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Multi-Vehicle System Localization by Distributed Moving Horizon
Estimation over a Sensor Network with Sporadic Measurements

Antonello Venturino, Sylvain Bertrand, Cristina Stoica Maniu, Teodoro Alamo, Eduardo F. Camacho

Abstract— This paper proposes a Distributed Moving Hori-
zon Estimator (DMHE) for the Multi-Vehicle system localiza-
tion problem using Sensor Networks with sporadic measure-
ments. Due to its capability to efficiently exploit environmental
information via constraints, the proposed DHME technique
is well-suited to better estimate the system state when mea-
surements are available at time instants a priori unknown.
Indeed, the use of output constraints can contribute to locally
improve estimation accuracy, especially when dealing with
sporadic measurements and biased sensors data. A realistic
case study is proposed within the Robot Operating System
framework and Gazebo to localize a Multi-Vehicle System
using an inexpensive Sensor Network with low-computation
capabilities. A comparative campaign simulation is performed
to confirm the effectiveness of the proposed DMHE algorithm in
terms of accuracy, computation time, and constraints handling
with respect to existing results.

I. INTRODUCTION

Numerous studies have been dedicated to Distributed State
Estimation (DSE) over Sensor Network (SN) [1]–[3] during
the last few years since these schemes are suitable for diverse
applications and contexts. Some examples focus on detecting
and mitigating cyber-attacks [4], tracking intruders in a safe
area [1], [5], estimating the state of large-scale systems
[6], [7], mobile robot localization [8], [9], etc. Some of
these works have conducted only theoretical developments
or have exclusively numerically shown the effectiveness of
the considered techniques. Indeed, there is still a judicious
need for deep insights such as applying algorithms in real
experiments and applications. For example, communication
delays and losses [10], computation time [5], the time-
varying topology of the network [9], sporadic measurements
[11], [12] are still open problems to cope with in theory and
much more in practice.

Distributed State Estimation with a Moving Horizon Es-
timator (MHE) is one particular case for which the compu-
tation time of the state estimation algorithm matters since it
involves a constrained optimization problem to be solved at
each time instant [13]. The MHE paradigm consists in using
an estimation window of fixed size, which moves forward in
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time hence the problem remains computationally tractable
since only the most recent information is processed and the
past evolution of the system is summarized in its so-called
arrival cost [14].

The current paper focuses on Multi-Vehicle System (MVS)
localization using Distributed MHE (DMHE) algorithms.
Similar works have been conducted by the authors of [8]
and [9]. In [8], the DMHE problem has been addressed
by focusing on the non linearity of the model and on the
possible local observability issues at the sensor level. In
[9], the authors accounted for mobile nodes in the Sensor
Network that led to deal with a dynamic topology. Indeed,
using a flocking algorithm for the motion control, the mobile
sensors attempt to move in a specific way in order to get the
best positions to observe the target and to avoid collisions
between neighboring agents. In the current paper, we focus
on the computation time aspect, which is a key factor for
real-time implementation.

In previous research works by the authors [5], [15], [16],
DMHE algorithms with pre-estimation have been proposed in
order to reduce the computation time while preserving or im-
proving the accuracy of the state estimation. To this aim, the
input sequence of noise to be estimated has been replaced by
a Luenberger observer leading to fewer optimization param-
eters to be accounted. Furthermore, an observability rank-
based weights technique is used to enhance the accuracy. The
contribution of the current paper is two-fold. First, in addition
to a reduced computation time and an improved accuracy
due to the pre-estimation, the proposed DMHE technique is
designed for realistic large-scale systems scenarios involving
sporadic measurements (i.e. available at time instants a
priori unknown). To this aim, constraints on measurements
(coming from the knowledge of the environment where
the Multi-Vehicle System is evolving) are embodied using
binary parameters in this novel Distributed Moving Horizon
Estimation formulation. Thus, the environment information
is exploited to better estimate the system state. Second,
the current paper aims at evaluating the performance of
the proposed DMHE approach (in terms of accuracy and
computation time) on a realistic case study, i.e. the distributed
localization of a Multi-Vehicle System by a static sensor
network, developed within the Robot Operating System
(ROS) framework and Gazebo environment. This realistic
distributed implementation within ROS and Gazebo would
enable the deployment on a hardware setup. To confirm its
efficiency, the proposed DMHE constrained formulation is
compared with the notable DMHE algorithm [2].

