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Fast Initialization of Control Parameters using Supervised Learning on
Data from Similar Assets

Jeroen Willems1, Kerem Eryilmaz1, Denis Steckelmacher2, Bruno Depraetere1, Rian Beck1,
Abdellatif Bey-Temsamani1, Jan Helsen3 and Ann Nowé2

Abstract— This paper proposes a method to provide a good
initialization of control parameters to be found when perform-
ing manual or automated control tuning during development,
commissioning or periodic retuning. The method is based on
treating the initialization problem as a supervised learning one;
taking examples from similar machines and similar tasks for
which good control parameters have been found, and using
those examples to build models that predict good control
parameters for new machines and tasks yet to be initialized.
Two of such models are proposed, one based on random
forest regressors and a second based on neural networks.
The random forest is highly data-efficient but generalizes only
moderately. The neural network is able to leverage a high-
dimensional burner run input to perform automatic system
identification and generalization. While the proposed approach
can be applied to a variety of applications for which example
data from well functioning controllers can be used to hot-start
new ones, we applied it in this paper to three slider-crank
setups performing a variety of similar tasks. We found that both
models outperform a benchmark of using a physics-inspired
model for the initialization. Using 20% of the data for training,
the required number of experiments was reduced up to 44%,
and the performance of the initial experiments was improved
by up to 68% compared to the benchmark.

I. INTRODUCTION

Modern trends such as mass-customization and flexible
machine use, combined with an ever increasing demand
for performance, result in a situation where it is no longer
sufficient to tune a single controller once during development
for a broad range of machines. Instead, it often becomes
needed to tune or retune controllers for each specific unit
built, or for each task, usage profile or set of conditions.

This tuning can be executed manually by opera-
tors, or by using automated methods such as auto-
tuners [Leva et al., 2002], [Wang et al., 2008] and learn-
ing based approaches such as Reinforcement Learning
[Li et al., 2019]. Both however typically require multiple
experiments or an accurate simulator, and since tuning has to
be done for several machines, tasks and / or conditions, the
overall tuning time can quickly increase. This can cause long
lead times and long commissioning processes, or prolonged
periods of stalled production. Industry furthermore often
avoids these issues by simply not tuning sufficiently or at
all, as estimates for the US process industry for example are
that only 1 in 3 controllers has an acceptable performance
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level, and that they could be tuned better but simply are not
[Desborough and Miller, 2002].

To combat these issues, better tuning algorithms could
be developed. Alternatively, like we propose in this paper,
the tuning can be improved with a good initialization of
the tuning process, as this will mean less tuning is needed
afterwards. It will further also yield a better performance
during the initial iterations, which can avoid machine damage
or dangerous behavior during the tuning.

In literature, several methods are available to initialize on
the basis of dynamic models describing the application’s
behavior. Such models are already often used for learning
during the tuning process itself, but they can also be used
for the initialization. However, while these methods are
very robust in converging despite only having poor models
[Bristow et al., 2006], they are not very good at the initial-
ization itself. Recently some works have extended iterative
learning control to multiple machines [Ronzani et al., 2020].
In this case, new machines and / or tasks can only be
initialized well if (i) the model structure is really good (so
most information learned is captured in the learned model
parameters), or (ii) if the tasks are really similar. The first
is typically not the case, as argued above, and the second
limits the applicability of such methods (for initialization).

Other model-based learning methods such as
[van de Wijdeven and Bosgra, 2010] employ basis
functions, as they parameterize the control signal in
terms of the task, such that the result can be extrapolated
towards different tasks. These basis functions are derived
based upon a model structure. In case these functions are
selected correctly, the learned coefficients can be directly
shared from one task to the next. However, as argued
above, often only poor knowledge is available on the model
structure, or no model at all, in which case these methods
also yield a limited performance.

