

ties and ignored dynamical parts. This challenge motivates

learning-based models for control, which leverages Machine

Learning (ML) techniques to model dynamical systems from

data and certain prior knowledge. For example, Gaussian

Processes (GPs) [1] have been applied for dynamics and

control recently [2]. A fundamental but challenging problems

in learning the system dynamics using GPs is how to obtain

a training dataset such that the learned models can efficiently

capture the actual dynamics. This is because, in most control

applications, the experiments for data collection are limited

by time, cost, or constraints of environment, whereas using

only historical data is not suitable due to the lack of input

excitation. For instance, consider a motivating example of

an autonomous racing car. In this example, the experiments

are constrained by narrow and sharp racing tracks, while

the historical data obtained from manual control or simple

automatic control techniques do not have sufficient excita-

tion. A better approach would be simultaneous learning and

control where the car explores the state space for learning as

quickly as possible while satisfying other control objectives

such as maintaining safety and tracking a racing trajectory.

The learning objective requires that the system dynamics are

sampled at the states associated with informative GP inputs.

Given current models, the goal can be achieved by driving

the system to the state where the information from collected

data can minimize prediction uncertainty at the region of

interest. Once the system is controlled to the new state,

the GP inputs and outputs are collected, then the model is

retrained. This repetitive procedure is referred to as active

learning for dynamical systems.

The general active learning framework has been applied to

various domains (see [3] for a survey) to address the problem

pertaining to optimal training data collection. However, the

active learning problem for dynamical systems has only been

studied recently [4]–[7]. In [4], a greedy scheme for choosing

the next data point in Optimal Experiment Design (OED) was

proposed by exploiting the maximum variance and informa-

tion gain methods. The models learned from the experiment

was then used for an RHC problem. Meanwhile, active

learning using multi-step look-ahead was considered [5]–[7]

and shows better performance than single-step approach. Par-

ticularly, in [5], based on the conditional differential entropy

of multi-step GP predictions, the authors first determined

the most informative data point within the region of interest

by a greedy algorithm, then steering the system towards

that state using RHC. The paper [6] considered an RHC

problem for dual control (i.e., simultaneous learning and

control) in which the objective function consists of a control

objective and a knowledge-gain (information-gain) objective

for learning the dynamics. The knowledge-gain objective

was obtained using concepts from information theory, such

as mutual information or relative entropy. In [7], an RHC

problem for OED including both active learning objective

represented by the differential entropy of GP predictions and

dynamic constraints was formulated. However, to limit the

computational burden, only an upper or lower bound of the

differential entropy in [7] and the estimated knowledge gain

in [6] of the multi-step GP predictions was utilized. That is,

the information-gain metrics for multi-step GP predictions

were replaced by the sum of individual metrics for step-wise

predictions over the horizon. As a result, the problems can

be solved in continuous domain by nonlinear programming

solvers instead of grid-based methods. However, computation

time for solving the optimization problems was not reported

in those papers to judge whether the used methods are

suitable for real-time control.

In this paper, we presents a Receding Horizon Active

Learning and Control (RHALC) problem for dynamical

systems using the GP regressions. The presented problem

formulation covers both the dual control problem in [6] and

http://arxiv.org/abs/2101.10351v2

the problem for experiment design in [7]. However, instead

of approximate information-gain metrics, we take the exact

conditional differential entropy of multi-step GP predictions

into account. The resulting optimization problem involving

the GP dynamics and the log determinants of posterior

covariance matrices is thus non-convex and highly complex

that may prevent the success of any non-linear programming

solvers. To overcome this challenge, we apply the Sequential

Convex Programming (SCP) method [8] to efficiently address

the problem by performing the first-order approximations of

the GP means and the GP posterior covariance matrices.

The effectiveness of the proposed method is validated by

simulations of an autonomous racing car example. The re-

sults on trajectory tracking control performance of the racing

car and prediction accuracy of the learned models show

that the active learning can improve data quality for model

learning in both offline learning (experiment design) and

simultaneous learning and control. In addition, the reported

fast computation time of the SCP algorithm demonstrates its

capability for real-time implementation.

The remainder of this paper is organized as follows. The

RHALC problem formulation is introduced in Section II.

Section III provides SCP algorithm, while the simulation

results are reported and discussed in Section IV. Finally,

Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we introduce a general Receding Horizon

Active Learning and Control (RHALC) formulation in which

the GPs are employed to model the system dynamics while

the exact conditional differential entropy is used as an

optimization metric in active learning.