The paper is structured as follows. Section II describes



the problem under investigation and introduces the main
ingredients for the algorithm. The proposed DMHE algo-
rithm is presented in Section III. Before concluding remarks
(Section V), a realistic simulation scenario within the ROS
and Gazebo environments is investigated in Section IV.

II. DISTRIBUTED STATE ESTIMATION OVER SENSOR
NETWORK WITH SPORADIC MEASUREMENTS

This section describes the problem of Distributed State
Estimation (DSE) of a Multi-Vehicle System (MVS) over
a Sensor Network (SN) with sporadic measurements, the
considered model, and the Sensor Network with its char-
acteristics.

A. Problem description

The Distributed State Estimation algorithm uses a Sensor
Network to estimate the states of the Multi-Vehicle System.
In this context, we assume that the Sensor Network is com-
posed of possibly nS heterogeneous sensors with sporadic
measurements, i.e. the measurements may not be (partially
or entirely) available all the time to each sensor. For instance,
a mobile vehicle is detected by a camera only when it is
within its field of view, or by a beacon when it is within its
range, etc. A (formation of) vehicle(s) moving in an unknown
direction can thus be detected by a given sensor belonging
to a Sensor Network at time instants a priori unknown.

The system under observation is composed of nV inter-
connected ground vehicles which are limited to moving in
specific areas, e.g. in an urban area, they can only move
on the road (see Fig. 1). We further exploit this information
as position constraints in the Distributed State Estimation
optimization problem.

B. Considered model

The dynamical model of the ν-th vehicle (denoted by the
left superscript) is described as a linear time-invariant (LTI)
system

νxt+1 = νA νxt +
νwt, ν = 1, . . . , nV (1)

where νxt ∈
νX ⊆ Rνnx is the state and νwt ∈

νW ⊆ Rνnx

is an exogenous input (e.g. an unknown control input, state
perturbation, etc.), with νX and νW convex sets.

Remark 1: Notice that, when referring to the global Multi-
Vehicle System, the left superscript ν is omitted, e.g. xt =
[1x⊤

t , . . . ,
nV x⊤

t ]
⊤ or A = diag(1A, . . . , nV A).

Since each sensor i (right superscript) can provide mea-
surements on each vehicle individually. The following math-
ematical expression1 refers to the output carried out by sensor
i with respect to the ν-th vehicle

νyit =
νCi νxt +

νvit, i = 1, . . . , nS (2)

where νyit ∈ Rni
y is the measurement vector and νvit ∈ Rni

y

the measurement noise.
Remark 2: Notice that in (2), the right superscript i refers

to the i-th sensor and the left superscript ν to the ν-th vehicle.

1Notice that a linear equation is used for the output vector.

Fig. 1: Scenario illustrated in Gazebo: MVS with 5 vehicles
in the starting place.

In this respect, νCi is the output matrix specifying that the
sensor i is measuring the vehicle ν position. The notation Ci

without the left superscript ν refers to the output matrix of
the global Multi-Vehicle System C = diag(1Ci, . . . , nV Ci),
similar to Remark 1.

For the sake of simplicity in exposing the rest of the paper
and without losing generality, we assume that each sensor
can measure only the position of the vehicles.

The following notation is necessary to denote the collec-
tive output matrix of the global system allowing to aggregate
both the measuring and non-measuring situations of each
sensor

Ci
αt

= Di
αt
Ci (3)

where Di
αt

is a diagonal matrix having ναi
t ∈ {0, 1} as

components, with ν = 1, . . . , nV , leading to

Di
αt

= diag(1αi
t I1ny

, . . . , nV αi
t InV ny

) (4)

with Iνny
the identity matrix of size νny .

Remark 3: Notice that ναi
t is a time-dependent binary

parameter indicating if the sensor i is able to measure the
ν-th vehicle at time t (i.e. ναi

t = 1) or not (i.e. ναi
t = 0).