If dynamic models are not to be relied upon, data
from similar tasks or conditions for which the control
parameters have already been fine-tuned can be used for
the initializing. In this context we denote tasks as sim-
ilar if the needed control inputs for them have values
that are close to each other, and systems as similar if
the same control inputs lead to motions that resemble
each other. For such cases, transformation-based approaches
([Janssens et al., 2012], [Willems et al., 2019]) exist, which
aim to map the learned information from one task to the
next. However, these methods do not generalize well towards
different tasks lengths, and require sufficient task similarity.



In this paper, we will derive a framework for initializ-
ing, which we denote as hot-starting, employing machine
learning-based methods, more specifically supervised learn-
ing. To do so, we re-use information of previous examples in
the form of a labeled dataset containing a set of good control
parameters and signals for a variety of different machines and
/ or tasks. On this dataset we train a model that is capable of
hot-starting both parameters and signals for unseen tasks and
/ or systems. Since we consider similar systems and tasks, it
is assumed that the statistical properties of the generative
distribution of each system are the same. This approach
is generically applicable and does not require a physical
dynamic model. Concretely, we propose two algorithms for
hot-starting, that differently balance the various requirements
of industrial applications:

• Direct approach: using a data-efficient random forest.
No dynamic model nor simulator is needed. The random
forest directly predicts good control parameters for a
new task and system, by generalizing from previously-
seen tasks, systems and their good control parameters.

• Burner-run approach: the new system is first excited
with a burner run, and its response, in addition to the
task, is given to a neural network (compatible with
such high-dimensional inputs) that predicts good control
parameters. This approach does not need an identifier
of the new system (the burner run performs implicit
system identification), but is less data efficient than the
direct approach. In this paper, we propose to use an
approximate model (of which several parameters are
varied) as a simulator, to generate enough (inexpensive)
virtual data for the neural network to be trained on.

We experimentally demonstrate our two methods on a fleet
of non-linear slider-crank setups. Both hot-starting methods
aim to produce good initial control parameters, that are then
fine-tuned for each task with an automated two-step Iterative
Learning Control (ILC) algorithm [Volckaert et al., 2010].
We assess the quality of our algorithms by how much
they reduce the required number of ILC iterations before
convergence (hence saving time on the new system), as
well as the performance increase of the first iteration. The
proposed methods are compatible with any tuning algorithm
(e.g., manual tuning), and make no assumption about the
nature of the machines or the tasks being tuned. Therefore,
the proposed approach can equally be applied to different
applications for which example data from well functioning
controllers can be used to hot-start new ones.

The remainder of this paper is organized as follows.
Section II introduces the two-step ILC algorithm and the
considered supervised learning algorithms. Section III intro-
duces the fleet of slider-crank setups and their controllers.
Section IV then outlines the considered hot-starting frame-
work and the developed methods. Section V validates the
proposed approach experimentally, and Section VI concludes
the paper.

II. PRELIMINARIES

A. ILC algorithm

In this paper we make use of the generic two-step ILC
approach presented in [Volckaert et al., 2010]. Its goal is to
learn an optimal input signal u ∈ Rnu×N (with N time
samples) to be applied to a generic nonlinear dynamical
system P (with nu control inputs and ny outputs), so that
it behaves in the best sense possible. More specifically, it
uses the applied inputs ui ∈ Rnu×N and observed outputs
ỹi ∈ Rny×N from iteration i ∈ R, to decide on the control
action ui+1 to apply during iteration i + 1. To do so, it
relies on an (approximate) model P̂ with the observed output
ỹ ∈ Rny×N and applied input u, which is given by (using
the lifted system representation):

y = P̂ (u,α) . (1)

The correction terms α are central in the ILC algorithm, and
are explained further below.

Each ILC iteration i consists of the following steps:

1) Control step: Given model correction terms αi (with
α0 = 0), calculate the input ui that minimizes a given
objective function J satisfying constraints g:

ui = argmin
u

J (u,yi,αi) , (2)

s.t. yi = P̂ (u,αi),

g (u,yi,αi) ≤ 0.

If the objective is to follow a predefined reference
yr ∈ Rnr×N , the objective function can be chosen
as J(yi) = ∥yr − yi∥22.

