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Abstract— This paper considers a stochastic control frame-
work, in which the residual model uncertainty of the dy-
namical system is learned using a Gaussian Process (GP).
In the proposed formulation, the residual model uncertainty
consists of a nonlinear function and state-dependent noise. The
proposed formulation uses a posterior-GP to approximate the
residual model uncertainty and a prior-GP to account for state-
dependent noise. The two GPs are interdependent and are
thus learned jointly using an iterative algorithm. Theoretical
properties of the iterative algorithm are established. Advantages
of the proposed state-dependent formulation include (i) faster
convergence of the GP estimate to the unknown function as the
GP learns which data samples are more trustworthy and (ii)
an accurate estimate of state-dependent noise, which can, e.g.,
be useful for a controller or decision-maker to determine the
uncertainty of an action. Simulation studies highlight these two
advantages.

I. INTRODUCTION

Recent progress in computational resources, data science,
robotics, and control has sparked an interest in considering
uncertainty bounds within a controller or decision-maker [1].
Gaussian-process (GP) regression is a popular paradigm
for estimating a function, because it provides not only a
mean estimate of the desired quantity, but also a confidence
bound [2]. Using a probabilistic interpretation, a GP can
accurately reflect the distribution of the data for a given
and/or constant prior on the measurement noise. This paper
proposes a GP formulation for learning an unknown func-
tion and its state-dependent noise distribution for stochastic
control.

A. Motivating Example

GP regression uses the posterior distribution given data
points to fit a function mapping from a value x to a noisy
output y. Fig. 1 illustrates a comparison between a classical
GP and the proposed GP with state-dependent noise. It shows
that the classical solution fails to reduce its uncertainty
bounds based on the proximity of the output measurements,
y. This behavior becomes apparent by inspecting the mean
and covariance equations for a classical GP solution, in
which the mean is a function of both x and the associated
measurement y, i.e., µ(x) depends on the data xi, yi,
whereas the covariance Σ(x) depends only on the input to
the unknown function xi, and not on yi. In contrast, the
proposed GP formulation accurately reflects the noise in the
data for both regions of higher noise and regions of lower
noise.
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Fig. 1. Motivating example for GP regression with state-dependent noise.
The displayed scenario uses 100 samples between x = [1, 2.5] with lower
noise and between x = [7.5, 9] with higher noise. Left: Classical solution
without state-dependence. Right: State-dependent solution. The example that
the GP on the left evenly reduces uncertainty based on the state, x. The GP
on the right reduces uncertainty based on the state, x, but also based on the
value, y. Hence, if the measurement values y are “closer together” (see left
part of the two plots), the uncertainty is reduced appropriately.

B. Contributions and Algorithmic Realization

This paper considers a stochastic control framework,
where the residual model uncertainty is learned using GP
regression. We propose a formulation, where the residual
model uncertainty consists of a nonlinear function and state-
dependent noise. The proposed GP formulation learns both
the nonlinear function and the noise distribution simul-
taneously. It uses one GP to approximate the posterior
distribution, which we refer to as the posterior-GP. Dif-
ferent from a classical GP, the proposed GP uses a data-
based prior estimate to adjust the prior to match the noise
distribution in the training data. In this paper, this data-
based prior estimate is provided by a second GP, which
we refer to as prior-GP. The proposed posterior-GP uses
the training data directly, and the prior-GP uses the variance
of the training data. However, the variance requires a mean
estimate—provided by the posterior-GP. On the other hand,
the posterior-GP requires an estimate of the prior—provided
by prior-GP. We propose an iterative algorithm to address
this interdependence and learn both GPs simultaneously.
We present theoretical properties of the iterative algorithm
such as boundedness and guaranteed convergence under
some simplifying assumptions. The main advantages of the
proposed solution are (i) less data are needed to accurately
estimate the unknown function due to the GP learning which
data samples are more trustworthy and (ii) a decision-maker
can accurately determine the uncertainty of an action. Both
advantages are illustrated using simulation examples.
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C. Related Works

GPs for stochastic control: GPs are often used learning
unknown parts of system dynamics [3]–[7] or cost func-
tions [8], [9]. In [3], [4], a GP is used to learn a residual
dynamics model and its uncertainty bound is subsequently
used within a chance-constrained MPC. Further, [4] presents
approximations for efficient computation. In [5], a control
approach based on learning GPs online is presented and
applied to an autonomous race car. The work in [6] uses a
GP to model tire friction for improving the performance and
robustness of a stochastic MPC. In [7], a GP-based stochastic
MPC is used for cooperative adaptive cruise control, in which
the uncertainty is used predictive behavioral models. In [8],
[9], GPs are utilized to learn a cost function that can be used
for control.

