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Blood Glucose Reference Personalization for Subjects with Type 2
Diabetes*

Mohamad Al Ahdab1, Torben Knudsen1, Jakob Stoustrup1, John Leth1

Abstract— In this paper, we present two simple and novel
methods for automatic personalization of target blood glucose
concentration values for individuals with Type 2 Diabetes
(T2D). The methods can be integrated with any insulin dosing
algorithm, or used to provide an individualized reference BG
concentration value for medical professionals to consider when
determining long-acting insulin doses and other oral medica-
tions. The proposed methods were tested in three different
simulation models, with different long-acting insulin dosing
strategies, and were found to reduce instances of hypoglycemia.

I. INTRODUCTION

Type 2 diabetes (T2D) is characterized by high blood
glucose (BG) concentrations, or hyperglycemia, caused by
an imbalance between insulin secretion and the ability of
insulin to lower BG concentrations. If left untreated, high BG
concentrations can lead to complications such as cardiovas-
cular diseases and damage to eyesight. The first steps in the
treatment of T2D typically involve lifestyle adjustments and
the use of oral medications. However, if these methods are
insufficient in lowering BG concentrations, individuals with
T2D may need to use long-acting insulin, such as once-daily
insulin pens, based on self-monitored blood glucose (SMBG)
measurements or continuous glucose monitoring (CGM)
devices. Strategies for automatically computing insulin doses
for T2D subjects range from simple table-based strategies,
as described in [1], to physiological model-based strategies,
such as the one in [2], as well as model-free strategies, like
the ones discussed in [3], [4]. The glucose target for these
titration algorithms is fixed. However, for individuals with
high variations in blood glucose concentrations, this fixed
target may not be ideal as it can lead to increased instances
of low BG concentrations (hypoglycemia) which can cause
symptoms such as nausea, fainting, and in severe cases,
death. To address this issue, we propose adapting the glucose
target in real-time to reduce the occurrence of hypoglycemic
events. The idea of adapting has been shown to be effective
in closed-loop artificial pancreas systems for individuals with
type 1 diabetes in combination with a model predictive
controller [5]. In this paper, we propose new methods for
automatic penalization of target BG for individuals with
T2D utilizing CGM readings. The developed strategies can
generally be connected with any insulin dosing algorithm
or they can be directly recommending an individualized
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1The authors are with Section of Automation and Control, Depart-
ment of Electronic Systems, Aalborg University, Aalborg Øst, Denmark
{maah,tk,jakob,jjl}@es.aau.dk

reference BG to the medical professionals who are deciding
on the long-acing insulin dose and other medications. The
contribution of this paper are as follows
• We propose a simple integral-derivative (ID) controller

with a nonlinear error function to adapt a personalized
target BG concentration for T2D subjects.

• We propose a different method which calculates a per-
sonalized BG target by taking a weighted average of the
outputs from multiple ID controllers. The weights are
adapted in an online fashion for each subject.

• We test the method with three different simulation models
augmented with three different insulin dosing strategies:
two standard of care dosing strategies, and a newly pro-
posed modified version of one of them.

II. NOTATIONS

The symbol := indicates defined by. All vectors are
considered as column vectors, ∥ · ∥p denotes the p-norm,
and T denotes transpose. We use N (µ,Σ) to denote the
normal distribution with mean µ and covariance Σ, and
U(a, b) for a continuous uniform distribution with bounds
a and b. If the difference between two time instants tk and
tk+j is such that tk+j − tk = jT, j, k ∈ N with T ∈ R
being a constant, then variables that are indexed with time
x(tk), x(tk+j) will be denoted by x(k), x(k+ j) for ease of
notation. We let [a, b] denote the closed interval from a to b,
and [a b] denote the row vector with coordinates a and b. For
a diagonal matrix A with diagonal entries a = [a1 · · · an]T,
the notation A = diag(a) is used. The symbol In is used
to denote the n × n identity matrix and the symbol 1n

is used to denote the nth dimensional column vector of
1s. For an interval Θ = [xℓ, xu], we define the saturation
function ΠΘ : R → Θ, ΠΘ(x) := max

(
min (x, xu) , xℓ

)
.

