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A Secure Learning Control Strategy via Dynamic Camouflaging for
Unknown Dynamical Systems under Attacks

Sayak Mukherjee!, Veronica Adetola'

Abstract—This paper presents a secure reinforcement learning
(RL) based control method for unknown linear time-invariant
cyber-physical systems (CPSs) that are subjected to compositional
attacks such as eavesdropping and covert attack. We consider
the attack scenario where the attacker learns about the dynamic
model during the exploration phase of the learning conducted
by the designer to learn a linear quadratic regulator (LQR),
and thereafter, use such information to conduct a covert attack
on the dynamic system, which we refer to as doubly learning-
based control and attack (DLCA) framework. We propose a dy-
namic camouflaging based attack-resilient reinforcement learning
(ARRL) algorithm which can learn the desired optimal controller
for the dynamic system, and at the same time, can inject sufficient
misinformation in the estimation of system dynamics by the
attacker. The algorithm is accompanied by theoretical guarantees
and extensive numerical experiments on a consensus multi-agent
system and on a benchmark power grid model.

Index Terms—Cyber physical systems, CPS security, reinforce-
ment learning, covert attacks, attack-resilient learning control.

I. INTRODUCTION

Security of Cyber-Physical Systems (CPSs) is becoming
one of the fundamental requirements to safeguard various
infrastructure and control systems against malicious attacks
that can lead to catastrophic failures if left unattended. Refer-
ences such as [1f], [2] present overview of various theoretical
and computational aspects of attack detection, prevention and
resilient control designs. Extensive research work on the
detection and identification of the attacks can be found in
references [3]-[5]. Various types of different attack scenarios
are considered in the literature; [|6] categorizes these scenarios
based on the CPS model knowledge, disclosure of resources
and disruption of resources. More specifically, recent works
have investigated attacks such as denial-of-service attacks
[7]], false data-injection attacks [, replay attacks [9]], covert
attacks [10], [11]], etc. Different types of attacks lead to several
prevention and mitigation techniques involving secure state
estimation techniques [|12], watermarking certain pre-specified
signals in the CPS loop [[13], [14]], moving target defense and
its variants [[15]-[[17], to name a few. Most of the literature on
CPS security focuses on the setting where the designer knows
the dynamic model of the system, and the attacker possesses
the knowledge about the dynamics with varying degree of
availability. However, with the ever increasing complexity and
dimensionality of the dynamic systems, the designer may not
have the explicit model information, and may need to learn the
dynamics or the feedback controller from the state, control and
output trajectories. In this paper, we propose a new formulation
and mitigation technique of a compositional attack performed
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in a setting where the designer is tasked to learn an optimal
controller in a data-driven way. We have considered both the
eavesdropping and the covert attack, where the attacker can
manipulate both the controls and measurements to remain
undetected and at the same time harm the CPS by injecting
malicious inputs, to be performed in a sequential way.

Recently feedback control research for partially or fully

unknown dynamic systems has seen a tremendous growth
with the advancement on data-driven learning techniques
such as reinforcement learning (RL) [18]. In recent years,
several papers such as [19]-[23] have used RL for linear
optimal control using a variety of solution techniques such
as adaptive dynamic programming (ADP), Q-learning, actor-
critic methods, model reduction based RL, etc. More variants
of data-driven control research such as data-dependent linear
matrix inequalities [24], various distributed control designs
[25]], [26]], analyzing sample complexity [27], to name a few,
have been reported. We, in this paper, consider the linear
quadratic regulator problem using ADP/RL as considered
in [20], and then investigate the scenarios with malicious
attacks. In [28], learning-based secure control framework in
the presence of sensor and actuator attacks are discussed. This
work first uses the model to perform the detection task. [29]]
considers learning based attacks. We have considered a very
generic attack scenario where initially the attacker does not
possess any system dynamic information and therefore the
attacker first eavesdrops, and after gathering sufficient dynamic
information conducts a covert attack. As we consider the
problem of learning the optimal control in a secured way from
the perspective of the designer, we refer to our framework as
a doubly learning-based control and attack (DLCA) scenario.
We propose an attack-resilient reinforcement learning (ARRL)
algorithm which can learn the desired optimal controller for
the dynamic system, and at the same time, can inject sufficient
misinformation in the system’s dynamics estimation to delude
the attacker.

