
Physics–guided neural networks for inversion–based feedforward
control applied to hybrid stepper motors*

D. Fan1, M. Bolderman†,1, S. Koekebakker2, H. Butler1,3, and M. Lazar1

Abstract— Rotary motors, such as hybrid stepper motors
(HSMs), are widely used in industries varying from printing
applications to robotics. The increasing need for productivity
and efficiency without increasing the manufacturing costs calls
for innovative control design. Feedforward control is typically
used in tracking control problems, where the desired reference
is known in advance. In most applications, this is the case
for HSMs, which need to track a periodic angular velocity
and angular position reference. Performance achieved by feed-
forward control is limited by the accuracy of the available
model describing the inverse system dynamics. In this work, we
develop a physics–guided neural network (PGNN) feedforward
controller for HSMs, which can learn the effect of parasitic
forces from data and compensate for it, resulting in improved
accuracy. Indeed, experimental results on an HSM used in
printing industry show that the PGNN outperforms conven-
tional benchmarks in terms of the mean–absolute tracking
error.

I. INTRODUCTION

Hybrid stepper motors (HSM) are widely used in industrial
automation, such as pick–and–place robots [1], [2], additive
manufacturing [3], professional printing applications [4], and
more, see, e.g., [5] for an overview. HSMs can be oper-
ated in an open–loop configuration using microstepping [6].
However, the open–loop stepping often induces unwanted
vibrations and is highly inefficient as it applies high currents
to be robust for worst case loads. Consequently, for high–
precision applications, closed–loop control schemes are often
applied in the form of field–oriented control (FOC) [7], [8],
see also [9] for control strategies of the inner current control
loop. Since FOC requires measurements of both the currents
and the angular position of the HSM, significant research
has been done on sensorless FOC which does not require
the additional angular position sensor, see, e.g., [4], [10].

For motion control systems, reference tracking perfor-
mance is typically achieved via feedforward control, while
feedback control stabilizes the system and rejects distur-
bances and feedforward imperfections [11]. For rotary mo-
tors however, the feedforward control design is largely ne-
glected or restricted to be linear, see, e.g., [7] which employs
a linear velocity–acceleration feedforward, or [12] which
employs linear feedforward with a disturbance compensator.
The complete dynamical behaviour of HSMs constitutes

*This work is supported by the NWO research project PGN Mechatronics,
project number 17973.

†Corresponding author: m.bolderman@tue.nl
1Control Systems Group, Eindhoven University of Technology, Groene

Loper 19, Eindhoven, 5612 AP, The Netherlands
2Canon Production Printing, St. Urbanusweg 43, Venlo, 5900 AE, The

Netherlands.
3ASML, De Run 6501, Veldhoven, 5504 DR, The Netherlands.

more complex phenomena, such as parasitic torques arising
from manufacturing tolerances, as well as torque ripples
caused by detent torque and back electromotive forces. Since
performance achieved by feedforward control is limited by
the accuracy of the model of the inverse system [13], design-
ing a feedforward controller from a linear model intrinsically
limits performance. Iterative learning control [14] provides
the potential to improve tracking performance further, but
requires multiple repetitions of the same reference.

Physics–guided neural networks (PGNNs) have potential
to improve performance achieved by linear, physics–based,
feedforward controllers by accurately identifying the inverse
system dynamics from data [15]. PGNNs effectively merge
physics–based and NN–based models and thereby result
in nonlinear feedforward controllers with improved perfor-
mance, and the same reliability as physics–based feedforward
controllers [16]. This is in contrast to black box NNs, which
can fail to learn from presented data. The application of a
PGNN feedforward controller to a rotary machine however
remains unexplored.

Hence, this motivates us to develop PGNN feedforward
controllers for improving performance of HSMs. To this
end, we define a PGNN architecture that embeds a simple,
physics–based inverse model of the HSM within a black–box
NN. Also, we impose the rotational reproducible behaviour,
i.e., the same dynamics is expected for each rotation. With
the PGNN architecture defined, the PGNN training identifies
or learns the inverse system dynamics of the HSM from an
available input–output data set, i.e., requiring measurements
of the angular position. Since the PGNN feedforward con-
troller does not require online measurements, it can also be
implemented in a sensorless FOC scheme. The developed
PGNN feedforward improves performance by a factor 2 in
terms of the mean–absolute tracking error (MAE) in real–
time on an HSM used in printing industry, without requiring
additional computational hardware or measurements.