For w, v ∈ △n :=
{
w ∈ Rn

≥0 | ∥w∥1 = 1
}

, we write
the Kullback–Leibler (KL) divergence (relative entropy)
as DKL(w || v) =

∑n
i=1 w

i ln
(
wi/vi

)
. For a vector

x = [x1, . . . , xN ]
T ∈ RN , we define a vector of mov-

ing averages with a window H ≤ N as µH(x) :=

1/H
[∑H

i=1 xi, . . . ,
∑N

i=N−H+1 xi

]T
.

III. DESCRIPTION OF THE METHOD

As discussed in the introduction, the adaptive BG target
methods in this paper are designed to be used in connection
with an insulin dosing strategy or as a recommendation to
medical professionals, see figure III. We will first describe
a nonlinear error function in III-A. Afterwards, we describe



the simple ID method for BG target adaptation in III-B.1 and
an adaptive weighted average version of it in III-B.2.

Adaptive
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Nonlinear error ϕ

r(k) u(k) yc(k), yg(k)

Fig. 1. Block diagram of the setup. The command r(k) is a personalized
average/fasting glucose target, u(k) is a long-acting insulin dose, yc(k) is
a vector of the available CGM measurements between the days (k − 1)T
and kT , and yg(k) is an average/fasting BG measurement.
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Fig. 2. A plot of ϕ(y) defined in (1c) with K1 = 1,K2 = 0.6, a = b =
2, yℓ = 4, yu = 7. The figure demonstrates the approximately linear error
zones, the zero zone, and the transitioning zones. Note that y > 0 since it
represents a BG concentration value

A. Nonlinear Error Functions

Let k ∈ Z≥0 represent the current iteration of our strategy
at time tk := kT [day]. Similarly, let m ∈ Z≥0 represent the
CGM sample at time tm := mTm [day] with Tm < T . We
define the vector yc(k) ∈ Rq as the vector of the available
q CGM measurements y from time tk−1 until tk. In other
words, yc(k) =

[
y(mk1

) . . . y(mkq
)
]T

such that Tmmki
∈[

(k − 1)T, kT
]

for i ∈ {1, . . . , q}. Before proceeding to the
description of the strategies, we first define the functions
ϕℓ, ϕu, ϕ : R → R

ϕℓ(y) := K1sa(−(y − yℓ)) (1a)
ϕu(y) := −K2sb(y − yu) (1b)
ϕ(y) := ϕu(y) + ϕℓ(y) (1c)

where sα(x) := 1
α log(1 + eαx), K1,K2 ∈ R>0 are gain

constants, a, b ∈ R are shape parameters, and yℓ, yu ∈ R
are lower and upper bounds respectively. Figure 2 shows
an example of ϕ(y). The function ϕ(y) can be viewed as a
modified version of the linear error e(y) := yd− y where yd

is taken as a ”desired value”. Unlike e(y), the function ϕ(y)
asymptotically converges to a linear error −K1(y−yℓ) when
y → −∞ and to another linear error −K2(y − yu) when
y → ∞. In between, the function will be approximately
zero. Additionally, observe that for yℓ = yu = yd, and
K1 = K2 = 1, we have ϕ(y) asymptotically converging
to e(y) when a, b → ∞. Loosely put, the function ϕ(y)
divides its domain ”smoothly” into five different zones (see
Figure 2): two zones with two different approximately linear
error functions, one zone where the function is approximately
zero, and two zones to transition from approximately zero
to approximately linear error functions. On the other hand,
the linear error function e(y) is linear with the same gain
for all y ∈ R. The smoothing for the error function ϕ(y)
between the approximately linear error zones and the zero
zone helps with damping chattering effects when ϕ(y) is used
as a feedback. The smooth transition is controlled by the
parameters a and b. The parameters for ϕ for the rest of the
paper are chosen as K1 = 1,K2 = 0.6, a = b = 2, yℓ = 4,
and yu = 7. For the following subsections, we will present
the two reference adapting approaches with the use of the
function ϕ.