The contributions of this paper are as follows:

« We propose a secure learning control framework, namely
DLCA, where the attacker tries to exploit the learning
methodology such as the system exploration to gather
important dynamic information and conduct malicious
covert attacks. Therefore, the vulnerability of the learning
based designs for CPS in the presence of attackers needs
to be addressed.

o Thereafter, we propose a retrofitted reinforcement learn-
ing design, namely, ARRL, where the designer tries to
misguide the attacker during the exploration phase of
the learning. We dynamically couple the CPS with a
nonlinear time-variant static map satisfying input-to-state
stability (ISS) conditions, which we termed as dynamic



camouflaging.

e The proposed method is accompanied with sufficient
guarantees and numerical experiments conducted on a
consensus multi-agent system and on a benchmark power
grid model.

The rest of the paper is organized as follows. The secure
learning control problem is introduced in Section II. The
nominal ADP/RL based control design is discussed in Section
III. The attack model is discussed in Section IV. Section
V proposes the attack resilient design and its advantages.
Numerical experiments are performed in Section VI, and
concluding remarks are provided in Section VII.

II. SECURE LEARNING CONTROL PROBLEM

We first formalize the problem of performing secure learn-
ing control design for the CPS. We consider a linear time
invariant dynamic systems with the dynamics:

& = Az + Bu,x(0) = xp, (1

where the x € R" denotes the states, and © € R" denotes
the control inputs. The designer is interested in computing
the optimal controller for this dynamic systems with unknown
state matrices. Therefore, we make the following assumptions
from the designer’s perspective:
Assumption 1: The model matrices A, and B are unknown.
Assumption 2: The pair (A, B) is stabilizable.
Assumption 3: The state and control measurements x(t), and
u(t) are available to the designer.

The designer is tasked with formulating a learner to solve
the following linear quadratic regulator (LQR) problem.
P. Under the assumptions 1,2 and 3, learn the state feedback
controller u = —Kuz such that the following objective is
minimized in closed loop:

minimize J(zg, u) = AOO ()T Qx(t) + u(t)” Ru(t))dt,
2)

where (Q = 0,R > 0 denote the state and control penalty
weights.

The standard model based solution to this problem is found
by solving the well-known algebraic Riccati equation (ARE).
In recent times, the research works on adaptive dynamic
programming and reinforcement learning have looked into
formulating techniques to solve this problem without the
knowledge of the model matrices, and only using state and
input trajectories (we will briefly recapitulate such nominal
learning control design in the next section). However, stan-
dard learning control designs do not consider any adversarial
behavior from malicious entities. In this paper, we, on the
other hand, considered a scenario when the dynamic system
is under the influence of an attacker.

The attacker initially does not possess any dynamic infor-
mation about the system. Therefore, the attacker tries to extract
the dynamic information of the system during the learning, and
then conducts covert attacks, which will be discussed shortly.
Therefore, we can formalize the activities of the attacker in
two phases described as follows.

Attacker Act Al (Eavesdropping): Attacker conducts the
first phase of the attack during the exploration phase of the
learning control design. The attacker intends to learn about
the dynamic matrices A, B during this phase by gathering the
exploration input wu(t), and the resultant state measurements
z(t). Although, the designer is conducting the exploration
of the dynamic system to learn the optimal control K, the
designer is unaware that the attacker is also using such
trajectory information to learn about the system’s dynamics.
Attacker Act A2 (Covert Attack): In the next phase, the
adversary conducts a covert attack on the dynamical system.
In covert attacks, the attacker inject malicious signals at the
inputs, and then compensate the impact of the injected attack
in the measurements to conceal the attack, thereby, making
it covert to the system operator. The covert attacks are very
difficult to identify, and its impact on the system can be
catastrophic. The attacker can also keep on injecting malicious
signals at the actuation such that the system continues to
operate inefficiently without being captured by the sensors.