A. Gaussian Process Regression

Consider a latent function f : R
n 7→ R and N noisy

observations y(i) of it, y(i) = f
(

x(i)
)

+ ǫ(i), at inputs

x(i) ∈ R
n and with i.i.d. Gaussian noise ǫ(i) ∼ N

(

0, σ2
n

)

,

for i = 1, . . . , N . We will use X = [x(1), . . . ,x(N)] ∈
R

n×N to denote the collection of all input vectors and

Y = [y(1), . . . , y(N)] ∈ R
N to denote the collection of

the corresponding observed outputs. Let D = (X,Y) be

the set of observation data of f . A GP of f , which will be

denoted by Gf , is a probability distribution over all possible

realizations of f and can be formally defined as a collection

of random variables, any finite number of which have a

joint Gaussian distribution [1]. It is fully specified by a

covariance function k(x,x′; θ) and a mean function m(x; θ).
The mean function is employed to include prior knowledge

about the unknown function. In this paper, the mean function

is assumed to be zero without loss of generality.

At M new inputs x⋆ = [x1,⋆, . . . ,xM,⋆], the joint pre-

dictions at x⋆, f⋆ = f(x⋆), of Gf is a random variable

f⋆ ∼ N (µ⋆,Σ⋆), in which the predictive mean vector µ⋆

and the M×M posterior covariance matrix Σ⋆ are computed

as follows

µ⋆ = µGf
(x⋆) = K⋆(K+ σ2

nI)
−1Y (1a)

Σ⋆ = ΣGf
(x⋆) = K⋆⋆ −K⋆(K+ σ2

nI)
−1KT

⋆ (1b)

where σ2
n is the Gaussian noise variance, I is an identity

matrix of appropriate dimensions, K⋆⋆ ∈ R
M×M is the co-

variance matrix at x⋆, K⋆ ∈ R
M×N is the cross-covariance

matrix between x⋆ and X, K ∈ R
N×N is the covariance

matrix at X, in which the elements Kij of each matrix is

computed by Kij = k(x(i),x(j)). Note that in this paper, we

only utilize the GP means without uncertainty propagation

to represent the predicted values of the nonlinear dynamics.

For more details on GPs and its usage in controls, readers

are referred to [1], [2].

B. Receding Horizon Active Learning and Control with

Gaussian Process

We define the control input vector as u ∈ R
nu , the vector

of GP output variables y ∈ R
ny and the vector of non-GP

variables z ∈ R
nz . For any variable �, where � is y, z, or

u, let �k denote its value at time step k. The state of the

system at time step k comprises yk and zk. We denote the

GP dynamic model as yk ∼ G(xk). The input vector xk, or

features, of the GP is formed from current and past values

of the control inputs uτ and non-GP states zτ , for τ ≤ k,

as well as from past GP outputs yτ , for τ < k. To simplify

the notation and formulation, we assume that y is scalar;

however, our results can be readily extended to multivariate

y. Given an input xk , let ȳk = µ(xk) denote the predictive

mean of the GP model G(·) at xk .

Let H > 0 be the length of the control horizon, t be the

current time step and It = {t, . . . , t+H−1} be the set of all

time steps in the control horizon at time step t. Denote Ȳt =
{ȳk|k ∈ It}, Zt = {zk|k ∈ It}, Ut = {uk|k ∈ It}, and

Xt = {xk|k ∈ It} as the sets collecting the predictive GP

output means, the non-GP states, the control inputs, and GP

inputs over the control horizon. To simplify the mathematical

notations, we will use [X] to denote the vector concatenation

of all vectors in a set X (e.g., [Xt] = [xT
k]

T
k∈It

).

Given a GP model trained on the data generated up to the

current time step, the most informative GP regressor vectors

in the next horizon Xt can be determined by maximizing the

conditional differential entropy of GP predictions at these

vectors that is computed by the log determinant of the

covariance matrix [9], leading to the following optimization

problem

Xt = argmax
{Xt}

log det
(

Σ([Xt])
)

(2)

where Σ([Xt]) is a H × H posterior covariance matrix of

GP predictions at H input vectors in the set Xt and can be

computed by (1b).