2) Model correction step: Calculate αi+1 that minimizes
the difference between the predicted output yi and
output ỹi observed after applying input ui:

αi+1 = argmin
α

∥ỹi − P̂ (ui,α)∥22. (3)

Typically additional cost function terms are included
to for example regularize α or its changes w.r.t. αi.
Many different options can be used for the structure or
parameterization of α, but in practice we usually use
a combination of parametric corrections on the model
parameters: αparametric ∈ Rnp , as well as additive non-
parametric correction signals: αnon parametric ∈ Rna×N

(an unparameterized vector, in this case added to the
input), according to:

y = P̂ (u+αnon parametric,αparametric) . (4)

This also explains what was written in the introduction;
behavior that can be captured in the parametric model
corrections can be mapped well to new cases, but since
the model structure is never perfect, the learning will
also rely on the additive non-parametric terms, and
those can not efficiently be mapped to new cases.



B. Supervised learning

Supervised learning is a research field that studies algo-
rithms that learn from data mappings from inputs to outputs.
Given a set of input-output pairs {x, y} (with x ∈ Rnx , y ∈
Rny ), also called a training set, the objective of supervised
learning algorithms is to produce a function f ∈ Rnx → Rny

such that ŷ = f(x) is as close as possible to y, and still
produce “good” ŷ outputs even for x inputs that have not
been seen during training, but are drawn from the same
distribution (called a generalization). Supervised learning
can be seen as a form of function optimization, that finds
the function f that minimizes a loss, such as the prediction
error. In that formalism, f = argminf L(f(x), y).

In most applications of supervised learning, the inputs and
outputs are vectors of real values (some applications, studied
in the deep learning literature, consider more complicated
inputs, such as images, sound waveforms, or text). With
y ∈ RN and x ∈ RN , the most commonly used loss is
the Mean Squared Error (MSE) defined as L(f(x), y) ≡
1
N

∑N
k=1(f(x(k))− y(k))2.

While the inputs, outputs and loss are often straightfor-
ward to define in a generic way for supervised learning
algorithms, what the function f is, and how it is produced,
depends on the particular algorithm being used. In this paper,
we will consider two approaches, that we present later as
we introduce our contributions. Random forests consider
f as a set of rules (a function with many if-then-else
clauses in it), and compute the optimal set of conditions
to check for based on the training set. Neural networks
express f as a sequence of matrix multiplications and non-
linear activation functions (such as the hyperbolic tangent), in
which learnable parameters appear, and iteratively compute
the gradient of the loss L with regards to the parameters, and
follow this gradient to tune the parameters so that f leads to
a progressively lower loss.

III. USE CASE: FLEET OF SLIDER-CRANK
MECHANISMS

A. Slider-crank mechanism

In this paper, we consider the control of a fleet of
slider-crank mechanisms, of which a single asset is shown
schematically in Fig. 1.

Fig. 1: Schematic overview of the slider-crank system.

The mechanism converts a rotary motion y = θ ∈ R (with
angular velocity θ̇ ∈ R) into a linear slider displacement
xslider ∈ R using input torque u = τ ∈ R - a motion
conversion that often emerges in industrial applications,
such as weaving looms, compressors and piston engines.

The system contains several challenging non-linearities, such
as dead points and discontinuities (e.g., due to Coulomb
friction and play). In the remainder of the paper, we use
an approximate non-linear dynamical model P̂ , which is
described further in Appendix VI.

B. Control objectives

The objective is to minimize the electrical losses E ∈ R
over the control horizon with length N , denoted as:

min
τ ,θ,θ̇

E = τT τ , (5)

where τ ∈ RN represents the torque signal. Additionally,
the following motion constraints are taken into account:

xslider(k) ≥ xmin, k ∈ {kleft, N − kright} ,
θ(1) = π, θ̇(1) = 0,

θ(N) = 3π, θ̇(N) = 0.