Therefore, the designer now needs to propose modifications
to the learning control design. The attacker should not be able
to eavesdrop and accurately capture the dynamic information
that could allow a successful covert attack. At the same
time, the designer should learn the optimal control solutions
corresponding to the dynamical system (I)) and objective (2).
We enumerate these considerations as follows:

o Learner consideration 1: Learner needs to make the
exploration phase of the learning control secure. This
means, the measurements of wu(t), and z(¢) should not
be the accurate representation of the dynamical system
(@.

o Learner consideration 2: The attacker should be unable
to keep its attack on the system covert. Therefore, with-
out any external disturbance, when the dynamic system
operates under steady state condition, any malicious in-
jection will create considerable perturbations at the state
measurement channels which can be easily detected by
the operator.

o Learner consideration 3: Although, the learner camou-
flage the exploration trajectory measurements, it is still
required to compute the optimal control ©v = —Kx cor-
responding to the original learning problem P. Therefore,
we do not compromise with the learning computation
accuracy in order to satisfy considerations 1 and 2,
which is really important from the perspective of the
implemented feedback control for the dynamic system.

We will next recapitulate the nominal adaptive dynamic pro-
gramming (ADP) based optimal control learning strategy that
can solve problem P without any malicious attack.

IIT. RECAPITULATION OF ADP-BASED NOMINAL
LEARNING CONTROL

The problem P with the unknown model matrices can be
solved using ADP/ RL based approaches. We use the off-
policy RL based gain computation framework for this study
as given in [20]. Here, the system is excited with exploration
signal ug, and, thereafter, the state measurements x(t) are



gathered for a sufficient number of time samples described
shortly. The control input u should be such that the state tra-
jectory remains sufficiently bounded. Considering a quadratic
Lyapunov function 7 Pz, P = 0, the time-derivative along
the state trajectories is computed, and subsequently using the
Kleinman’s algorithm [30] the following model-independent
trajectory relationship can be obtained for the interval [¢, ¢+7:

t+T
x6+T)Pk$(t+T) — ol Poay — 2/ (Kpz + uo)T RK}, 4 12)dT
¢
t+T ~
= —/ (T Qpa)dr. 3)
¢

where, Qr = Q+ K ,CTRK k. We can solve by constructing
a data-driven iteration framework that uses the time sampled
measurements of states and the controls. The learner gathers
the data matrices D = { N, s, My, Myy,  Where,

T
Now = [z @2l et @

T
Maz = [ @@ 2)dr, S @eodr],©®

“+T(x®zmyhiT. ©)

»Jyy

Ma:uo = |: tt11+T(z ®’U40)d77

Algorithm 1 summarizes the steps to compute the optimal
control solutions with unknown state dynamics.

Algorithm 1 Nominal Reinforcement Learning Control

1. Data gathering: Measure the state and controls (z(t) and ug) for interval
(tl, to, - ,tl),tl‘ —t;_1 = T. Then construct D = {N(EI7 Mzz:./\/lzuo}
such that rank(Mzz Magyg) = n(n +1)/2 + nm.

2. Iteratively update the control : Starting with a stabilizing Ko, update the
feedback control gain K, iteratively (k = 0,1,---) by solving the least
square equation where vec(.) denotes standard vectorization operation -

for k=0,1,2,..

A. Solve for Py, and Kj1:

[ Tx _2Mac:c(1n ® K;?R) - 2Ma:u0 (In ® R)] X (@]
vec(Pg) | _ =
{VGC(KHO} = ~Maavee(Q)-

B. Break the iterations when ||P, — Pr_1|| < ¢, ¢ is a small positive
threshold.
endfor

3. Applying K on the system : Finally, apply ©v = —Kx, and remove u.

Remark 1: With nominally stable system, i.e., when A is
Hurwitz, the iterative update in does not require any
initial stabilizing control. Otherwise, policy iteration based RL
techniques require a stabilizing Ky [31]], mainly because of its
inception from the Newton-Kleinman updates [30].