II. PRELIMINARIES

A. First–principle modeling of an HSM

Fig. 1 shows a schematic overview of the FOC structure
with dq–transformation of the hybrid stepper motor, see,
e.g., [17]. Note that, both the position and the current
controllers are implemented in discrete–time, which are
indicated by the sampler and ZOH blocks. The HSM is
subdivided in a mechanical and an electromagnetic part. The
mechanical dynamics, indicated with Gme is modeled using

ar
X

iv
:2

30
6.

12
81

7v
1

 [
ee

ss
.S

Y
]

 2
2

Ju
n

20
23

Fig. 1. FOC architecture including the HSM, the current control with dq–transform and the position feedback–feedforward control setup.

Newton–Euler relations, such that

J
d2

dt2
y(t) = F (t)− fv

d

dt
y(t), (1)

where y(t) is the position output at time t ∈ R>0, J ∈ R>0

the mass moment of inertia, fv ∈ R>0 the viscous friction
coefficient, and F (t) the driving torque. The driving torque
is modeled as [18]

F (t) = km
(
−ia(t) sin

(
Ny(t)

)
+ ib(t) cos

(
Ny(t)

))
, (2)

where km ∈ R>0 is the motor constant, N ∈ Z>0 the
number of rotor teeth, and ia(t) and ib(t) the current through
coils a and b, respectively.

The electromagnetic dynamics is modeled as

L
d

dt
ia(t) = va(t)−Ria(t) + km

(d

dt
y(t)

)
sin

(
Ny(t)

)
,

L
d

dt
ib(t) = vb(t)−Rib(t)− km

(d

dt
y(t)

)
cos

(
Ny(t)

)
,

(3)

where L ∈ R>0 is the inductance, R ∈ R>0 the resistance,
and va(t) and vb(t) the terminal voltages of coil a and b,
respectively. The latter terms in (3) are the self–induced
voltage, also known as the back electromotive force.

Since the HSM has two inputs, i.e., the voltages va and vb,
and only a single output y, often the dq–transformation [17]
Ψdq is employed[

id(t)
iq(t)

]
= Ψdq

(
y(t)

) [ia(t)
ib(t)

]
: =

[
cos

(
Ny(t)

)
sin

(
Ny(t)

)
− sin

(
Ny(t)

)
cos

(
Ny(t)

)] [ia(t)
ib(t)

]
.

(4)

As a result, we observe that the driving torque in (2)
simplifies to T (t) = kmiq(t), and the mechanical dynamics
into

J
d2

dt2
y(t) = kmiq(t)− fv

d

dt
y(t). (5)

Note, from (5) we observe that the position control only
requires iq(t). Finally, energy consumption can be approx-

imated by the squared sum of currents, which, using dq–
transformation (4), yields

i2a + i2b = i2d + i2q. (6)

Since id does not contribute to the driving torque, we aim
to have it equal to zero and thereby minimize the energy
consumption.

Remark 2.1: It is possible to derive a more complex
description of the HSM dynamics, e.g., by including detent
torque, reluctance, and other effects. However, the goal of
this work is to demonstrate effectiveness of the PGNN frame-
work for feedforward control, which should compensate for
unmodeled effects by learning these effects from data.

B. Field–oriented control architecture of an HSM

The inner current control loop aims to have the driving
torque T (t) become equal to the input u(t). The currents
ia(t) and ib(t) are controlled using the voltages va(t) and
vb(t), such that, in dq–coordinates these follow the references
i∗d(t) = 0 and i∗q(t) =

1
km

u(t). In order to achieve this, the
inverse dq–transformation is applied to the voltages, such
that[

va(t)
vb(t)

]
= Ψ−1

dq

(
y(t)

) [vd(t)
vq(t)

]
=

[
cos

(
Ny(t)

)
− sin

(
Ny(t)

)
sin

(
Ny(t)

)
cos

(
Ny(t)

)] [
vd(t)
vq(t)

]
.