(6)

The first constraint involves the height (xmin ∈ R) and timing
(kleft ∈ R, kright ∈ R) of the displacement of the slider,
as graphically represented in Fig. 2. The second and third
constraint denote the initial and final angular conditions.
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Fig. 2: Two different constraint surfaces with examples of
corresponding feasible displacements.

The resulting cost (performance criterion) Ji ∈ R for
a given iteration i is denoted as the weighted sum of the
electrical losses Ei and the (approximated and weighted)
constraint violation for that iteration (νi ∈ R4):

Ji = Ei + γ
∑

νi. (7)

In the above, γ denotes a scalar constant and νi is given by:

νi =


|θi(N)− 3π|

|θi(N − 1)− 3π|
10π max(0, xmin − xslider, i(kleft))

10π max(0, xmin − xslider, i(N − kright))

 . (8)

Since the employed model P̂ contains model-plant mis-
match w.r.t. the actual system P , we will use the ILC
algorithm described in Section II-A to iteratively find the
optimal solution to this problem. We will consider the
learning as converged if the cost Ji differs less than 5%
from its final value, and all entries of νi (Eq. 8) are smaller
than predefined tolerances (2e−2).



The ILC looks for control solutions consisting of:
• The reference signal for the motor rotation θref ∈ RN ,

which will be supplied to a feedback controller.
• The feedforward torque τ ∈ RN , which is param-

eterized using four parameters p ∈ R4. It is found
by applying linear interpolation over x-axis and y-axis
breakpoints, defined as:

x =
[
1 kleft kright N − 1 N

]
, (9)

y =
[
p(1) p(2) p(3) p(4) 0

]
. (10)

An example is shown in Fig. 3.
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Fig. 3: Illustration of the considered input parametrization.

Hence, the proposed hot-starting framework will aim
to hot-start reference signal θref and input parameters
p. The optimization problems are formulated in CasADi
[Andersson et al., 2019] and are solved using IPOPT
[Wächter and Biegler, 2006]. For the ILC correction terms
α, we employ a non-parametric input correction.

C. Experimental setup

We will experimentally apply the developed methods to a
fleet of 3 slider-crank setups, of which one is shown in Fig. 4.
These will be used for collecting data for training, as well
as to validate the proposed methods afterwards. Each system
is driven by a 3 kW brushless servo motor with integrated
drive. The lengths of the cranks and connecting rods are set
to 0.05 m and 0.3 m respectively. The rotation of each motor
is measured using a rotary incremental encoder (8192 CPR).
The real-time control is executed by a Beckhoff real-time
target running on Xenomai at a sampling frequency of 2000
Hz. Each system is controlled using a feedforward signal
(motor torque τ = u ∈ RN ), as well as a feedback controller
(PID) on the measured motor angle signal y = θ ∈ RN ,
aiming to track reference signal θref ∈ RN in closed loop.

Fig. 4: A single slider-crank setup with its components: linear
slider (1), rotary motor (2), the crank and rod (3).

D. Considered tasks

We have three similar systems, and on each we will
perform a range of similar tasks. All have a length of
N = 150 samples (with ∆t = 0.001 s), but different xmin,
kleft and kright values, as shown in Fig. 5. In total, 24 tasks
are considered for each of the 3 systems.
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Fig. 5: The considered values for xmin, kleft and kright.

IV. HOT-STARTING FRAMEWORK
The approach followed in this work is to treat the ini-

tialization as a generic supervised learning problem. In this
approach examples are used, each example consisting of a
system and a task to be executed as well as good control
parameters for that combination. With those examples a
machine learning model is trained that predicts the control
parameters as a function of the system and the task. The task
is expressed to the model as 3 values: xmin, kleft and kright.
How the system is presented to the model is different in our
direct and burner-run approaches, and is thus detailed below.

Once the models have been trained, they are then used
when a new combination of system and task is needed, for
which no set of optimal control parameters has yet been
learned. They predict an initialization, after which the ILC
algorithm described earlier is used to fine-tune the control
parameters further until optimal values are found.

In the following sections, we will first detail the used data,
and then the two types of models and how they are trained.