Remark 2: In order to get unique convergent solutions of the
optimal gain, the data sample requirement is converted into the
following rank condition: rank(M; Myy,) =n(n+1)/2+
nm. This is dependent on the number of unknown variables
in the least squares problem. The condition is also analogous
to the persistency of excitation condition of adaptive control
literature. Practically, one can use twice of the data samples
required by the rank condition for guaranteed convergence.
Theorem 1 [20]: When the rank condition of the Remark 2
is satisfied, the iterates of Py, K}, from Algorithm 1 converge
to optimal P, and K with k — oc. O

IV. ATTACKER MODELING

To this end, we consider an attacker which acts in two folds
as follows.

A. Attacker Act 1 - Eavesdropping:

The attacker becomes active during the exploration phase of
the learning algorithm. In this phase, the attacker eavesdrops
on the input and state channels wo(t), and x(t) to gather
the measurements for the time instants ¢1, ..., ¢;. The attacker
gathers as much as dynamic information as possible to perform
the identification of A, B. The attacker can employ any of
the sub-space based identification approaches. We assume
that the attacker knows the dimensionality of the system.
The attacker constructs the surrogate model of the original
dynamical system as follows:

i = A% + Bu,#(0) = . (8)

It can be expected that the model matrices A, B are identified
with high accuracy. Practically, the attacker can identify a
model which is similar to the original state space, i.e, they
are related by a similarity transformation 7'

A=TAT',B=TB. ©)

In order to consider the worst-case scenario, we assume that
the attacker can successfully identify the actual state space
models. Therefore, A= A, B= B,ie.,T=1.

Remark 3: Why eavesdropping during exploration? The rea-
son behind such consideration is that the exploration is the
most vulnerable phase for the system to be compromised, cre-
ating a worst-case scenario. During exploration, the designer
tries to persistently excite the system such that the input-output
data is sufficiently rich in dynamic information. Therefore,
if the attacker can get access to such exploration data, the
attacker could easily perform the system identification to get
accurate model estimates.

B. Attacker Act 2 - Covert Attack:

Once, the attacker has access to the system dynamic model
information, a covert attack using the manipulated input and
state channels is conducted. An attack on the control input
will result into:

a(t) = u(t) + (1),

where ((t) is the malicious input signal. Thereafter, the
attacker compensates the effect of the input attack to the state
measurement sensors of the system by manipulating:

#(t) = a(t) — &(0), an

where Z(t) is the measured states, and Z(¢) is the compen-
sation signals added by the attacker. Therefore, the attacker
needs to generate (t) and Z(t). We now state the following
Lemma which characterizes the covert nature of the attack.
Lemma 1: Consider the attack begins at ¢t = Ty, if the attacker
uses (I0), (T1), and runs the dynamics:

A: =A%+ B¢,

(10)

(12)

with Z(T,) = 0, then the attack will remain covert at the
measured states.



Proof: The solution of x(t) starting from ¢ = T, is
given as:
t
2(t) = AT (1) 1 / A By 4 Odr,  (13)
Ta

and the output of the attacker’s internal model (12) is given
by,
t
i(t) = AT E(T,) + / eACD[BCdr.  (14)

T(l

Therefore, the modified output seen by the designer following

from (T1):
z(t) = AT (1(T,) — #(Ty)) + /t A=) Buldr (15)

Setting Z(T,) = 0, it is evident that Z(¢) can be treated as
legitimate state measurements, making the attack covert. [

V. RETROFITTING THE LEARNING TO MAKE IT
ATTACK-RESILIENT

The designer has to make sure that the system identification
by the attacker is incorrect, and at the same time, the desired
feedback control gain is being computed without sacrificing
performance as enumerated in Section II. To this end, we,
hereby, propose a solution in this section. The main idea is
to modify the dynamic model in such a way that the attacker
cannot perfectly identify the system during the exploration
phase of the learning, referring to as dynamic camouflaging.
On the other hand, the designer has full knowledge about this
extraneous modification such that the optimal gain K can be
correctly learned as in P.