B. Reference Adaptation

We propose two approaches for adapting an aver-
age/fasting BG reference for each specific T2D individual
based on ϕ(y) in (1c) and CGM measurements. The first
approach is a single Integral-Derivative (ID) based controller
and the second approach is an Adaptive Weighted Average
method of multiple ID based controllers (AWAID).

1) Single ID Method: Consider an initial average/fasting
BG reference r(0) ≥ 4 [mmol/L]. At iteration k at time
kT [day], we use the available CGM measurements yc(k) to
compute a quantity related to the average error as

ϕ̄(yc(k)) :=
1

q

q∑
i=1

γyℓ,yu(y(mki))ϕ(y(mki)), (2)

where the cutoff function 1γyℓ,yu
is defined as

γ(y)yℓ,yu
:=

{
0, y ∈ [yℓ+1, yu−1]

1, Otherwise.
(3)

Afterwards, the suggested single point average/fasting BG
reference is updated according to an ID type controller

r(k) = ΠΩ

(
r(k − 1) + TKI ϕ̄

(
yc(k)

)
+KD

(
ϕ̄
(
yc(k)

)
− dr(k − 1)

))
,

(4a)

dr(k) = (1− β)dr(k − 1) + βϕ̄
(
yc(k)

)
, dr(0) = 0. (4b)

1The cutoff function is added to ensure that the error function ϕ is zero
for y ∈ [yℓ + 1, yu − 1] to avoid drift in the ID controller since s(x) only
asymptotically converges to zero for x → −∞. Although including the
cutoff function affects the smoothness of the average error, the impact on
chattering is negligible. This is because the cutoff function is applied within
a region where the error is close to zero.



where KI > 0 is the integral gain, KD ≥ 0 is the derivative
gain, 0 < β ≤ 1, and Ω = [rℓ, ru]

2 The bounds rℓ and ru
are chosen to ensure that at any point, the reference r(k) will
always be safe. In this paper, we choose rℓ = 5 [mmol/L]
and ru = 10 [mmol/L].

2) Adaptive Weighted Average ID (AWAID): For this
method, we consider multiple ID based controllers of the
form (4) and take the weighted average of their individ-
ual outputs as the suggested average/fasting BG reference.
The method is made adaptive by updating the weights
using an online multiplicative weight approach. Let θ :=
[KI KD β]

T and consider N ∈ Z>0 different ID based con-
trollers such that each individual controller is characterized
by the parameters θi ∈ Θ =

{
θ1, . . . , θN

}
. To compute a

reference r(k) at time kT [day], we first compute the output
of the N different ID controllers

ri(k) = r(k − 1) + TKi
I ϕ̄

(
yc(k)

)
+Ki

D

(
ϕ̄
(
yc(k)

)
− dr(k − 1)

)
,

(5a)

dir(k) = (1− βi)dir(k − 1) + βiϕ̄
(
yc(k)

)
, dr(0) = 0.

(5b)

The output recommended reference is then computed as a
weighted average with weights

w(k) =
[
w1(k) . . . wN (k)

]T
∈ △N ,

as following

ra(k) =

N∑
i=1

wi(k)ri(k), (6a)

r(k) = ΠΩ

(
ra(k)

)
. (6b)

The weights w(k) at step k are chosen such that ϕ(ra(k))
is close to zero to promote references on the interior of Ω
which makes it safer for the subject. We achieve this with
the following update step

w̃i(k) =
e−η(k)ϕ2(ri(k))∑N

i=1 e
−η(k)ϕ2(ri(k))wi(k − 1)

wi(k − 1), (7a)

wi(k) = ζ(k)w̃i(k) + (1− ζ(k))
1

N
1N , (7b)

with η(k) =
√

ln(N)
50k (see Remark 3.2) and ζ(k) = η(k+1)