A. Dataset generation and definition of benchmark

To generate training data, we let the ILC algorithm de-
scribed above run, starting from a benchmark initialization.
This was based on a simplified dynamic model P̂ , with which
the control step of the first ILC iteration is performed, but
without any model corrections. After this initialization, we let
the ILC gradually improve the control parameters until good
performance is found. This procedure is performed for all
combinations of tasks and systems, ending up with a dataset
which contains for each task and system a good resulting set
of control parameters, as well as the number of trials needed
for the benchmark and the initial performance during the first
trial, to compare the proposed methods to.

An example for system 1 is shown in Fig. 6. This figure
shows the evolution of the inputs and outputs starting from
the benchmark as well as the performance as it evolves
over the iterations for a selected task (xmin = 0.0745,
kleft = kright = 48). During the first iteration there is a
large constraint violation, but as the iterations progress, the
constraint violation converges towards zero and the electrical



losses approach their steady state value, as visible in the
combined cost function J .

In this paper we used 20% of the data for training our
initialization models, and the remaining for validation. We
experimentally found that using less data for training resulted
in poor model quality, whereas using more for training only
yielded small improvements. To make things more realistic
yet challenging, we further only use data from systems 2 and
3 for training, but none from system 1.
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Fig. 6: Resulting motor torque τ , slider displacement xslider
and cost as a function of iterations.

B. Direct approach (random forest)

The direct approach consists of building a random forest
to solve the regression problem of mapping the selected task
and the system identifier to the four control parameters. It
tries to approximate the function f such that f(x) = y where
x =

[
xmin kleft kright s

]
∈ R4, and y = p̂ ∈ R4. s can be

a simple integer identifier, or a vector of one or more system
parameters. The latter option provides better generalizability
to unseen systems, while the former provides applicability to
situations where system parameters are not known. For this
study, we use simple integers as system identifiers to keep it
maximally applicable.

A random regression forest is an ensemble model con-
sisting of many (shallow) regression trees, whose outputs
are averaged to get the final prediction. For a forest of size
J ∈ R, each tree hj (with j ∈ [1, J ]) can be defined as
h(x,ψj) where x is the input vector, and ψj is a tree-specific
configuration, consisting of a random subset of features xj ⊆
x, as well as a tree structure consisting of split information.
At each split in the tree, one of the features in xj is compared
to a constant threshold, determining the direction we traverse
the next depth level in the tree. The leaves of the tree
are constant values yj which, in our case, correspond to

estimates of the vector of parameters, i.e., p̂. The final output
of the random forest is the average of all individual trees:
1
J

∑J
j=1 yj . This is an example of combining weak learners

to form strong learners: while the individual predictions of
each tree are typically poor, the aggregate predictions can be
quite accurate.

Building such trees is done using the CART algorithm
[Breiman et al., 1984]. This algorithm recursively builds
trees by choosing a feature and a threshold to split on at each
level of the tree based on the reduction of variance such a
split of the chosen training subsample produces, preferring
the minimum variance in the two resulting subsets. The
leaves are produced by averaging the parameter values in
the resulting subsets from the split. The leaves are generated
either when the maximum depth per tree is reached, or when
the resulting subsets are below a certain size. The algorithm
uses bootstrapping to randomly choose (with repetition) the
subset of the training data to use for each tree being built.

In our case, the maximum depth was chosen as 5, the
minimum number of samples to continue recursion was set
as 2. In total, 50 trees were constructed to constitute the
random forest. Due to the inherent variability of the training
process, the training was repeated 10 times, and the model
with the best out-of-bag (OOB) loss, or loss computed over
the samples not used in the bootstrapped training process,
was chosen as the final model. The loss chosen for this
particular problem was the MSE described above.

For training, it is possible to use both real and simulated
systems. In our case, we limited ourselves to using only the
data from real systems, leaving simulated data to the burner
run approach which can make better use of such data, as it
has an explicit emphasis on system identification.