C. Constraints

This subsection defines measurement constraints exploit-
ing the a priori knowledge of the environment and the
Sensor Network. First, denote by R the subset of positions
corresponding to the road (assumed to be non-convex) on
which the vehicles can move. Then, denote by F i the set
of the points forming the sensor i field of view. The convex
hull of the intersection of these two sets denoted by

Si = Co(R∩ F i) (5)

is further used to constrain the position of the vehicle when
the mobile vehicle is within the field of view of the sensor
i (see Fig. 2 for a graphic representation).



Fig. 2: Road R (blue line), fields of view F1 and F2

(yellow), and convexified constraints S1 (red polytope) and
S2 (blue polytope).

D. Sensor network

In Distributed State Estimation schemes, the nearby sen-
sors share data among each other. The Sensor Network is
described by a directed graph G = (N , E), where N =
{1, 2, . . . , nS} is the set of all nodes (sensors) and E ⊆ N ×
N is the set of all edges (communication links). Therefore,
the pair (i, j) ∈ E exists if and only if the sensor j can
receive information from the sensor i. The neighborhood N i

of the sensor i is defined as N i = {j ∈ N : (i, j) ∈ E} and
its cardinality ni

S = card(N i). In this paper, we consider
that the topology of the Sensor Network is fixed.

We distinguish local information, i.e. referring only to the
local sensor i, and regional information, i.e. referring to the
entire neighborhood N i. A general bar notation (̄·) is used
to denote the regional information, e.g. the regional output

of sensor i at time t is ȳit = [(yit)
⊤, (yj1t )⊤, . . . , (y

j
ni
S

t )⊤]⊤,
{j1, . . . , jni

S
} ∈ N i.

The edges of the graph G are weighted by the components
of a stochastic matrix K, those values are given as follows

kij > 0 if (j, i) ∈ E , (6a)
kij = 0 otherwise, (6b)

nS∑
j=1

kij = 1, ∀i = 1, . . . , nS . (6c)

The values of kij can be chosen according to some criteria.
For instance, in [16] the authors proposed a rank-based
method that leads to a better accuracy for the estimations
since K will be used in the DMHE algorithm to compute
the consensus terms, as described further on in Section III.

E. Problem statement

Consider the discrete-time LTI system (1) and the sensor
network G with the linear measurement equation (2), under
the assumption that the graph G = (N , E) is strongly
connected, i.e. every node is reachable from every other
node. The role of each sensor i ∈ N , at each time t, is
to (possibly) get measurement on (part of) the Multi-Vehicle
System, to exchange information among neighbor nodes of
N i and to process locally available information in order to
determine a local estimate x̂i

t of the real state xt of the
Multi-Vehicle System.

III. CONSTRAINED DMHE WITH SPORADIC
MEASUREMENTS FOR MULTI-VEHICLE SYSTEMS

This section recalls the Distributed Moving Horizon Esti-
mation approach with pre-estimation and observability rank-
based weights proposed in [16] and presents its novel for-
mulation to handle the Multi-Vehicle localization application
considered in the current paper. Thanks to the pre-estimation,
the proposed DMHE technique reduces the computation time
needed by the sensors (see [16]) to estimate the state of the
system, compared to classical DMHE (see [2]). In fact, by
replacing the input sequence of the noise to be estimated,
the pre-estimation observer reduces the computation time
required to solve the optimization problem due to a reduced
number of optimization variables. Moreover, thanks to the
observability rank-based weights, the accuracy of the esti-
mates is improved and thus it enables the use of classic
DMHEs for sporadic measurements.

A. Local optimization problem

At each time t, given an estimation horizon length N ⩾
1, each sensor i ∈ N determines the estimate x̂i

t|t of the
state xt|t by solving the following constrained minimization
problem with pre-estimation:

x̂i
t−N |t = arg min

x̂i
t−N

J i
αt
(·) (7)

s.t. x̂i
k+1 = A x̂i

k + Li
αk

v̂ik, (8)

ȳik = C̄i x̂i
k + ˆ̄vik, (9)

x̂i
k ∈ X ∩ Si

αk
, (10)

∀k = t−N, . . . , t.