η(k) ∈
(0, 1]. The update rule (7a) scales the weight for each
individual reference output ri(k) based on how small the
value of ϕ2(ri(k)) is, meaning that reference outputs which
are closer to the zero safe zone of the function ϕ will be
scaled higher than other reference outputs. The update rule
in (7) is the solution of the following optimization problem

w̃(k) = argmin
w∈△N

N∑
i=1

η(k)ϕ2
(
ri(k)

)
wi

+DKL(w || w(k − 1)), (8)

2rℓ can be made time dependent with rℓ(k) = rℓ(k − 1) +
Tα

(
r̃ℓ − rℓ(k − 1)

)
to give the option of the medical professionals to

restrict how fast the BG reference should drop to minimum value of r̃
with a rate α [day−1] to prevent complications and pseudo-hypoglycemia
symptoms [6].

and

ϕ2(ra(k)) ≤
N∑
i=1

ϕ2
(
ri(k)

)
wi(k)

using Jensen’s inequality since ϕ2 is convex. In other words,
minimizing

∑N
i=1 ϕ

2
(
ri(k)

)
wi(k) will minimize an upper

bound on ϕ2(ra(k)) to promote for a safer output reference
ra(k). The regularization term DKL(w || w(k − 1)) is to
ensure that the weights do not change arbitrary between
different iterations in order to avoid sharp changes in r(k).
Additionally, the inclusion of the term DKL(w || w(k− 1))
pushes w away from the boundary of △N , and towards where∑N

i=1 ϕ
2
(
ri(k)

)
wi(k) is minimized [7].

Remark 3.1: The step in equation (7b) performs inter-
polation between uniform weights ( 1

N 1N ) and the updated
weights w̃(k) at each iteration to account for the time-varying
nature of the problem (ri(k) varies with k) by preventing the
weights from quickly converging to one of the vertices of the
simplex △N and becoming fixed there.

Remark 3.2: Let Jk(w) = ϕ2
(∑N

i=1 r
i(k)wi

)
, and de-

fine the average regret ΨK up until time step K between
the weights computed according to (7) and the fixed weights
v = argmin

w∈△N

∑K
k=1 Jk(w) as

ΨK :=
1

K

 K∑
k=1

Jk(w(k))−
K∑

k=1

Jk(v)

 , (9)

then using Corollary 10 in [8] and applying Jensen’s inequal-
ity, we can bound the average regret with the update in (7)
and ζ(k) = η(k+1)

η(k) with w(1) = 1
N 1N as following

ΨK ≤ 1

K

K∑
k=1

η(k)
∥∥g(k)∥∥2∞
2

+
1

K

ln(N)

η(K + 1)
, (10)

where g(k) =
[
ϕ2

(
r1(k)

)
. . . ϕ2

(
rN (k)

)]T
.

Furthermore, due to the fact that the blood glucose
concentration must have limits, and with parameters θi ∈
Θ, i ∈ {1, . . . , N} that ensures bounded input bounded
output stability of the corresponding controllers, we can
bound

∥∥g(k)∥∥2∞ ≤ G2
∞. With this bound, if we choose

η(k) =
√

2 ln(N)
kG2

∞
, then the average regret becomes

ΨK ≤
√

2 ln(N)G∞

K

1

2

K∑
k=1

1√
k
+
√
K + 1


≤ 2G∞

√
2 ln(N)√
K

, (11)

where we used
∑K

k=1
1√
k
≤ 2

√
K−1 (using the integral test)

and
√
K + 1 ≤

√
K + 1

2 for K ≥ 1 (using the concavity
and differentiability of the square root function). With v =
argmin
w∈△N

∑K
k=1 Jk(w) being the best weights choice up until

K, it means that the performance of the weights computed
according to (7) compared to the case when we take the



best fixed weights v over the horizon K is bounded by a
function in the order of 1√

K
. For the choice of G∞, we

used simulation results with the three different models in
IV-B to obtain an estimate bound Ĝ2

∞ = 100 for G2
∞ such

that G2
∞ ≤ Ĝ2

∞. Therefore, our choice for η(k) is η(k) =√
ln(N)
50k .