Once the forest is trained, using it is a trivial mat-
ter of providing the system identifier and task parameters[
xmin kleft kright s

]
as input, and receiving the predicted

p̂ directly as the average prediction from all 50 trees in
the model. Conceptually, the model looks at various parts
of the task description, as well as the system identifier, to
produce progressively more specific estimates of the optimal
parameters as we progress deeper into each tree. When we
get to the leaf, we have our average prediction for the set
of parameters and thresholds that the tree uses. Aggregating
all these results by averaging, we get our final prediction.
For previously seen systems, such an approach provides
more system-specific estimates, while for unseen systems, it
results in a prediction roughly averaged over all previously
seen systems. Unless we use system parameters as system
identifiers, this would give identical parameter estimates for
all previously unseen systems. Since we are attempting to
hot-start the ILC process, and not trying to obtain the final,
optimal parameter values, such overgeneralizations do not
necessarily constitute poor estimates.

The estimation of the reference signal works in a similar
fashion. A random forest was built to map the resulting p̂ of
the first random forest to the reference signal θ̂ref ∈ RN .
During test time, the output of the first random forest is fed
into the second one to get an estimate of the reference signal.



C. Burner run approach (neural network)

The burner run approach performs hot-starting in two
steps. First, the new system is excited with default control
parameters which are chosen the same for every system. The
response of the system xslider ∈ RN is logged for N = 150
samples. Next, these readings are fed to a neural network,
as are the 3 parameters to identify a task detailed earlier.
Currently, the default control parameters correspond to the
initial control parameters for a single task in the considered
set of tasks. While this approach is capable of letting the
neural network successfully perform the hot-starting, we note
that more extensive design of experiment approaches can
be used as well (to yield more exciting signals, potentially
further improving performance), which we leave to future
work. The neural network outputs control parameters p̂ ∈ R4

and motor reference signal θ̂ref ∈ RN . We now briefly
explain what neural networks are, what ours looks like, how
it is trained, and how it is used for prediction.

Most current neural networks, and in particular the one we
use in our burner run approach, are multi-layer perceptrons
[Riedmiller, 1994]. A multi-layer perceptron considers an
input in the form of a 1-dimensional vector of real values
x ∈ Rnx , and produces an output that is also a 1-dimensional
vector of real values, ŷ ∈ Rny . The input and output do not
need to have the same size. The neural network consists of
a sequence of layers. Each layer j ∈ R takes as input the
output of the previous layer j − 1 (or x for the first layer),
and produces an output hj = σ(Wjhj−1 + bj) ∈ Rnhj ,
with Wj ∈ Rnhj

×nhj−1 a matrix of weights and bj ∈ Rnhj

a vector of biases. Both these quantities are initialized to
small random values when the network is created, and will
be tuned as the network learns, so that its predicted output
ŷ becomes as close as possible to the true outputs y ∈ Rny

in the training set. The activation function σ can be any
derivable non-linear function, such as the hyperbolic tangent,
a sigmoid, or the rectified linear unit (σ(·) = max(0, ·)).

Defining how many layers a neural network should have,
and what should be the size of each intermediate output hj ,
is task-specific and requires trial and error. In this article,
we consider a neural network as shown in Fig. 7, with
the sigmoid activation function. We observe that our neural
network has two “legs”, one that maps the burner run to
a 16-dimensional intermediate value, and one that directly
takes the 3 task parameters. This ensures that the burner run,
that consists of many more values than the task parameters
(150 vs. 3), does not take too much importance in the
computation of the output of the network. Something similar
happens on the output side: only 16 intermediate values are
mapped to the 150-dimensional reference signal, to force the
network to produce a control signal that is somewhat smooth.
Extensive research exists which involves the optimization of
the structure of neural networks and its hyper-parameters
in an automated way, requiring thousands if not more of
CPU or GPU-hours. Because we strive for a high level
of applicability, we have not done so, but only tuned our
neural network manually (without extensive hyper-parameter

optimization). To obtain our neural network, we performed
various manual experiments on a single computer with an
AMD Ryzen 1700 processor (8 cores, 3.2 Ghz), 16 GB
RAM. The manual experiments lasted for about two days in
total. We therefore expect that any small or medium company
is able to replicate our results and benefit from our insights,
without requiring access to a supercomputer.