(7)

Substituting the dq–transformation (4) and the inverse dq–
transformation (7) in the electromagnetic model (3), gives
the electromagnetic model in dq–coordinates as

L
d

dt
id(t) = vd(t)−Rid(t) + LNiq(t)

d

dt
y(t),

L
d

dt
iq(t) = vq(t)−Riq(t)− km

d

dt
y(t)− LNid

d

dt
y(t).

(8)

The voltages in dq–coordinates are computed using the
discrete–time feedback controller Ci(z) as

vd(k) = −Ci(z)id(k),

vq(k) = Ci(z)
(
i∗q(k)− iq(k)

)
,

(9)

where k ∈ Z≥0 indicates the discrete–time instant. The
inverse dq–transformation Ψ−1

dq in (7) and dq–transformation
in (4) are evaluated at discrete time indices, i.e., for t = kTs,
with Ts ∈ R>0 the sampling time. The feedback controller
Ci(z) is a discretized version of the PI–controller

Ci(s) = kp +
ki
s
, (10)

with kp ∈ R and ki ∈ R the proportional and integral gain,
respectively.

Remark 2.2: The use of the dq–transformation can be
omitted by directly transforming the control input u(k) into
current references i∗a(k) and i∗b(k), see [7]. When following
a constant velocity reference and assuming a constant load
(viscous friction), both i∗a(k) and i∗b(k) follow a sinusoidal
reference, whereas i∗q(k) remains constant. Correspondingly,
the dq current control is expected to work better for reference
tracking control.

The outer angular position control loop consists of a
feedback and a feedforward controller, such that

u(k) = ufb(k) + uff(k), (11)

where ufb(k) is the feedback and uff(k) the feedforward
input. The feedback input is computed as

ufb(k) = Cfb(z)
(
y∗(k)− y(k)

)
, (12)

where Cfb(z) is the transfer function of the discrete–time
feedback controller, and y∗(k) the reference.

We develop a data–driven feedforward controller following
the same steps as in [15], where linear motors were consid-
ered. First, we have an input–output data set generated on
the system, i.e.,

ZN := {u0, y0, ..., uN−1, yN−1}, (13)

where N ∈ Z>0 are the number of samples, and ui, yi are
u(i), y(i) for the data generating experiment. Second, we
parametrize the inverse system dynamics according to

û
(
θ, ϕ(k)

)
:= f

(
θ, ϕ(k)

)
,

ϕ(k) := [y(k + nk + 1), ..., y(k + nk − na + 1),

u(k − 1), ..., u(k − nb + 1)]T .
(14)

In (14), û is the prediction of the input u, f : Rnθ×(na+nb) →
R is a model of the inverse dynamics, θ ∈ Rnθ are the
parameters, and ϕ(k) is the regressor with na, nb ∈ Z≥0

describing the order of the dynamics and nk ∈ Z≥0 the
number of pure input delays. The values for na, nb, and
nk can be obtained, e.g., by discretizing a first–principle
model of the continuous–time dynamics, or by analyzing a
frequency response function. In order to have the model (14)
fit the inverse system dynamics, the parameters are chosen
according to an identification criterion

θ̂ = argmin
θ

1

N

N−1∑
i=0

(
ui − û(θ, ϕi)

)
. (15)

Finally, the feedforward controller is obtained by computing
the input that is required to follow the reference, such that

uff(k) = û
(
θ̂, ϕff(k)

)
,

ϕff(k) := [y∗(k + nk + 1), ..., y∗(k + nk − na + 1),

uff(k − 1), ..., uff(k − nb + 1)]T .

(16)

In order to implement the feedforward controller (16), we
assume that reference values up until time k + nk + 1 are
known at time k.

III. PROBLEM STATEMENT

The choice of the model class f in (14) determines
the effects to be identified, and, consequently, compensated
for by the feedforward controller (16). For mechatronic
systems, it is typically assumed that the current loop operates
significantly faster compared to the position loop, such that
the feedforward controller can be designed solely for the
mechanical part of the dynamics, i.e., (1) with T (k) =
u(k). Consequently, using the physical knowledge, a suitable
candidate for the model class is given as

û
(
θ, ϕ(k)

)
= fphy

(
θphy, ϕ(k)

)
= θTphy

[
δ2y(k)
δy(k)

]
,

(17)

where δ = q−q−1

2Ts
with q the forward shift operator, such

that ϕ(k) = [y(k + 2), ..., y(k − 2)]T . Additionally, θphy are
the physical parameters which represent the inertia J and
viscous friction coefficient fv .