IV. SIMULATION SETUP

In this section, we intend to simulate and compare between
insulin dosing strategies on T2D subjects with and without
the adaptive reference scheme in (4). To do so, we first
present our choice of insulin dosing strategies in IV-A.
Afterwards, we present 3 different insulin-glucose simulation
models in IV-B, Finally, we present and discuss the results
of the simulations in V.

A. Simulated Dosing Strategies

In this section, we list the long-acing insulin dosing
strategies which we will use for the simulations of individual
with T2D. The first two strategies are the standard of care
methods

202 ∆u(k) =


2, yg(k) > r(k)+ 1

0, yg(k) ∈ [r(k)− 1, r(k)+ 1]

−2, yg(k) < r(k)− 1

(12a)

Step ∆u(k) =



8, ȳg(k) ≥ r(k)+ 4

6, ȳg(k) ∈ [r(k)+ 3, r(k)+ 4)

4, ȳg(k) ∈ [r(k)+ 2, r(k)+ 3)

2, ȳg(k) ∈ [r(k)+ 1, r(k)+ 2)

0, ȳg(k) ∈ [r(k)− 1, r(k)+ 1)

−2, ȳg(k) ∈ [r(k)− 2, r(k)− 1)

−4, ȳg(k) < r(k)− 2

(12b)
u(k) = u(k − 1) + ∆u(k) (12c)

where u(k) is the prescribed insulin dose at t = kT [day],
yg(k) is a glucose value that can either be a glucose
measurement obtained by finger pricking devices (SMBG)
before breakfast, or a value calculated from CGM readings
as yg(k) = min

(
µH

(
yc(k)

))
similar to [9], and ȳg(k) :=

1
3

∑2
i=0 yg(k − i) is an average value of yg(k) over the last

three days. For the default standard of care strategies, r(k)
is constant and it is chosen to be 5 mmol/L. In addition to
the standard of care strategies in (12), we consider a linear
smooth (LS) version of Step defined as

∆u(k) = 2s2(ȳg(k)− r(k)−1)− 2s2(r(k)−1− ȳg(k))
(13a)

u(k) = u(k − 1) + ∆u(k) (13b)

Note that the right-hand side of (13a) is ϕ(ȳg(k)) in (1c)
with K1 = K2 = −2, a = b = 2, yℓ = r(k) − 1, and
yu = r(k)+1. Figure 3 shows ∆u(k) versus ȳg for both the

Step and LS schemes. The parameters for the methods with
AWAID are

Θ = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
× {0.8, 1, 1.2} × {1, 0.8, 0.2}

where θi =
[
Ki

I Ki
D βi

]T
are the parameters for the

ith controller. For the methods with single ID, we choose
after some simple tuning θ = [0.5 1 0.8]

T (the median ID
controller in Θ). The time constant T is chosen to be 7 days.
Meaning that the reference and the insulin dose are updated
every week.
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Fig. 3. The Step strategy (red) and its LS (blue) approximation with
r = 5 mmol/L.

B. Glucose-Insulin Simulation Models

For the glucose-insulin dynamic simulations, we consider
three different simulation models. For the first model, de-
noted ”Model 1”, we consider the jump diffusion model
in [10]. The average meal rate in the jump part is chosen
to be 3 meals/day between the hours 7:00 and 23:00 and
0.1 meals/day otherwise to take into account that individuals
do not eat as frequently at night. As for the diffusion part, a
constant diffusion is added to the BG concentration state. For
the second model, denoted ”Model 2”, we consider the model
presented in [11] augmented with a jump diffusion model
for meals and disturbances matching ”Model 1”. Finally,
the third model, denoted ”Model 3”, is the high fidelity
model [12]. The meal times for Model 3 are drawn from
uniform distributions as following: U(6, 8) [h] for breakfast
meals, U(12, 14) [h] for lunch meals, and U(19, 20) [h] for
dinner meals. The carbohydrate intake for each meal is also
drawn uniformly according to U(10, 25) [g] for breakfast,
U(20, 30) [g] for lunch, and U(25, 45) [g] for dinner. The
choice of simulating the meals differently for Model 3 was
to evaluate the insulin dosing strategies against a distinct
type of stochastic disturbances. For the measurement errors,
we consider an SMBG measurement error model [13] as the



following

yg(k) = xg(k) + σs

(
xg(ts)