Fig. 7: The considered neural architecture. The “/N” notation
indicates the number of values passing between components.

The neural network is trained with the Adam optimizer
[Kingma and Ba, 2014] to minimize the MSE between its
outputs (the control parameters and reference signal) and the
ground-truth outputs, in the training set. The training set is
obtained by combining two sources of training data:

• A real dataset obtained on the physical setup, for a
specific (low) number of tasks. This allows, for the real
machines, to have a mapping between task descriptions
and optimal control parameters and reference signals.
We also produced 3 burner run responses, one per
physical machine. This allows to fully train our neural
network, that takes as input the task parameters and a
burner run, and outputs the predicted control parameters
and reference signal.

• A simulated dataset found by optimizing the control
parameters and reference signal on a simulator of our
setup. Because no simulator is fully accurate, we em-
brace this inaccuracy and further push it by random-
izing the simulator: every time it is used, some model
parameters (arm length, gravity, friction, torque, ...) are
perturbed with normal noise. Because each use of the
simulator is de facto a different machine, we produce
one distinct burner run per simulated training point.

The use of a randomized simulator, with burner runs,
forces the neural network to learn to look at the burner
run, and to discover how the burner run allows to know
what control parameters and reference signal are good for
a machine. We thus force it to learn to implicitly perform
system identification.



Once trained, the hot-starting is performed as follows:
1) If the machine is new, perform a burner run on it, to

obtain Bm ∈ RN (the burner run of machine m). If
the machine is known, but only the task is new, then
retrieve Bm from a list of known burner runs.

2) Feed Bm and the task parameters to the neural network.
It produces the control parameters p̂ and the reference
signal θ̂ref described in Section III.

3) Use these predictions as hot-start for the ILC, which
fine-tunes the control parameters and reference signal.

V. EXPERIMENTAL RESULTS
A. Experimental validation

As stated earlier, we have trained both hot-starting meth-
ods using 20% of the data, using a random selection of 7
tasks on systems 2 and 3 each (totaling 14/72). Afterwards,
we have hot-started all tasks of system 1 and the missing
tasks for systems 2 and 3.

An example for a single task, equal to the one shown in
Fig. 6, is shown in Fig. 8. Both the hot-starting approaches
outperform the benchmark method. The first iteration of
the slider displacement for the benchmark case violates the
constraints significantly, whereas this is reduced for both
the hot-starting approaches. Furthermore, the initial cost is
significantly closer to its converged value when hot-starts are
applied, indicating less further learning is required (reduced
transients). For this task, the benchmark method requires
7 iterations to converge, the direct approach requires 4
iterations, and the burner-run approach requires 3 iterations.
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Fig. 8: Resulting τ 1, xslider,1 (1st iteration) and J (all itera-
tions) for the benchmark and two hot-starting approaches.

The performance statistics for all the tasks in the
validation set for both of the hot-starting approaches are
shown in Table I.

The following observations are made:
• Iterations saved: the direct approach saves approxi-

mately 21% iterations w.r.t. the benchmark, and the
burner-run approach saves 44% of iterations, with up
to 64% for system 3.

• Initial motion improvement: we calculate the 2-
normed difference between the first and last slider
displacement, i.e., ||xslider, 1 − xslider, 10||2 and compare
it to the benchmark, where average improvements of
52 - 68% are achieved. This indicates that the initial
slider displacement is closer to its optimum. The initial
constraint violation is further reduced, and the initial
cost is also a lot lower (and closer to its value after
convergence) with the hot-starting methods.

TABLE I: Performance of both hot-starting approaches.