Remark 3.1: It is possible to use more accurate discretiza-
tion schemes to find na, nb, and nk in (17). For example,
ZOH discretization is exact for linear dynamics if the input
is kept constant between two consequtive samples. However,
the experimental results in Sec. V show that the parasitic ef-
fects are dominant over the discretization error made in (17).
Additionally, this discretization scheme has the advantage
that nb = 0, such that the feedforward controller (16) is
stable. For nb > 0, [16] presents tools to both validate (after
training) and impose (during training) stability of the PGNN
feedforward controllers.

The physics–based feedforward controller (17) can only
identify and compensate for the inertia and viscous friction,
while real–life applications comprise of more complex be-
haviour. Consequently, it was first proposed in [19] to employ
a black–box NN as a model class (14), such that

û
(
θ, ϕ(k)

)
= fNN

(
θNN, ϕ(k)

)
= WL+1αL

(
...α1

(
W1ϕ(k) +B1

))
+BL+1,

(18)

where αl : Rnl → Rnl denotes the aggregation of activation
functions with nl ∈ Z>0 the number of neurons in layer l ∈
{0, ..., L}, and L ∈ Z>0 the number of hidden layers. The
parameters θNN := [col(W1)

T , BT
q , ..., col(WL+1)

T , BT
L+1]

T

are the concatenation of all weights Wl ∈ Rnl×nl−1 and
biases Bl ∈ Rnl , where col(Wl) stacks the columns of Wl.
Although the NN (18) has the potential to approximate the

0 0.5 1 1.5 2 2.5 3
-20

0

20

0 0.5 1 1.5 2 2.5 3
-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

Fig. 2. Reference (top window), feedforward signal (middle window), and
the resulting tracking error (bottom window) for the feedforward controllers
using the physical model (17) and the NN (18) on a simulation example.

inverse dynamics up to any accuracy, it lacks the robustness
of the physics–based model (17). For example, the NN easily
fails to learn and generalize from the presented data [20].

To illustrate this, we make use of a closed–loop simula-
tion model of an HSM with some parasitic friction forces,
see [21] for details on the parameters, feedback controllers
and friction model. The simulation closely resembles the
real–life setup discussed in Sec. V, and follows the same
data generation experiment. We employ feedforward con-
trollers (16) based on the physical model (17) and the
NN model (18) with a single hidden layer L = 1 with
n1 = 16 neurons. Fig. 2 shows the feedforward signal
and resulting tracking error resulting from both feedforward
controllers on the HSM simulation. Even though the physical
model (17) significantly improves performance with respect
to the situation where no feedforward is applied, there remain
some errors that are caused by the inability of the physical
model to capture the complete dynamics. The NN (18) on
the other hand, has the capability to learn more complex
dynamics. However, the NN fails to learn and generalize
from the presented data which is observed by, e.g., the
offset during standstill, and the spikes at the start of the
acceleration. This results in poor tracking performance when
the NN–based feedforward controller is applied. This issue
might be reduced by using a different training data set, or by
adjusting the NN dimensions and regularization parameters.
However, the example showcases the sensitivity of the NN.

Consequently, the goal of this work is to effectively embed
the known physics–based feedforward controller within a
NN–based feedforward controller, termed PGNN, to improve
the tracking performance of HSMs. To this end, we will
use a two–step sequential procedure: first, we identify the
parameters of a physics–based feedforward controller as
in (17). Second, we train a NN model (18) on the residuals of
the identified physics–based model. Then, the physics–based

Fig. 3. Schematic overview of the physics–guided neural network.

model and the NN model are combined in a single PGNN
feedforward controller.