As the designer starts the learning with the assumption
of unknown A, and B matrices, any system parameter or
actuator gains cannot be modified. Instead, we suggest to add
an input-to-state stable (ISS) coupling, dependent on the states
of the dynamic system, at an internal actuation location of the
system, which is assumed to be safe with respect to external
attacks. To check the applicability of such coupling, operators
can use the plant simulators, or historic measurements to
estimate whether the state trajectories will remain bounded.
The underlying dynamic system, therefore, is modified to:

&= Az + B(u+ 1),
¥ = o(t, x(t)).
Here v is assumed to be a nonlinear time varying static map,

however, one can also make this a dynamic map. We make the
following boundedness assumption on the coupling function

¥ = o(t, (1))
Assumption 4: The coupling function ¢ = ¢(t, x(t)) satisfies

[¥ll2 = llg(t z(8)ll2 < ylla()]|2,y > 0.

Thereafter, we characterize the ISS stability of the
interconnection during the exploration such that the state
trajectories remain bounded.

(16)
a7

(18)

Lemma 2: With bounded exploration inputs, and under as-
sumption 4, the system (16)) will be input-to-state stable (ISS)
with respect to .

Proof: For any generic dynamic system the exploration control
can be written in the form u = —K s+ ug where (A — BK)
is stable, and ug is a bounded exploration such that the state
measurements remain within the stable neighborhood of the
operating point. Therefore, we could write,

& = (A— BK;)x + Buo + BY(t),z(to) = x0.  (19)

The resulting state trajectories become

¢
z(t) = AT BE)=to) g +/ eA=BEYE=T) Bugdr  (20)

to

t
+ / eA=BR=T) By (7)dr
to

As A — BK, is Hurwitz, we have, |e(A-BK:)(~to)|| <
ke=At=t0) k> 0,\ > 0. Thereafter, we can bound ||z(t)]|
as,

()] < ke 710 |l (t0) |1+ 2D

kBl

=5 Pt g luo(T) + sup ey, g llH (T)1).
Therefore, we can conclude that with bounded ||ug(t)|| , and
assumption 4, the x(t) dynamics remains ISS. O

This type of dynamics has been recently studied in our pa-
pers [32], [33]] in the context of robustness of structured control
designs. Motivated from them, the formalism is found to be
suitable to make the nominal RL algorithm attack-resilient.
When the attacker eavesdrops on the input and state channels,
then u(¢) and z(t) correspond to the underlying dynamics (16),
and, therefore, performing a system identification will result
into erroneous state space representations, i.e.,

A+ TAT',B +TB. (22)

In our numerical experiments we set ¢(t,z(t)) = f(t)x(t)
with ||f(t)]]2 < 7. f(t) # 0,Vt, and to simulate the worst-
case, we assume that the identified state matrix is A=A+
Bf(t), with f(t) frozen at time ¢ = ¢(,. We assume that the
attacker could perfectly estimate B, to create a worst-case
scenario.

To this end, the learning algorithm needs to be retrofitted
due the modifications as in (T6). As we have intentionally
connected the coupling v, the designer has access to the full
measurements of (t). At this stage recall the Kleinman’s
algorithm:

Theorem 2 [30]: Ler Ky be such that A — BK is Hurwitz.
Then, for k=10,1,...
1. Solve for Py(Policy Evaluation) :

AT P, + PoAy + KFRK, +Q =0,A;, = A — BK. (23)
2. Update the control gain (Policy update):
K41 = R 'BTP,. (24)

Then A— BK is Hurwitz and K}, and Py, converge to optimal
K, and P as k — oc. O
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Fig. 1: Overview of the attack resilient learning methodology

The modified state dynamics (I6) incorporating u = — Kz is
given by

i = (A— BKy)z + B(Kpz + u) + Bip. (25)