Notice that in (8), the estimate of the measurement noise
v̂ik is local, while in (9) ˆ̄vik is regional. The A matrix in
(8) refers to the global Multi-Vehicle System. The sequence
of state estimates x̂i

t−N+1|t, . . . , x̂
i
t|t is obtained from the

optimal solution x̂i
t−N |t and using the dynamics (8). The

main novelty w.r.t. [16] concerns the use of the binary
parameter ναi

t in (7) and (8), as it is detailed in the next
paragraph. In addition, the constraints (10) are incorporated
within the optimization problem as explained in section II-C.

The parameter ναi
t allows to deal with the sporadic

measurements. First, it is useful to discern when the con-
straints Si are used by sensor i and when not. In particular,
considering νSi

αt
, i.e. the projection of Si

αt
into the subspace

related to the ν-th vehicle leads to{νSi
αt

= νSi if ναi
t = 1

νSi
αt

= Rνnx if ναi
t = 0

The Luenberger gain Li is computed such that Φi = A −
LiCi is Schur stable when the Multi-Vehicle System is
observable by sensor i. One may compute the gain associated
to the global MVS or separately, since Li = [1Li, . . . , nV Li].
In addition, the dependence on ναi

t is formulated via Li
αt

=
LiDi

αt
, with Di

αt
defined by (4).



The binary parameter ναi
t appears also in the objective

function J i
αt

defined as

J i
αt
(·) = 1

2

t∑
k=t−N

∥∥ȳik − C̄i x̂i
k

∥∥2
R̄i

αt

+ Γi
t−N (·), (11)

where the weight matrix R̄i
αt

= (R̄i)−1Di
αt

can be chosen
as the product between the covariance matrix of the mea-
surement noise, and the diagonal matrix Di

αt
of appropriate

dimensions. The last term of (11) is the initial penalty
function Γi

t(·), known in the MHE paradigm as arrival cost.
This terms is non negative and it summarizes the effect of
the past measurements, before time t−N . The initial penalty
function Γi

t(·) in (11) defined as follows:

Γi
t(·) =

1

2

∥∥∥x̂i
t−N − ˆ̄xi

t−N |t−1

∥∥∥2
(Π̄i

t−N|t−1
)−1

, (12)

involves two consensus terms described below.
We denote by ˆ̄xi

t−N |t−1 the weighted average state esti-
mation computed by the neighborhood N i as follows:

ˆ̄xi
t−N |t−1 =

∑
j∈N i

kij x̂
j
t−N |t−1, (13)

where x̂j
t−N |t−1 is the second estimated state in the sequence

computed at the previous time by sensor j. Notice that the
penalty function Γi

t−N includes a consensus-on-estimates
term, in the sense that it penalizes deviations of x̂i

t−N from
ˆ̄xi
t−N |t−1. It helps to improve the accuracy of the local

estimates and it is necessary to guarantee convergence of
the state estimates to the state of the observed system even
if it lacks of regional observability [2].

The positive definite matrix Π̄i
t−N |t−1 is computed as

in [2]. For the sake of completeness, we recall here the
procedure to compute it by:

Π̄i
t−N |t−1 =

∑
j∈N i

nj
Sk

2
ijΠ

j
t−N |t−1, (14)

where the update of Πi
t−N |t−1 is performed by the sensor i

on the basis of regionally available information. In particular,
the matrix Πi

t−N |t−1, with i ∈ N , is given by one iteration
of the difference Riccati equation associated to a Kalman
filter for the system:

{
xt−N = Axt−N−1 + wt−N−1

z̄it−N = Ōi
Nxt−N + V̄ i

t−N

where V̄ i
t−N represents the measurement noise and Ōi

N

defines the i-th sensor regional observability matrix:

Ōi
N =

[
(C̄i)⊤ (C̄iA)⊤ · · · (C̄iAN−1)⊤

]⊤
. (15)

Then defining:

Si
N =


0 0 · · · 0
C̄i 0 · · · 0
...

...
. . .