)
εs(k), (14a)

σs

(
xg

)
=

1

κ
σ2 log

(
1 + eκ(xg−4.2)

)
+ σ1, (14b)

with σ1 and σ2 chosen in accordance to the ISO standard
[14] to be σ1 = 0.415 [mmol/L] and σ2 = 0.1, and κ = 5.
Additionally, we consider a CGM measurement error model
according to

y(m) = xc(m) + σcxc(m)εc(m), (15)

with σc = 0.42 in accordance to a MARD of 10% [15] as
done in [16]. The state xc represents the glucose concen-
tration in the blood for the models. Table I summarizes the
models used for simulations in this paper.

TABLE I
GLUCOSE-INSULIN SIMULATION MODELS USED IN THE PAPER

Model 1 Based on [10]. Includes a measurement error model.

Model 2
Based on the model from [11]. Augmented with a jump
diffusion model matching the one in [10] for meals.
Includes measurement error models.

Model 3

Based on the model from [12]. The timing and size of
meals are drawn from uniform distributions. Includes a
measurement error model. A diffusion term matching
the one in [10] is added to the state corresponding to
BG concentration.

V. RESULTS AND DISCUSSION

This section describes a simulation involving 1500 indi-
viduals with T2D over the course of one year. The first 500
subjects were generated using Model 1, the next 500 using
Model 2, and the final 500 using Model 3. Initial glucose and
insulin concentrations, as well as parameters affecting insulin
resistance and insulin secretion, and the time constant for
injected long-acting insulin, were randomly chosen for each
individual. Table III provides a summary of the parameters
used for each T2D model.
We simulate the Step and LS strategies with different sce-
narios according to table II.
To compare the scenarios and the algorithms used in the

TABLE II
SUMMARY OF THE DIFFERENT SETUPS CONSIDERED FOR

SIMULATIONS. IF CGM IS USED FOR yg , THEN H = 3 [hour].

Name yg Value
Based On

Adaptive
Target

Insulin
Dosing

Step SMBG none Method (12b)
StepR SMBG Single ID (4) Method (12b)

StepAR SMBG AWAID (6) Method (12b)
202 SMBG none Method (12a)

202R SMBG Single ID (4) Method (12a)
202AR SMBG AWAID (6) Method (12a)

LS SMBG none Method (13)
AvgLS CGM none Method (13)
LSR SMBG Single ID (13) Method (12b)

AvgLSR CGM Single ID (13) Method (12b)
LSAR SMBG AWAID (6) Method (13)

AvgLSAR CGM AWAID (6) Method (13)

TABLE III
PARAMETERS FOR GENERATING SUBJECTS FROM MODEL 2, MODEL 3,

AND MODEL 4. THE STATE xG DENOTES THE BG CONCENTRATION

STATE WHILE xI DENOTE THE BLOOD INSULIN CONCENTRATION STATE.

Model 1

xG(0) ∼ U(15, 25) [mmol/L], p4 ∼ U(0.5, 2.5),
p7 ∼ U(0.5, 2.5), p1 ∼ U(1.5, 2.5), p6 and the initial
conditions of the remaining states are calculated
such that xG(0) is stationary. Diffusion term
σG ∼ U(0.1, 2).

Model 2

xG(0) ∼ U(15, 25), xI(0) ∼ U(20, 30) [pmol/L],
CLGI ∼ U(0.71× 10−4, 0.11× 10−2),
IPRG ∼ U(0.05, 2), and the initial conditions of the
remaining states are calculated such that xG(0)
and IG(0) are stationary. Diffusion term
σG ∼ U(0.1, 2).