We use similar exploration inputs v = wu as before. As
considered in the derivation of Algorithm 1, we consider
similar Lyapunov function candidate 7 P2, and compute its
derivative along the closed-loop trajectories and use Theorem
2 to replace the dependency on the model matrices as follows:

d

g(zTPkI) = J?T(Agpk + PkAk).Z’+

2(Kyx +uo)" BT Pz +2(¢" BT Py)x
= —2T(Qr)x + 2(Kyx + ug) T RKy 17+
2(wTBTPk)x7

(26)

where, Qr = Q + K RK},. Rearranging, and taking integrals
on the both sides, we have,

2T (t + T)Pyx(t +T) — 27 (t) Pua(t)

t+T
— 2/ ((ka + UO)TRK}H_L’L‘)dT
t

27)

t+T
= —/ (zTQrx — 2(¢ T BT P)x)dr.
t
is independent of model matrices, and constructed by
the trajectories of system states x(t), exploration control
uo(t), and the measurements of the coupling ¢ (t). We can
use the properties of Kronecker product (denoted by ®) to
write 27 Qrz = (27 @ 27) vec(Qp), v BT Py = (27 ®
1) vec(BT Py). The Attack-resilient RL algorithm can be
written by formulating an iterative version of (27), using
measurements of x(t), ug(t) and 1 (t) as given in Alg. 2. We
append the data matrix D as in Algorithm 1 with M., where,

t14+T

1T (4 @ ), S o] . @8)

Theorem 3: Performing Algorithm 2 with the modified system
(T6) will able to recover the optimal control uw = — K« for the
actual system (1).

Proof: Performing Algorithm 2 (ARRL) using z(t), u(t), and
1(t) is equivalently solving the trajectory relationship 27). As

Moy = |

Algorithm 2 Attack-Resilient RL (ARRL) Control

1. Data gathering: Measure the state and controls and coupling variables
(z(t) uo(t) and t(t)) for interval (t1,ta,---,¢;),t; — ti—c1 = T.
Then construct D = {Nezs Moz, Mauy, Mgy} such  that
rank(Mge Mazgug Myy) =n(n+1)/2 4 2nm.

2. Iteratively update the control : Starting with a stabilizing Ko, update the
feedback control gain K iteratively (k = 0, 1, - - - ) by solving the least square
equation -

for k=0,1,2,..

A. Solve for Py, and Kj1:

[ zT _2M:1:Z(ID ® KER) - QMZ“M) (ID ® R) —Qqup] (29)
O
vec(Py)
X vec(K(k+1)) = —MszeC(Qik) .
vec(BT P,) Y
k

B. Break the iteartions when ||Py — Pr_1|| < ¢, ¢ is a small positive
threshold.
endfor

3. Applying K on the system : Finally, apply v = —Kx, and remove u.

has been constructed using Theorem 2, then any solution
from Theorem 2 will satisfy the k*” iteration of the following
equation:

vec(Py)
®k VCC(K(k+1)) :‘I)k..
vec(BT Py)

(30)

Therefore, a solution from Theorem 2 should also sat-
isfy (B0). With sufficient gathering of data, the condition
rank(My, Mgy, Mgy) = n(n+1)/2 + 2nm is satisfied,
and, therefore, ©, will have full column rank. As such,
equation (30) has a unique solution Py, K (141)- As this is an
unique solution, it is also the solution Py, Ky of theorem
2. Considering this equivalence of the Algorithm 2 with the
modified Kleinman update in Theorem 2, we can conclude that
the K, and P corresponding to Algorithm 1 can be recovered.
(I

The attacker then tries to launch covert attacks once the
closed-loop system is in the operating condition. However, the



measured states seen by the designer now is: Z(t) = z(t) —

Z(t):

AT 5(T, )+

/Tt (A [B(u + )] — eAD[B()dr,

Z(t) = et Ty (T,) — (31)

which is not a legitimate system response, even if B = B,
and therefore will create undesired perturbations during the
normal operational mode of the plant depending on the energy
in attack inputs, and the error |[A — AJ|. Therefore, a pre-
tuned set-point based detector can alert the system operator to
take further necessary actions. The designer can also design
sophisticated detectors using the nominal statistical properties
of the system, which we keep as future research.