IV. FEEDFORWARD CONTROL OF HSMS USING
PHYSICS–GUIDED NEURAL NETWORKS

With the aim to obtain a feedforward controller with the
same reliability as the physics–based model (17) and the high
accuracy of the NN model (18), the PGNN model was first
proposed in [15], see Fig. 3. The PGNN predicts the input
according to

û
(
θ, ϕ(k)

)
= fphy

(
θphy, ϕ(k)

)
+ fNN

(
θNN, T

(
ϕ(k)

))
, (19)

where θ := [θTNN, θphy]
T are the PGNN parameters, and T :

Rna+nb → Rn0 is an input transformation, with n0 ∈ Z>0

the number of NN inputs.
To train the PGNN, we employ the following two–step

sequential procedure. First, the physical parameters θ̂phy
are identified according to identification criterion (15) with
physics–based model (17). Afterwards, the NN parameters
θ̂NN are identified on the residual of the identified physics–
based model, such that

θ̂NN =argmin
θNN

1

N

N−1∑
i=0

(
ui − û([θTNN, θ̂

T
phy]

T , ϕi)
)

+ ∥ΛNNθNN∥22 ,

(20)

where ΛNN is a regularization matrix. Note that, first identi-
fying θ̂phy and then identifying θ̂NN with θ̂phy fixed can yield
a suboptimal solution. This is prevented by identifying θ̂phy

and θ̂NN simultaneously as in, e.g., [16].
It is expected that, for each rotation, the HSM exhibits the

same dynamical behaviour. It is crucial that the PGNN (19)
incorporates this rotational reproducibility, since it is other-
wise difficult to generate a training data set which describes
all relevant rotations y∗(k), e.g., when the HSM rotates
in one direction. Therefore, we aim to identify a PGNN
model (19) which satisfies

û
(
θ, ϕ(k)

)
= û

(
θ, ϕ(k) +

[
1(na+1)×1

0(nb−1)×1

]
n2π

)
, n ∈ Z.

(21)
In order to impose the rotational reproducible behaviour, i.e.,
to make the PGNN (19) comply with (21), we consider a
specific design of the physics–guided input transform T (·).
To do so, we restate that the system order was approximated
as nk = 1, na = 4, and nb = 0 from the physical model (17),

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

0

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

0

1

Fig. 4. Example for imposing physical knowledge via T (·), i.e., improved
extrapolation capabilities when training a NN with T (y) = mod(y)
compared to T (y) = y on a limited data set (top window), and the reduction
of the required amount of neurons n1 to achieve an approximation of similar
quality (bottom window).

such that we consider the following physics–guided input
transform

T

y(k + 2)

...
y(k − 2)

 =

 δ2y(k)
δy(k)

mod
(
y(k), 2π

)
 , (22)

where mod
(
y(k), 2π

)
is the remainder after division of y(k)

with 2π. Note that, (22) is adopted rather than wrapping all
y into the domain [0, 2π), since δmod

(
y(k)

)
̸= δy(k) for all

k. Therefore, T (·) includes discrete–time approximations of
derivatives of the output y(k), which can also improve the
training convergence, e.g., when high sampling rates with
respect to the velocity are taken, such that y(k) ≈ y(k− 1).

Remark 4.1: The physical model (17) only inputs
discrete–time angular velocity and acceleration, such that it
is reproducible for any offset y(k)+∆. Then, combined with
the NN using transform (22), the PGNN (19) satisfies (21).

As an example of the physics–guided input transform T (·),
consider the situation in which a NN is used to learn

u(k) = cos
(
y(k)

)
, (23)

with data generated from one period. The top window in
Fig. 4 shows that n1 = 2 hidden layer neurons (with tanh
activation) give a reasonably accurate identification. The lack
of data however, causes the NN trained with T

(
y(k)

)
=

y(k) to extrapolate poorly, in contrast to the NN trained
with T

(
y(k)

)
= mod

(
y(k)

)
. On the other hand, when the

full range of interest is covered with data, the NN with
T
(
y(k)

)
= mod

(
y(k)

)
requires significantly less neurons

compared to the NN with T
(
y(k)

)
= y(k) to yield an

approximation of similar accuracy, see the bottom window
of Fig. 4.

V. EXPERIMENTAL VALIDATION
The PGNN–based feedforward controller (19) is validated

on a real–life HSM used in printing industry shown in Fig. 5.