The RHALC problem is thus formulated as follows

minimize
{Ut,Zt}

J(Ȳt,Ut,Zt)− γH(Xt)

subject to

ȳi,k = µ(xi,k), ∀k ∈ It

gj(Ȳt,Ut,Zt) ≤ 0, ∀j ∈ Jieq

hj(Ȳt,Ut,Zt) = 0, ∀j ∈ Jeq

(3)

where H(Xt) = log det
(

Σ([Xt])
)

is an active learning

term and J(Ȳt,Ut,Zt) is an control objective function,

gj(Ȳt,Ut,Zt) ≤ 0 and hj(Ȳt,Ut,Zt) = 0 are inequality

and equality constraints while Jieq and Jeq are the sets of

inequality and equality constraint indices, respectively. In the

problem (3), γ is a positive constant representing a tradeoff

between learning and control objectives.

Similar to [10], we make the following assumption about

the problem (3).

Assumption 1: Suppose that J is convex, each gj is con-

vex, and each hi is affine in the optimization variables Ut

and Zt. In other words, the non-convexity of the problem

(3) results from the GP dynamics and the log determinant of

the GP predictive covariance matrix.

III. SEQUENTIAL CONVEX PROGRAMMING FOR

RECEDING HORIZON ACTIVE LEARNING AND CONTROL

The problem (3) is highly nonconvex due to the ac-

tive learning objective and the GP dynamics. Moreover,

the complexity of the objective function involving the log

determinant of the GP predictive covariance matrix makes

the problem (3) computationally intractable. In this section,

we employ the Successive Convex Programming (SCP) ap-

proach [8] to effectively address this problem.

Suppose that nominal feasible control inputs are given

in U⋆
t = {u⋆

k | k ∈ It}. We then simulate the GP model

G(·) over the RHC horizon to obtain the nominal output

means Y⋆
t = {y⋆k | k ∈ It}. The nominal regressor vectors

in X ⋆
t = {x⋆

k | k ∈ It}, can be obtained from these values.

Consider small perturbations to the nominal control inputs

uk = u⋆
k +∆uk, which are collected in ∆Ut = {∆uk | k ∈

It}. They will cause perturbations to the predictive output

means and regressor vectors during the MPC horizon as:

∆Yt = {∆yk = yk − y⋆k | k ∈ It} and ∆Xy,t = {∆xk =
xk − x⋆

k | k ∈ It}. Using these perturbation variables, the

RHALC (3) can be approximated locally around the nominal

values by replacing the GP predictive means ȳk = µ(xk) and

the log determinant of GP predictive covariance matrix with

their first order approximations as follows.

Define ỹk as the first-order approximation of yk around

the nominal solution x⋆
k , which can be computed as follows

ỹk = µ(x⋆
k) +∇µ(x⋆

k)
T∆xk (4)

where from (1a) we have

µ(x⋆
k) = k(x⋆

k,X)(K+ σ2
nI)

−1Y

∇µ(x⋆
k) = K(1,0)(x⋆

k,X)T (K+ σ2
nI)

−1Y

with K(1,0) = (∇xk) being the gradient of k with respect

to the first argument. We also define Ỹt as a collection of

ỹk for k ∈ It. Meanwhile, the first-order approximation of

H(Xt) around a nominal solution [X ⋆
t] is computed by:

H̃(∆Xt) = log det (Σ([X ⋆
t]))

+∇ log det (Σ([X ⋆
t]))

T
[∆Xt]

(5)

Note that the derivative of the log determinant of the GP

predictive covariance matrix with respect to each element νj
of a vector ν can be computed by

∂ log det (Σ(ν))

∂νj
= tr

(

Σ−1(ν)
∂Σ(ν)

∂νj

)

where from (1b) we have

Σ(ν)

∂νj
=

∂K⋆⋆

∂νj
− 2K⋆(K+ σ2

nI)
−1

(

∂K⋆

∂νj

)T

With a slight abuse of notations, we will write Ut = U⋆
t +

∆Ut. We now obtain the convexified RHALC problem, as

stated below.

minimize
∆Ut,Zt

J(Ỹt,U
⋆
t +∆Ut,Zt)− γH̃(∆Xt) (6a)

subject to

ỹk = µ(x⋆
k) +∇µ(x⋆

k)
T∆xk, ∀k ∈ It (6b)