...
C̄iAN−2 C̄iAN−3 · · · C̄i

 ∈ Rp̄iN×n(N−1),

(16)

R̄i
N = diag(R̄i, . . . , R̄i) ∈ Rp̄iN×p̄iN , (17)

QN−1 = diag(Q, . . . , Q) ∈ Rn(N−1)×n(N−1), (18)

Cov[V̄ i
t ] = R̄∗i

N = R̄i
N + Si

NQN−1(Si
N )⊤, (19)

and setting the covariance of the estimate x̂i
t−N−1 as:

Π∗i
t−N−1|t−2 =

((
Π̄i

t−N−1|t−2

)−1

+ (C̄i)⊤(R̄i)−1C̄i

)−1

,

(20)
the resulting Riccati recursive equation is given by:

Πi
t−N |t−1 = AΠ∗i

t−N−1|t−2A
⊤ +Q−AΠ∗i

t−N−1|t−2

(
Ōi

N

)⊤
·
(
Ōi

NΠ∗i
t−N−1|t−2

(
Ōi

N

)⊤
+ R̄∗i

N

)−1

· Ōi
NΠ∗i

t−N−1|t−2A
⊤.

(21)

Since the communication network topology is assumed to
be time-invariant, these equations can be computed off-line.
However, once the matrices Πi

t−N |t−1 have been computed,
we perform a consensus weights update in order to compute
the matrices Π̄i

t−N |t−1 according to (14).

B. Observability rank-based weights technique

Here, we briefly recall the weights tuning technique in
[16], for the stochastic matrix K associated to the graph G
and highlight its adjustment for the considered Multi-Vehicle
localization problem by DMHE over a Sensor Network with
sporadic measurements.

This method needs only local information available by
each sensor to compute its own component of K. Thus,
it is suitable for a distributed scheme, and more important
for this application context, where the measurements are
sporadic. Indeed, this technique enhances the accuracy of the
estimates by means of exploiting observability properties of
the neighborhoods. Since these properties are changing over
time for this Sensor Network, the observability rank-based
weights technique is an appropriate method to improve even
more the accuracy and the convergence of the algorithm.

Consider a sensor i at time t. Its regional observability
matrix

Ōi
n =

[
(C̄i

αt
)⊤ (C̄i

αt
A)⊤ · · · (C̄i

αt
An−1)⊤

]⊤
(22)

is of full rank if and only if the the pair (A, C̄i
αt
) is

completely observable, i.e. rank(Ōi
n) = n. For the sake of

simplicity, we denote by ρiO = rank(Ōi
n). This information

could be used as reliability of sensor i when choosing the
weights, which according to (6) must be averaged among
the neighbors. Moreover, since at some time instants a priori
unknown, the entire neighborhoods could not have sensing



capabilities at all, i.e. ρiO = 0. To avoid division by zero a
lower bound smaller than 1 (0.5 in (23)) is chosen for kij ,
which results in

kij =

 0.5 if
∑

j∈Ni ρ
j
O = 0

ρj
O∑

j∈Ni ρj
O

otherwise
(23)

C. DMHE modus operandi

Finally, the procedure of the proposed distributed scheme
is described in Algorithm 1.

Algorithm 1 DMHE procedure

1: Off-line: ∀i ∈ N
2: receive from the nodes j ∈ N i: Lj , Cj , Rj

3: compute the pre-observer gain Li

4: store the a priori initial estimation x̂i
0|0 = x̂0 of x0,

where x̂0 is given, and the covariance matrix Π0 of x0

5: Initialization: ∀i ∈ N , at the first time step t = 0
6: collect a first local measurement yi0
7: receive from the neighborhood j ∈ N i their mea-

surements yj0
8: Online: ∀i ∈ N , ∀t > 0
9: collect the local measurement yit

10: receive from the neighbors j ∈ N i the collected data
in the step 9

11: compute the Di
αt

matrix according to (4)
12: compute the kij components according to (23)
13: if 1 ⩽ t ⩽ N then
14: set the horizon length N = t, the covariance

matrix Π̄i
t−N |t−1 = Π̄i

0|t−1 = Π0 and the a priori initial
estimation state x̂i

t−N |t−1 = x̂i
0|t−1

15: else
16: compute Πi

t−N |t−1 according to (19), (20) and
(21)

17: receive Πj
t−N |t−1 from the nodes j ∈ N i

18: compute Π̄i
t−N |t−1 according to (14)