VI. NUMERICAL SIMULATIONS
A. A Multi-agent System

We consider a multi-agent network with 6 agents taken from
[33] where each agent follows the consensus dynamics:

T; = Z Oé,‘j(l‘j —l‘,‘) —I—’U,Z‘,JZZ‘(O) = Z;0, (32)
JENiF#]

where «;; > 0 are the coupling coefficients. We consider the

state and input matrix to be:

-5 2 3 0 0 0
2 -6 0 0 1 3
|3 0 -5 2 0 0 .
A= 0 0 2 -2 0 0 B =1Is (33)
0 1 0 0 -4 3
0 3 0 0 3 —6

The dynamics follows a Laplacain structure with A.1,, =
0 resulting into a zero eigenvalue with the rest of them
are —10.00, —8.27, —6.00, —3.00, —0.72, —0.00. We choose
initial conditions as [0.3,0.5,0.4,0.8,0.9,0.6]7. The learned
controller is tasked to improve the damping of the slow
eigenvalues. We set Q = 1015, R = Ig. We first experiment
with the nominal system without any retrofitting in the learning
design. As, n = 6, m = 6, the rank condition for the algorithm
1 requires 2 x (57) = 114 samples. The exploration has been
performed with 200 samples with 0.01 s time step. We excite
the system with the sum of sinusoids exploration. We assume
that this phase is not secured to attackers, and therefore, the
attacker could eavesdrop and could easily estimate the state
matrices. Once the data matrix D is constructed, the control
gains are computed via the iterations as given in Algorithm 1,
and then implemented to the system. Fig. |2| shows the actual
state trajectories during the initial 2 s exploration, and with
the control implementation. Fig. [3] shows the convergence of
the learning control using Algorithm 1 resulting into:

2.3868 0.2731 0.4239 0.0342 0.0125 0.0318
0.2731 2.2564 0.0319 0.0010 0.1899 0.4100
K _10.4239 0.0319 2.3884 0.3161 0.0004 0.0017
Alg-1 = 10.0342 0.0010 0.3161 2.8112 —0.0001 —0.0001| "’
0.0125 0.1899 0.0004 —0.0001 2.5188 0.4408
0.0318 0.4100 0.0017 —0.0001 0.4408 2.2781
(34

which matches closely with the model-based solution. At
5 s, the attacker starts injecting malicious signals to the
system, however, as the learning control was not secured,

the attacker could launch a covert attack, and therefore, the
state measurements could not able to capture any of these
malicious signals as shown in Fig. However, the actual
state trajectories are heavily impacted as shown in Fig. [2] This
kind of covert attack can cause expensive state excursions, and
make the system less efficient. The quadratic cost incurred
from 5 s to 10 s turns out to be 1.08 x 10 units.

Thereafter, we show the efficacy of the retrofitted secured
learning design. During the exploration phase of the learn-
ing, we have added a functional coupling with the control
inputs in the form, u = ucontrot — f(t)x(t), f(t) = 0.3 X
(sin(t) + cos(t) + 0.02). As the attacker does not aware of
such modifications, the system identification performed by
the attacker using the input and state measurements during
the exploration will be erroneous. The modified algorithm
2, however, is tasked with computing the optimal control
u = — Kx associated with the actual system dynamics A, B,
and not that of the modified state dynamics. The control
computed with Algorithm 2 with the convergence shown in
Fig. [0]is given as:

2.3868 0.2731 0.4239  0.0342 0.0125 0.0318
0.2731 2.2564 0.0319  0.0010 0.1899 0.4100
K _]0.4239  0.0319 2.3884  0.3161 0.0004 0.0017
Alg:2 = 10,0342 0.0010 0.3161  2.8112  —0.0001 —0.0001] "’
0.0125 0.1899 0.0004 —0.0001  2.5188 0.4408
0.0318 0.4100 0.0017 —0.0001  0.4408 2.2781
(35)

which shows that the modified algorithm does not suffer in
the accuracy of computing the desired optimal control. As the
attacker is not able to capture the accurate state dynamics, the
attack does not remain covert anymore. To simulate a worst-
case identification scenario, assume that the model identified
by the attacker uses A = A — e, x 0.3 x 1.02 x I with
f(t = 0), and €5 = 2 is a scaling factor. Thereafter, when
the attacker injects malicious attack signal at ¢t = 5s, the
state trajectories at the measurement ports can capture such
behaviours as shown in Fig.[/] If the state trajectories hit a pre-
calibrated set point, then the system operator is being alerted
to remove the malicious enterprise.

B. A Power Grid Benchmark

We consider a 13-bus Kundur power system model as shown
in Fig. [8] To numerically simulate the model to generate data,
we model generator dynamics by the flux decay model. The
state variables are denoted as d(t), w(t), E(t), Eq(t) which
are the generator internal angle in radians, speed deviation
from nominal (27 x 60 radians/sec), internal voltage, and
excitation voltage in per unit, respectively. The supplementary
control signal is added with the voltage reference of automatic
voltage regulator (AVR) in the excitation dynamics. With a
100 MVA base, the rated active power generation capacity of
the generators G1-G4 are 7 p.u., 7 p.u., 7.16 p.u., and 7 p.u.,
respectively. The grid contains one inter-area mode (0.61 Hz)
and two intra-area modes (1.68,1.56 Hz). The control design
objective is to improve the inter-area and oscillatory dynamic
performance of the grid. We have designed () such that it
penalizes the relative difference between the generator angles
(inter-area power flows depend on angular differences), and the
energy associated with other generator states. In this model,
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Fig. 8: Kundur 13-bus 4-machine power system model

we have n = 16, m = 4, and therefore, we explore for 5 s with
0.01 s time steps. The attack starts at 15 s, and we simulate till
25 s. Fig. [9] shows the actual frequency excursions during the
learning and the attack which shows considerable perturbations
caused by the adversary, however, in the measured frequencies,
as in Fig. [I0] the impact of the attack is not visible, making
the attack covert. The fast convergence of the RL control
update iterations are shown in Fig. [TT] The convergence is
reached with high accuracy with respect to the model-based
solutions as shown in Fig. [[2] The dynamic performance
improvement of the nominal controller is shown in Fig. [I3]
where the angular difference between the generators 2 and 3
characterizes the oscillations in the tie-lines connecting buses
6 and 12. Subsequently, we test the attack resilient design with
the malicious signal injection starting at 15 s. The trajectory
measurements are gathered for 8 s, and thereafter, the control
iterations of Algorithm 2 (ARRL) has been performed which
results in fast convergence as shown in Fig. [I5] Most of the
entries of K matches closely with the model-based solutions,
and only few of the entries are 2 — 3% off. However, when we
test the dynamic performance of the learned ARRL control,
we can see from Fig. [T7] that the optimal performance of
the nominal RL design has been recovered. Moreover, in this
scenario, the measured frequencies now capture the impact
of the the malicious attack starting from 15 s as in Fig. [T4]
therefore, the attacker cannot remain covert anymore.

iteration

2

4 s 6 Time (sec)

Fig. 6: Convergence of the retrofitted Fig. 7: Measured state trajectories during
controller following ARRL in Algorithm exploration, control implementation, and

attack at 5 s with ARRL

VII. CONCLUSIONS

This paper discussed a secure learning control methodology
which is resilient to adversarial actions from malicious agents.
The attacker eavesdrops the learning process and estimate
dynamic information of the CPS to conduct covert attack
subsequently. In such scenarios, we have discussed a dynamic
camouflaging technique during the learning to misguide the
attacker without compromising the accuracy of learning of
the optimal control. We have shown that by coupling the
dynamic system with nonlinear static time-varying functions
can provide one such dynamic camouflaging with adequate
guarantees. Numerical simulations conducted on a consensus
multi-agent system, and on a power system model validates
the algorithmic and theoretical considerations.
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