Model 3

xG(0) ∼ U(15, 25) [mmol/L],
xI(0) ∼ U(0.5, 2) [mU/L], c1 ∼ U(0.04, 0.09),
c2 ∼ U(2.3, 0.95), c4 ∼ U(1, 2.4), and the initial
conditions of the remaining states are calculated
such that xG(0) and IG(0) are stationary.
Diffusion term σG ∼ U(0.1, 2).

simulations, we use the performance measures and their
targets described in [17] for glucose managements. The
measures are shown in table IV. In addition to the measures

TABLE IV
GLUCOSE MANAGEMENT MEASURES FROM [17]. THE UNIT FOR THE

RANGES AND GLUCOSE VALUES IS [mmol/L].

Measure % of time for BG in Target
Time in Range (TIR) [3.9, 10) > 70%
Time Above Range 1 (TAR1) [10, 13.9) < 25%
Time Above Range 2 (TAR2) [13.9,∞) < 5%
Time Below Range 1 (TBR1) [3, 3.9) < 4%
Time Below Range 2 (TBR2) [0, 3) < 1%
Average Glucose (AG) < 8.6
Glucose Variability (GV) 36%
Glucose Management Index (GMI) 7%

in table IV, we compute the mean long acting insulin dose.
Table V shows computed mean and Standard deviation (Std)
over the 1500 simulations for each strategy or scenario.
Figure 4 illustrates the outcomes of various methods: LS,
LSAR, AvgLS, AvgLSAR, Step, StepAR, 202, and 202AR.
Additionally, table V presents statistical data for all the
methods discussed in table II. Among these methods, LSAR,
AvgLSAR, and StepAR, which employ an adaptive BG
reference, exhibit higher mean BG concentrations compared
to LS, AvgLS, and Step. Consequently, there are lower BG
values within the hypoglycemic range, as indicated by the
BG histograms across all subjects.

This observation aligns with the table’s results, demon-
strating how adapting the reference can reduce instances
of hypoglycemia. The table also reveals that the average
glucose, TAR1, and TAR2 are higher when BG reference
adaptation is utilized, which concurs with the findings in
the figure. In summary, the adaptive BG reference strategies
for Step and LS effectively elevate the BG reference, thus
preventing hypoglycemic episodes in susceptible subjects. It
is worth noting that methods employing an adaptive moving
average of multiple ID controllers exhibit better performance



in reducing incidents of hypoglycemia with slightly lower
average BG concentration compared to those using a single
ID controller. Although it may be possible to fine-tune the
parameters of a single ID controller for improved results, this
process can be challenging, particularly when dealing with
different groups of T2D subjects. On the other hand, the
AWAID strategy offers a more flexible approach, as it only
requires specifying the parameters of multiple ID controllers.
The method then adapts the weights in an online manner
to enhance performance. However, in the case of the 202
strategies, the results shown in the figure do not demonstrate
good performance, which is consistent with the TIR, TAR1,
and TAR2 statistics presented in table V. Even when an
adaptive BG reference is employed, these statistics do not
change significantly. In fact, the adaptive reference strategies
worsen TIR, TAR1, and TAR2 in exchange for a slightly
lower TBR1.

This occurs because the 202 strategy is slow in bringing
BG levels within the safe range (indicated by the mean
insulin dose being lower than other methods). The adaptive
references cannot decrease the BG reference below rℓ =
5 [mmol/L] to ensure a safe range according to (12a). Con-
sequently, they are unable to expedite the titration process
more than the default strategy with r = 5 [mmol/L]. As a
result, the adaptive reference methods can solely increase the
reference r to reduce instances of hypoglycemia. Moreover,
due to the strategy’s slowness, it takes a relatively long time
for BG concentration to reach the elevated glucose reference.