19: solve the local optimization problem of DMHE, min-
imizing J i as in (11) and (12) subject to the constraints
(8)-(10)

20: store the solution x̂i
t−N |t and the corresponding

estimate x̂i
t|t

21: receive from the neighbors j ∈ N i their estimates
x̂j
t−N+1|t

The sporadic measurements constraints are integrated at
step 19, with Di

αt
computed at step 11. Notice that the steps

10, 18 and 21 in the procedure regarding the exchanging
information could be rearranged to include only one synchro-
nization. However, the current formulation has been chosen
for clarity reasons w.r.t. calculation details.

IV. REALISTIC SIMULATIONS

A. Scenario and simulation setup

In this section, the proposed DMHE is applied to estimate
the positions of a team of nV = 5 ground vehicles moving

together. To evaluate its performance a realistic implementa-
tion in the ROS framework and in the Gazebo environment
is proposed, see Fig. 1 and the associated video available at
https://youtu.be/KRvlQgvHGEo. For the estimation
models used in the DMHE optimization problem, each
vehicle is modeled as single integrator, with a 2-dimensional
state vector representing its Cartesian positions in the plane.
The control input vector, i.e. Cartesian linear velocities, of
each vehicle is assumed to be unknown, and it is further
considered as an exogenous input, i.e. νwt ∈ R2 a uniformly
distributed noise with covariance matrix Q = I2.

To simulate a realistic system, each vehicle is modeled
in Gazebo as a differential drive robot (TurtleBot3). The
Multi-Vehicle System goes from the starting point (1,−2) m
towards the final point (11, 11) m driving within the road and
controlled by a leader-follower formation control strategy.

The Sensor Network (SN) is composed of nS = 17
cameras measuring the Cartesian positions of the vehicles,
and connected as in the Fig. 3 (see the red edges representing
the communication links between the nodes depicting the
cameras). Fig. 3 also shows the projection on the ground of
the field of view of each camera (yellow rectangles), and the
road (blue solid line). The start and finish position of the
Multi-Vehicle System are clearly indicated in Figs. 1 and 3.

Notice that the graph associated with the Sensor Network
is not a complete graph, i.e. a graph in which every pair
of distinct vertices is connected by a unique edge. The
measurements refer to the reference frame associated with
each camera. Thus, to have them in the absolute reference
frame it is necessary to translate and rotate them with a
transformation matrix. To make the scenario more realistic,
we added different biases for each camera (via the mea-
surement equation (2) for each sensor) on these translations
and rotations, allowing to model uncertainties related to the
cameras’ poses.

Assuming that these biases can not be easily estimated
and compensated in the considered scenario, the purpose
is to investigate the robustness of the proposed Distributed
Moving Horizon Estimation to this additional source of
uncertainty (i.e. sensor biases) and to validate the usefulness
of a priori known environment constraints considered in the
DMHE optimization problem.

A Monte Carlo simulation with 100 runs with different
measurements noises (per run) normally distributed, i.e. νvit
is a white noise with zero mean and covariance matrix Ri =
0.5I2 was performed. The estimators runs with a sampling
time Ts = 0.5 s and a horizon length N = 4. The initial
values of the algorithms have been set as ν x̂0 =

[
0 0

]⊤
,

Π0 = 105I2. The optimization problem was implemented
by using the quadratic programming solver from [17] imple-
mented in Python. The considered performance indexes are
the computation time τ needed by the solver to estimate the
positions of the Multi-Vehicle System, and the Root Mean
Square Error (RMSE) computed as follows

RMSEt =
1

100 · nS

100∑
z=1

∑
i∈N

∥∥∥xt(z)− x̂i
t|t(z)

∥∥∥ ,

https://youtu.be/KRvlQgvHGEo
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Fig. 3: Simulation scenario with road (blue line), cameras
(numbered nodes), field of view of each camera (yellow
rectangles), and communication link between the sensors
(red arrows).

both averaged among the trials and the sensors, where xt(z)
and x̂i

t|t(z) are, respectively, the realization of the real state
of the system and the estimated one, by sensor i, for the trial
z. The simulation is carried out by a PC Linux Ubuntu 20.04
equipped with an Intel i9-11950H processor.