‖∆uk‖∞ ≤ ρ, ‖∆xk‖∞ ≤ ρ, ∀k ∈ It (6c)

gj(Ỹt,U
⋆
t +∆Ut,Zt) ≤ 0, ∀j ∈ Jieq (6d)

hj(Ỹt,U
⋆
t +∆Ut,Zt) = 0, ∀j ∈ Jeq (6e)

Constraints (6c) specify a trust region in which the local

convexified subproblem is valid. To avoid the artificial infea-

sibility [8] of the problem due to the approximations (4) and

(5), the inequality and equality constraints in (6) are encoded

into the objective function by the exact penalty functions [8]

leading to the following penalized convex problem

minimize
∆Ut,Zt

J(Ỹt,U
⋆
t +∆Ut,Zt)− γH̃(∆Xt)

+
∑

j∈Jieq

τj max
(

0, gj(Ỹt,U
⋆
t +∆Ut,Zt)

)

+
∑

j∈Jeq

λj

∣

∣hj(Ỹt,U
⋆
t +∆Ut,Zt)

∣

∣

(7a)

subject to

ỹk = µ(x⋆
k) +∇µ(x⋆

k)
T∆xk, ∀k ∈ It (7b)

‖∆uk‖∞ ≤ ρ, ‖∆xk‖∞ ≤ ρ, ∀k ∈ It (7c)

where τj , ∀j ∈ Jieq and λj , ∀j ∈ Jeq are large positive

penalty weights. Under Assumption 1, the penalized sub-

problem (7) is convex and can be solved efficiently by convex

solvers. The SCP algorithm for solving the RHALC problem

is outlined in Algorithm 1. For further details on the SCP

method and its application to the RHC problem using the

GPs, the readers are referred to [8] and [10], respectively.

IV. SIMULATION

This section validates the advantages of the RHALC prob-

lem in two scenarios, experiment design and simultaneous

learning and control problem, as well as the effectiveness of

the SCP algorithm in solving the problems in real-time by a

numerical simulation of an autonomous racing car example.

A. Autonomous racing car example

We revisit the example of an autonomous racing car

mentioned in Section I. The simulation consists of two

phases: learning phase and racing phase. During the learning

phase, starting with initial GP models trained on a few

historical data, the controller collects and adds new data

points and retrain the GP models. Once sufficient data for

learning accurate models have been obtained, the learning

phase is disabled and the obtained models are utilized to

perform tracking control task in the racing phase.

Algorithm 1 Successive Convex Programming for RHALC

Require: U
(0)
t , Z

(0)
t , ρ(0) > 0, 0 < r0 < r1 < r2 < 1, βfail < 1,

βsucc > 1, ǫ > 0, jmax > 0

1: Simulate G with U
(0)
t , obtain Y

(0)
t

2: φ(0) ← φ
(

Y
(0)
t ,U

(0)
t ,Z

(0)
t

)

3: for j = 0, . . . , jmax − 1 do
4: Form convex subproblem (7) by using (4) and (5)

5: Solve problem (7) to get Ỹt, Ũt, Z̃t

6: Simulate G with Ũt to obtain Yt

7: δ(j) ← φ(j) − φ
(

Yt, Ũt, Z̃t

)

8: δ̃(j) ← φ(j) − φ̃
(

Ỹt, Ũt, Z̃t

)

9: if |δ̃(j)| ≤ ǫ then stop and return U
(j)
t

10: r(j) ← δ(j)/δ̃(j)

11: if r(j) < r0 then
12: Keep current solution: U

(j+1)
t ← U

(j)
t , Z

(j+1)
t ←

Z
(j)
t , Y

(j+1)
t ← Y

(j)
t

13: ρ(j+1) ← βfailρ
(j)

14: else
15: Accept solution: U

(j+1)
t ← Ũt, Z

(j+1)
t ← Z̃t,

Y
(j+1)
t ← Yt, φ

(j) ← φ
(

Yt,Ut,Zt

)

16: if r(j) < r1 then ρ(j+1) ← βfailρ
(j)

17: else if r(j) < r2 then ρ(j+1) ← ρ(j)

18: else ρ(j+1) ← βsuccρ
(j)