Fig. 5. HSM FL57STH51–2804A by FULLING MOTOR with encoder.

For simplicity, the current and position controllers are only
proportional gains tuned as

Ci(s) = 6.6, Cfb(s) = 5. (24)

Training data is generated by sampling the input u(k)
and output y(k) with a sampling time of Ts = 10−4 s
while operating the HSM in closed–loop with a third or-
der reference moving back–and–forth between −3 to +3
rotations with a velocity of 15 rad

s , acceleration of 80 rad
s2 ,

and jerk 1000 rad
s3 for a duration of 80 s. The PGNN (19)

uses the physical model (17) and a single hidden layer with
16 tanh neurons with physics–guided input transform (22)
trained according to (20) with ΛNN = 0. It was observed
that adding more neurons or hidden layers did not further
improve performance.

Fig. 6 shows the reference, generated feedforward signals,
and the tracking error resulting from the physics–based feed-
forward and the PGNN. The presented forward motion was
preceded by a back–and–forward motion of the same refer-
ence to remove the transients caused by differences in initial
conditions, and thereby facilitate a fair comparison. Although
the physics–based and the PGNN–based feedforward inputs
are largely similar, the small deviations especially during the
acceleration part of the reference yield significantly smaller
overshoot for the PGNN.

Fig. 7 shows the mean–absolute error (MAE)

1

Nr

Nr−1∑
t=0

|y∗(k)− y(k)|, (25)

for a reference of Nr ∈ Z>0 samples as in Fig. 6
with different maximum velocities. The PGNN outperforms
the physics–based feedforward controllers for all velocities
smaller than 15 rad

s . For velocities larger than 15 rad
s , the

physics–based feedforward controller achieves slightly better
performance, which is explained by the fact that the training
data did not contain information for velocities exceeding
15 rad

s . It is possible to enhance robustness to non–training
data via the regularization approach discussed in [22], which
penalizes the deviation of the PGNN output with respect to
the output of the physical model for non–training data.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3
-5

0

5

10
10-3

0 0.5 1 1.5 2 2.5 3
-20

0

20

Fig. 6. Reference (top window), feedforward signal (middle window), and
the resulting tracking error (bottom window) for the feedforward controllers
using the physical model (17) and the PGNN (19) for the real–life HSM.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

Fig. 7. MAE of the tracking error using a physics–based feedforward (17)
and the PGNN (19) for references with varying velocities. The black line
indicates the maximum velocities attained during training.

VI. CONCLUSIONS

A PGNN–based feedforward controller for HSMs was
developed and tested in real–time experiments. The PGNN
was designed to physically embed the rotational reproducible
behaviour of the HSM, which improved performance with
respect to a physics–based approach on a real–life HSM
without requiring an increase in costs. Further research will
focus on the feedforward controller design for HSMs as part
of a complex industrial printer, as well as reducing the effect
of predictable disturbances on the closed–loop system.

VII. ACKNOWLEDGEMENTS

The authors thank Steven Schalm and Will Hendrix for
making the HSM setup operational.

REFERENCES

[1] R. V. Sharan and G. C. Onwubolu, “Simulating the arm movements
of a stepper motor controlled pick–and–place robot using the stepper
motor model,” International Journal of Advanced Science and Tech-
nology, vol. 60, pp. 59–66, 2013.

[2] M. S. H. Talpur and M. H. Shaikh, “Automation of mobile pick and
place robotic system for small food industry,” arXiv:1203.4475, 2013.

[3] P. S. Kamble, S. A. Khoje, and J. A. Lele, “Recent developments in 3d
printing technologies: Review,” International Conference on Intelligent
Computing and Control Systems, pp. 468–473, 2018.

[4] T. D. Hoang, A. Das, S. Koekebakker, and S. Weiland, “Sensor-
less field–oriented estimation of hybrid stepper motors in high–
performance paper handling,” Conference on Control Technology and
Applications, pp. 252–257, 2019.

[5] P. Acarnley, Stepping motors: A guide to theory and practice. IET,
2002.