We compare the proposed Distributed Moving Horizon
Estimation without constraints (denoted by DMHE) and with
constraints2 (denoted by DMHES ). We also compare the re-
sults with the algorithm in [2], denoted hereafter by DMHEF

for the unconstrained case. We also added the constraints (5)
to this approach, denoted hereafter by DMHES

F .

B. Results’ analysis

Figure 4 illustrates the averaged RMSE among all the
sensors and all the 100 trials. It shows that the proposed
DMHE (red dotted curve) and DMHES (solid green curve)
have better accuracy w.r.t. to the approach in [2], with
constraints (solid cyan curve) or without constraints (dark
blue dotted curve). Indeed, the RMSE obtained with the
proposed estimation approaches (both DMHE and DMHES )
are improved by a factor close to 30% w.r.t. the RMSE of
DMHEF and DMHES

F . This figure shows also the bounds
(shaded colors) representing the minimum and the maximum
RMSE of each trial and for each individual local observer.

The same trend can be seen in Fig. 5 showing the
computation time τ averaged among all the sensors and
trials. Accounting for constraints is done at the cost of an
increase of the computation time (close to a factor 2). The
proposed pre-estimation mechanism enables to compensate
that by drastically reducing the computation time. Here the

2The constraints are added as in (5).
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Fig. 4: Averaged RMSE among all the sensors and all the
trials.
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Fig. 5: Averaged computation time τ among all the sensors
and all the trials.

bounds, representing the minimum and the maximum τ of
each trial and for each individual local observer of the
proposed DMHEs are tighter than the bounds obtained with
the DMHEF (see [2]) and DMHES

F .
The constraints Si are used in the local optimization

problem only when the camera is actually sensing a vehicle.
In order to show the effects of these constraints Si (5), we
picked up, for one random trial, the estimations of the posi-
tion along the x-axis for the fourth vehicle. In particular, we
consider to plot only the estimations during the time periods
when their sensors are active, i.e. when the vehicle belongs to
its field of view. Thus, Fig. 6 illustrates the real position 4px,t
(in green solid line) coming from the true localization on the
ground provided by the Gazebo simulator, the measurements
of the cameras (cyan dots), the estimations using DMHE
(red dotted curves) and DMHES (dark blue dotted curves).
The zoomed parts also show the local constraints (black
dashed lines). Due to the measurement noise and bias, some
measurements (cyan dots) could not correspond to possible
positions of the vehicle which are constrained to be within
the road boundaries. Accounting explicitly for constraints
in the estimation helps to improve the accuracy. Figure 6
illustrates that the estimations with the DMHES (dark blue
dotted curves) method respect the constraints represented by
black dashed lines in the zoomed parts.

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a Distributed Moving Horizon
Estimation (DMHE) algorithm for localizing a Multi-Vehicle
System (MVS) over a static sensor camera network with
sporadic measurements, i.e. available at time instants a
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Fig. 6: Estimation of the position along the x-axis of the
fourth vehicle 4p̂x,t by all the active sensors.

priori unknown. The proposed approach, which takes into
account measurement constraints, has been implemented in
a realistic distributed way in the Robotic Operator System
(ROS) middleware with a Gazebo simulation environment.
Indeed, thanks to the pre-estimation observer in the opti-
mization problem, the proposed DMHE has shown half of
the computation time needed by [2], since it replaces the
input sequence of the noise to be estimated, thus leading to
fewer optimization parameters. Moreover, for the reason that
an optimization problem is used in the MHE paradigm, the
proposed DMHE is prone to exploit a priori information as
constraints to better estimate the state of the system. The
proposed DMHE formulation is able to deal with sporadic
measurements due to binary parameters inserted into the
algorithm. In addition, it increases the accuracy of the
estimation as a consequence of using the observability rank-
based method to tune the components of the consensus
matrix associated with the graph of the Sensor Network.
This particular aspect is suitable in conditions of sporadic
measurements.

Current research work focuses on implementing the pro-
posed method on hardware Multi-Vehicle System, involving
TurtleBot3 mobile vehicles, and an inexpensive sensor cam-
era network.
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