19: return U
(jmax)
t

Similar to [11], the kinematic bicycle model of the vehicle

is used in the simulation while the following discrete-time

dynamics with a sampling time ∆T > 0 are utilized to design

the control problem

xk+1 = xk +∆xk, yk+1 = yk +∆yk,

θk+1 = θk +∆θk, vk+1 = vk +∆Tak.
(8)

where (x, y) is the position vector of the vehicle, θ is

the heading angle, v is the speed of the vehicle, and a
and α are respectively the linear acceleration and steering

angle of the vehicle. The continuous-time kinematic bicycle

model and parameters of the racing car can be found in

[11]. The nonlinear components in (8) are learned by three

GP models: ∆xk ∼ Gx(xp,k), ∆yk ∼ Gy(xp,k), and

∆θk ∼ Gθ(xa,k), in which the vectors of GP inputs xp,k =
[cos θk, sin θk, vk, αk]

T , xa,k = [vk, αk]
T . The GP models

result in the following GP dynamical equations

∆x̄k = µx(xp,k), ∆ȳk = µy(xp,k), ∆θ̄k = µθ(xa,k). (9)

The RHALC formulation for this example is given by

minimize
{ak,αk}k∈It

J − γ (Hx +Hy +Hθ) (10a)

subject to

(8) and (9) (10b)

vmin ≤ vk ≤ vmax, (10c)

amin ≤ ak ≤ amax, αmin ≤ αk ≤ αmax (10d)

ak
[

xk+1 yk+1

]T
≤ bk (10e)

where the constraints hold for all k ∈ It, (10c) are velocity

bound constraints, (10d) are bound constraints on the control

actions, and (10e) are affine constraints representing collision

avoidance to the border of the racing track. The objective of

this problem consists of two parts: trajectory tracking control

and active learning for dynamics. The control objective

function J is given by

J =
t+H−1
∑

k=t

∥

∥

∥

∥

[

ak
αk

]∥

∥

∥

∥

2

R

+

∥

∥

∥

∥

[

xk+1

yk+1

]

− rk+1

∥

∥

∥

∥

2

Q

where rk+1 denotes the reference at time step k + 1. Given

a vector ν and a positive semidefinite matrix M, we define

‖ν‖2M = νTMν. The active learning goals for the GP models

are captured by

Hx = log det
(

ΣGx
(xp,t+1:t+H)

)

Hy = log det
(

ΣGy
(xp,t+1:t+H)

)

Hθ = log det
(

ΣGθ
(xa,t+1:t+H)

)

where xp,t+1:t+H and xp,t+1:t+H denotes the concatenated

vector of GP inputs from time t + 1 to t + H . To avoid

the collision with the track borders, we employed a scheme

presented in [12] that limit the movement of the car at each

time step in the horizon to lie within two parallel half-

planes. As a result, the collision avoidance scheme can be

represented as a set of linear inequality constraints in (10e).

The sampling time ∆T = 200ms while the control

horizon length H = 5. The parameters in the constraints

are: vmin = 0m/s, vmax = 2m/s, αmin/max = ±π/4 rad/s,
amin/max = ±2m/s2. The weights in the objective function

are: Q = diag([102, 102]), R = diag([10−1, 10−1]), γ = 10.

All the penalty weights in (7) are chosen to be 106. The

parameters of the SCP algorithm are: ρ(0) = 0.1, βfail = 0.5,

βsucc = 2.0, r0 = 0.01, r1 = 0.1, r2 = 0.3, jmax = 100, ǫ =
10−4. Two virtual racing tracks developed by the University

of California, Berkeley (UCB) [13] and the University of

Pennsylvania (UPenn) [14] are used in the simulations.

In what follows, we present two scenarios for the racing

car example considered in this paper: Offline learning and

Simultaneous Learning and Control (Online Learning).

1) Offline learning: Assume that a large area without ob-

stacles is available for experiments. We design an experiment

to obtain an optimal dataset for training the GP dynamics

prior to the race. This procedure is also referred to as Optimal

Experiment Design (OED) [7]. In the OED problem, only

the active learning term is included in the objective function

while the control objective J is removed. The constraints

(10e) are simplified to bound constraints on x and y to ensure

that the car lies within the experimental space.

We compare the optimal experiment design using RHALC

with a randomized experiment design where random control

inputs that satisfy all the input constraints are applied to

the system. In the optimal experiment design, three simple

GP models with 25 initial data points are utilized, then

the RHALC problem is applied in 50 time steps to collect

new data points. The models learned from experimental data

are used to perform a reference tracking control task. The

receding horizon reference tracking problem can be derived

by removing the active learning term in (10).