Sys. 1 Sys. 2 Sys. 3 Avg.
Direct: iterations saved 25% 2% 37% 21%
Direct: initial motion 53% 43% 61% 52%
Burner-run: iterations saved 42% 26% 64% 44%
Burner-run: initial motion 62% 68% 75% 68%

B. Discussion

Both approaches outperform the benchmark, yielding a
significant improvement in learning time and initial perfor-
mance. The direct approach however performs slightly worse
than the burner-run one, and also more variable, with in some
cases yielding hardly any improvement over the benchmark.

As a result, based on the current findings the burner-run
approach seems preferable, if a large dataset is available
or simulation models that allow to extend the dataset. If
neither of those are present, the direct approach is favorable.
Furthermore, the training process of the direct approach is
relatively simpler compared to the burner-run approach.

We also compared both approaches with the
input transformation-based initialization from
[Willems et al., 2019]. In terms of hot-starting the
feedforward signal τ , similar gains were achieved as
for the burner-run approach.

VI. CONCLUSIONS

This paper presented methods for fast initialization of
control parameters. For 3 slider-crank systems, we experi-
mentally found a 21 - 44% reduction in tuning time, and an
initial performance 52 - 68% better than with a model-based
benchmark, using 20% of the data for training.

The developed methods can be used to speed up de-
velopment, commissioning, or regular retuning. Especially
for systems performing a multitude of similar tasks this
improvement can be significant. While this paper considered
3 similar systems performing a small set of similar tasks, the
authors expect the methods to be relevant for many possible
scenarios: other types of systems, a larger variety of task
variations, different operating conditions, different machine
releases or variants, different software versions, etc. Future
work can tackle those cases, and especially cases with bigger



differences. Expected is that then at some point multiple
hot-starting models will become needed, each covering a
part of the possible combination space. Then the burner run
approach with its implicit identification will be critical to
decide when which model should be used, or even when
the differences are so large that the proposed initialization
methods won’t be beneficial at all.

APPENDIX
The considered slider-crank system is modeled using a

multi-body diagram [De Groote et al., 2021], see Fig. 9.

(a) Crank (b) Connecting rod

(c) Slider

Fig. 9: Multi-body diagram of the slider-crank system.

The corresponding equations of motion are then given by:

m1ẍ1 = Fax + Fbx

m1ÿ1 = Fay + Fby −m1g

(J1 + Jm)θ̈ = τ − bmθ̇ − 2r1xFbx + 2r1yFby − r1ym1g

m2ẍ2 = −Fbx + Fcx

m2ÿ2 = −Fby + Fcy −m2g (11)

J2ϕ̈ = −r2xFbx − r2xFcx − r2yFby − r2yFcy

m3ẍ3 = −Fcx − bsẋ3

0 = −Fcy + FN −m3g

In the above, m1, m2 and m3 denote the masses of the crank,
connecting rod and slider respectively, and J1, J2 and Jm
denote the inertia of the crank, rod and motor. Furthermore,
τ denotes the motor input torque, and bm and bs denote the
damping constants of the motor and slider. l1 and l2 are the
lengths of the crank and rod, and we define r1x = 1

2 l1sin(θ),
r1y = 1

2 l1cos(θ), r2x = 1
2 l2sin(ϕ), r2y = 1

2 l2cos(ϕ). The
slider position xslider (equal to x3) is defined as xslider =
l1cos(θ)+l2cos(ϕ)+l1−l2, employing geometric constraint
ϕ = sin−1( l1l2 sin(θ)).

Next, we define the state vector x =
[
θ θ̇

]T ∈ R2, input
u = τ ∈ R and correction terms α (parametric and / or non-
parametric). Then, we can write the system in state-space
format:

ẋ = f(x, u, α),

y = h(x, u, α) = θ,
(12)

where y ∈ R denotes the output. The non-linear function f
is obtained by solving Eq. 11 symbolically using CasADi
[Andersson et al., 2019]. The resulting model can then be
denoted using the lifted representation as: y = P̂ (u,α), with
y ∈ RN , u ∈ RN and α the correction terms (parametric
and / or non-parametric), given signal length N .
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