[6] S. Derammelaere, B. Vervisch, F. de Belie, B. Vanwalleghem, J. Cot-
tyn, P. Cox, G. van den Abeele, K. Stockman, and L. Vandevelde,
“The efficiency of hybrid stepping motors: Analyzing the impact of
control algorithms,” IEEE Industry Applications Magazine, vol. 20,
no. 4, pp. 50–60, 2014.

[7] W. Kim, C. Yang, and C. C. Chung, “Design and implementation of
simple field–oriented control for permanent magnet stepper motors
without dq transformation,” IEEE Transactions on Magnetics, vol. 47,
no. 10, pp. 4231–4234, 2011.

[8] K. M. Le, H. van Hoang, and J. W. Jeon, “An advanced closed–loop
control to improve the performance of hybrid stepper motors,” IEEE
Transactions on Power Electronics, vol. 32, no. 9, pp. 7244–7255,
2017.

[9] F. Bernardi, E. Carfagna, G. Migliazza, G. Buticchi, F. Immovilli,
and E. Lorenzani, “Performance analysis of current control strategies
for hybrid stepper motors,” IEEE IOpen Journal of the Industrial
Electronics Society, vol. 3, pp. 460–472, 2022.

[10] C. Obermeier, H. Kellermann, and G. Brandenburg, “Sensorless field
oriented speed control of a hybrid and a permanent magnet disk stepper
motor using an extended kalman filter,” IEEE International Electric
Machines and Drives Conference Record, 1997.

[11] M. Steinbuch and R. M. J. G. van de Molengraft, “Iterative learning
control of industrial motion systems,” IFAC Proceedings Volumes,
vol. 33, no. 26, pp. 899–904, 2000.

[12] J. Wu, Y. Han, Z. Xiong, and H. Ding, “Servo performance improve-
ment through iterative tuning feedforward controller with disturbance
compensator,” International Journal of Machine Tools and Manufac-
ture, vol. 117, pp. 1–10, 2017.

[13] S. Devasia, “Should model–based inverse inputs be used as feed-
forward under plant uncertainty?” IEEE Transactions on Automatic
Control, vol. 47, pp. 1865–1871, 2002.

[14] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96–114, 2006.

[15] M. Bolderman, M. Lazar, and H. Butler, “Physics–guided neural
networks for inversion–based feedforward control applied to linear
motors,” IEEE Conference on Control Technology and Applications,
pp. 1115–1120, 2021.

[16] M. Bolderman, H. Butler, S. Koekebakker, E. van Horssen, R. Kamidi,
T. Spaan-Burke, N. Strijbosch, and M. Lazar, “Physics–guided neural
networks for feedforward control with input–to–state stability guaran-
tees,” arXiv:2301.08568, 2023.

[17] C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, “A
geometric interpretation of reference frames and transformations: dq0,
clarke, and park,” IEEE Transactions on Energy Conversion, vol. 34,
no. 4, pp. 2070–2083, 2019.

[18] B. Henke, O. Sawodny, S. Schmidt, and R. Neumann, “Modeling of
hybrid stepper motors for closed loop operation,” IFAC Symposium on
Mechatronic Systems, pp. 177–183, 2013.

[19] O. Sørensen, “Additive feedforward control with neural networks,”
IFAC Proceedings Volumes, vol. 32, no. 2, pp. 1378–1383, 1999.

[20] P. J. Haley and D. Soloway, “Extrapolation limitations of multilayer
feedforward neural networks,” in Proceedings of International Joint
Conference on Neural Networks, vol. 4, pp. 25–30, 1992.

[21] D. Fan, “Physics–guided neural networks for inversion–based feedfor-
ward control of a hybrid stepper motor,” Master’s thesis, Eindhoven
University of Technology, The Netherlands, 2022.

[22] M. Bolderman, D. Fan, M. Lazar, and H. Butler, “Generalized
feedforward control using physics–informed neural networks,” IFAC–
PapersOnline, vol. 55, pp. 148–153, 2022.

	INTRODUCTION
	PRELIMINARIES
	First–principle modeling of an HSM
	Field–oriented control architecture of an HSM

	PROBLEM STATEMENT
	FEEDFORWARD CONTROL OF HSMS USING PHYSICS–GUIDED NEURAL NETWORKS
	EXPERIMENTAL VALIDATION
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	References