2) Simultaneous Learning and Control: In the application

where a free area for experiments is not available, it is

required to perform Simultaneous Active Learning and Con-

trol, or Online Learning, in the learning phase. The vehicle

−15 −10 −5 0 5 10

−2

0

2

4

6

8

10

x (m)

y
(m

)

(a) Offline learning - Optimal experiment

−15 −10 −5 0 5 10

−2

0

2

4

6

8

10

x (m)

y
(m

)

(b) Offline learning - Randomized experiment

−10 −8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

x (m)

y
(m

)

(c) Offline learning - Optimal experiment

−10 −8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

x (m)

y
(m

)

(d) Offline learning - Randomized experiment

Fig. 1: The trajectories (blue lines) of the autonomous vehicle in two racing tracks with the offline GP models from optimal

experiment ((a) and (c)) and randomized experiment ((b) and (d)).

is expected to efficiently collect online data to update the

GP dynamics while following the racing track and avoiding

collision to the borders. Hence, this scenario covers the dual

control problem in [6].

To validate the benefits of active learning, we consider two

simulations depending on the effect of the active learning

term. In the first simulation, the active learning objective

is involved to whereas in the second simulation, the active

learning is disabled and the vehicle only tracks to the

reference and collects online data along the racing track.

In this scenrio, three initial GP models trained on 50 initial

data points are adopted to control the system at the begin-

ning, then 100 new data samples are collected online. The

simultaneous learning and control simulation is conducted

using the UPenn track, while the UCB track is utilized for a

testing race given the model learned from the previous race.

B. Results and discussions

The trajectories of the autonomous racing car in the offline

learning simulation are shown in Fig. 1. Using the GP models

from the optimal experiment, the receding horizon tracking

controller can accurately track the reference and prevent the

collision to the borders. In contrast, the GP models from

the randomized experiment apparently are not accurate since

the car cannot complete one racing lap without crashing

into the borders. Particularly, the car initially can track well

to the reference but collision to the borders happens when

the car needs to turn sharply. Meanwhile, Fig. 2 shows the

trajectories of the car in the Simultaneous Learning and

Control simulation. As can be seen from the figure, with

the active learning, the vehicle initially fluctuates around the

reference to explore the informative states, hence the car

does not perfectly track the reference in the first 100 time

instants but the safety condition is guaranteed. However, once

completing the learning phase, the obtained GP models are

accurate so that the vehicle is able to track the reference

trajectory in the rest of the racing track and in a new testing

track. Meanwhile, without active learning, at the beginning of

the race where the racing track is relatively simple, then the

car can track to the reference. However, since the learned

models do not have enough excitation, the car deviates

to the reference trajectory when the track becomes more

complicated leading to the crashes to the borders.

Furthermore, the prediction accuracy of the GP models

obtained from all simulations are shown in Table I. We

compare 4 types of GP models, OE, RE, AL and Non-

AL, which are correspondingly obtained from the offline

optimal and randomized experiments, and the learning and

control simulations with and without active learning. Two

validation metrics including the root mean squared errors

(RMSEs), and the maximum absolute errors (MAEs) are

considered. These validation metrics are computed using the

GP predictions on a grid of GP inputs in which 20 linearly

spaced points in the region of interest for each input and the

corresponding latent non-linear functions. According to the

table, with the same number of training data points, three

GP models generated from the optimal experiment show

better performance in prediction accuracy than those from the

randomized experiment. Likewise, based on the metrics for

AL and non-AL models, it is obvious that active learning can

improve GP precision in simultaneous learning and control.

Regarding the computation time, in the optimal experi-

ment, SCP algorithm takes 0.069 s on average for each time

instant, while in the race, it takes 0.041 s and 0.040 s in

UCB and UPenn racing tracks, respectively. Meanwhile, in

online learning simulation that includes active leaning, SCP

−15 −10 −5 0 5 10

−2

0

2

4

6

8

10

x (m)

y
(m

)

(a) Online learning - With active learning

−15 −10 −5 0 5 10

−2

0

2

4

6

8

10

x (m)

y
(m

)

(b) Online learning - Without active learning

−10 −8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

x (m)

y
(m

)

(c) Testing - With active learning

−10 −8 −6 −4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

x (m)

y
(m

)

(d) Testing - Without active learning

Fig. 2: The trajectories (blue lines) of the autonomous vehicle in two racing tracks with the GP models updated online with

active learning ((a) and (c)) and without active learning ((b) and (d)).