This suggests that when the default strategy is not fast
enough, employing the adaptive reference strategy does not
offer significant improvements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented two simple methods for
adapting the BG target for subjects with T2D based on
CGM measurements. Simulation results with three different
models showed that these methods, when combined with
insulin titration strategies, managed to reduce instances of
hypoglycemia when compared to using the insulin titration
methods alone. Future research will involve conducting a
more thorough analysis of the proposed methods under var-
ious simulation scenarios and in combination with different
insulin titration strategies, as well as testing them in different
models of T2D.
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Fig. 4. Simulation results for LS, LSAR, AvgLS, AvgLSAR, Step, StepAR, 202, 202AR with Model 1, Model 2, and Model 3. The plots on the second
row are normalized histograms for all the glucose readings with Tm = 5 [min] among the 1500 simulated subjects.



TABLE V
STATISTICS FOR DIFFERENT SCENARIOS AND ALGORITHMS. STD. IS SHORT FOR STANDARD DEVIATION.

Mean TIR Std. TIR Mean TBR1 Std. TBR1 Mean TBR2 Std. TBR2 Mean AG Std. AG
Target [17] > 70% < 4% < 1% < 8.6 [mmol/L]

LS 93% 5.55% 1.8% 0.5% 0% 0% 6.26 1.08
LSR 93.4% 5.52% 0.9% 0.5% 0% 0% 6.4 1.1

LSAR 94.2% 5.02% 0% 0.03% 0% 0% 6.52 1.2
AvgLS 92.7% 0.5% 0.1% 0% 0% 0% 7.3 0.8

AvgLSR 92.7% 0.5% 0.1% 0% 0% 0% 7.3 0.8
AvgLSAR 94.4% 0.48% 0% 0% 0% 0% 7.38 2.12

Step 91.27% 5.3% 1.2% 2.92% 0% 0% 6.46 1.05
StepR 92% 5% 0.9% 2.9% 0% 0% 6.61 0.92

StepAR 93.1% 5% 0.01% 0.06% 0% 0% 6.8 0.74
202 77.67% 14% 0.9% 3% 0% 0% 7.8 1.6

202R 76.5% 13.4% 0.87% 2.4% 0% 0% 7.9 1.63
202AR 76.5% 13.4% 0.87% 2.4% 0% 0% 7.9 1.63

Mean TAR1 Std. TAR1 Mean TAR2 Std. TAR2 Mean Insulin Mean GV Std. GV Mean GMI Std. GMI
Target [17] < 25% < 5% < 36% < 7%

LS 4.02% 4.24% 1.18% 0.8% 75.8 [U] 27.7% 6.7% 6.04% 0.45%
LSR 5.2% 4% 1.3% 0.73% 80.1 [U] 25% 5.4% 6.81% 1.2%

LSAR 5.5% 1.23% 1.02% 0.4% 109.67 [U] 28% 5.88% 6.98% 1.5%
AvgLS 6.35% 5% 0.9% 0.9% 58.9 [U] 19.77% 3.44% 6.46% 0.38%

AvgLSR 6.4% 5.1% 0.87% 0.9% 61 [U] 20.02% 3.53% 6.5% 0.5%
AvgLSAR 6.38% 5% 0.87% 0.9% 64.9 [U] 19.85% 3.45% 6.48% 0.38%

Step 5.91% 4.81% 1.63% 1.64% 74.7 [U] 29.47% 7.8% 6.12% 0.46%
StepR 5.7% 4.5% 1.6% 1.6% 72.04 [U] 28.2% 7.8% 6.2% 0.4%

StepAR 5.71% 4.5% 1.6% 1.6% 68.04 [U] 26.01% 6% 6.27% 0.32%
202 17.3% 11.5% 4.1% 5.2% 47.77 [U] 30.6% 8% 6.7% 0.7%

202R 18% 11% 4.3% 5% 47.8 [U] 30.65% 8% 6.7% 0.71%
202AR 18% 11% 4.3% 5% 47.8 [U] 30.65% 8% 6.7% 0.71%
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