TABLE I: Validation metrics for different types of obtained

GP models.

Gx Gy Gθ

RMSE MAE RMSE MAE RMSE MAE

OE 0.050 0.151 0.058 0.189 0.006 0.017

RE 0.139 0.443 0.084 0.397 0.020 0.046

AL 0.036 0.192 0.041 0.161 0.015 0.070

Non-AL 0.063 0.296 0.114 0.498 0.038 0.238

algorithm averagely takes 0.104 s, whereas in control phase,

it takes 0.058 s for each time step. Note that all simulations

in this work are performed on a DELL computer with a

3.0GHz Intel Core i5 CPU and 8Gb RAM, and the Julia

programming language is used for the implementation.

V. CONCLUSION

In this paper, a receding horizon active learning and

control problem for dynamical systems using Gaussian Pro-

cesses (GPs) was considered. We first developed a problem

formulation subjecting to the GP dynamics while the exact

conditional differential entropy was employed as a metric

for active learning. The resulting complex and non-convex

problem was solved by the Sequential Convex Programming

algorithm. The proposed method was validated by numerical

simulations of an autonomous racing car example. Not only

guarantee the tracking performance in both offline and online

learning scenarios, the control algorithm but also can be

executed in a reasonable amount of time, which promises

its potential practicality for real-time implementation.

REFERENCES

[1] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine

learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[2] J. Kocijan, Modelling and control of dynamic systems using Gaussian

process models. Springer, 2016.
[3] C. C. Aggarwal, X. Kong, Q. Gu, J. Han, and S. Y. Philip, “Active

learning: A survey,” in Data Classification: Algorithms and Applica-

tions. CRC Press, 2014, pp. 571–605.
[4] A. Jain, T. Nghiem, M. Morari, and R. Mangharam, “Learning and

control using Gaussian processes,” in 2018 ACM/IEEE 9th Interna-

tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018,
pp. 140–149.

[5] A. Capone, G. Noske, J. Umlauft, T. Beckers, A. Lederer, and
S. Hirche, “Localized active learning of gaussian process state space
models,” in Learning for Dynamics and Control. PMLR, 2020, pp.
490–499.

[6] T. Alpcan and I. Shames, “An information-based learning approach
to dual control,” IEEE transactions on neural networks and learning

systems, vol. 26, no. 11, pp. 2736–2748, 2015.
[7] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively learning

Gaussian process dynamics,” in Learning for Dynamics and Control.
PMLR, 2020, pp. 5–15.

[8] Y. Mao, D. Dueri, M. Szmuk, and B. Açıkmeşe, “Successive convexifi-
cation of non-convex optimal control problems with state constraints,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 4063–4069, 2017.

[9] L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake,
“Information-driven adaptive sampling strategy for mobile robotic
wireless sensor network,” IEEE Transactions on Control Systems

Technology, vol. 24, no. 1, pp. 372–379, 2015.
[10] T. X. Nghiem, “Linearized Gaussian Processes for Fast Data-driven

Model Predictive Control,” in 2019 American Control Conference

(ACC). IEEE, 2019, pp. 1629–1634.
[11] V.-A. Le and T. X. Nghiem, “Gaussian Process Based Distributed

Model Predictive Control for Multi-agent Systems using Sequential
Convex Programming and ADMM,” in 2020 IEEE Conference on

Control Technology and Applications (CCTA). IEEE, 2020, pp. 31–
36.

[12] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale RC cars,” Optimal Control Applications

and Methods, vol. 36, no. 5, pp. 628–647, 2015.
[13] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car:

a predictive control approach,” IEEE Transactions on Control Systems

Technology, 2019.
[14] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1TENTH:

An Open-source Evaluation Environment for Continuous Control and
Reinforcement Learning,” Proceedings of Machine Learning Research,
vol. 123, 2020.

	I Inroduction
	II Problem Formulation
	II-A Gaussian Process Regression
	II-B Receding Horizon Active Learning and Control with Gaussian Process

	III Sequential Convex Programming for Receding Horizon Active Learning and Control
	IV Simulation
	IV-A Autonomous racing car example
	IV-A.1 Offline learning
	IV-A.2 Simultaneous Learning and Control

	IV-B Results and discussions

	V Conclusion
	References