Constraints for GP regression: Recent work studies con-
strained GP regression [10]–[16], which can, e.g., be used
to enforce physics-based information. E.g., the approach
in [10] uses a linear operators to enforce equality con-
straints, [11] uses virtual measurements to enforce inequal-
ity constraints, [12] uses tractability constraint to learn a
reference trajectory from data for model predictive control,
and [13] uses a basis-function approach to enforce constraints
on the GP model.

GPs with input-dependent noise: Input-dependent noise
is considered in [17]–[21], e.g., for robotic perception and
localization. In [17], the posterior distribution of the noise
distribution is sampled using Markov chain Monte Carlo
methods. In contrast, we use an algorithm that does not rely
on sampling and iteratively refines both the posterior-GP and
the prior-GP. The work in [18] also considers an iterative
estimation algorithm, which is not guaranteed to converge
and may lead to oscillations. Compared to [18], we state the-
oretical properties of the proposed iterative algorithm such as
boundedness and convergence under some mild assumptions.
Further, [19] considers input-dependent noise for optimal
design, and [20] presents a robot localization task using
GPs with input-dependent noise. Different from [17]–[21],
we present GPs with state-dependent noise with application
to stochastic control and present theoretical properties of the
estimation algorithm.

D. Preliminaries and Notation

We use [x]
i to indicate the i-th element of a vector x and

[X]
ii to indicate the element in the i-th row and i-th column

of a matrix X . We use the Hadamard product (element-
wise product) ◦, i.e., for x,w ∈ Rnx , the i-th element of
z = x ◦w ∈ Rnx is [z]

i
= [x]

i
[w]

i. To ease exposition, we
define x◦2 := x ◦x. We use I for the identity matrix and 1
and 0 for the one and zero vector of appropriate dimension.
For a vector x, x ∼ N (µ,Σ) indicates that x ∈ Rnx is
Gaussian distributed with mean µ and covariance Σ.

Throughout, we use a common choice of kernel k(x,w)
with the radial basis function,

k(x,w) = exp
(
−l(x−w)T (x−w)

)
, (1)

where l is the length scale defining the spread of the basis
function. Note that k(x,w) = 1 if x = w and k(x,w)→ 0
for x far away from w. For brevity, let kx,w := k(x,w).
Next, we define

kx,W =
[
kx,w1 kx,w2 . . . kx,wM

]
and

KX,W =


kx1,w1 kx1,w2 . . . kx1,wM

kx2,w1 kx2,w2 . . . kx2,wM

...
kxN ,w1 kxN ,w2 . . . kxN ,wM


with the collection of vectors

X =
[
x1 x2 . . . xN

]
∈ Rnx×N

W =
[
w1 w2 . . . wM

]
∈ Rnx×M .

For a function λ(x) with λ : Rnx → R, we use bold
symbol λ(X) with λ : Rnx×N → RN as shorthand notation
to indicate that the i-th element of [λ(X)]

i
= λ(xi). Simi-

larly, we use the diagonal matrix λ̄(X) with λ̄ : Rnx×N →
RN×N , whose diagonal elements [λ̄(X)]

ii
= λ(xi). Hence,

λ̄(X) = diag(λ(X)).

II. PROBLEM STATEMENT

A. Stochastic Control Formulation

We consider an uncertain dynamical system with the
measurable state xk ∈ Rnx in discrete time,

xk+1 = f(xk,uk) +B (h(xk,uk) + ϵk) , (2)

where uk ∈ Rnu is the controllable input. The dynamical
system model in (2) is composed of a known nominal
function f , the known matrix B with full-column rank, and
an initially unknown function h : Rnx×Rnu → Rnh , which
is to be learned using data. Finally, ϵk ∈ Rnϵ denotes noise
or uncertainty arising from imperfect sensors, perception,
model uncertainty, or the like. We assume that the elements
in ϵk are uncorrelated, i.e., ϵk is a realization of a distribution
with a diagonal covariance matrix, however, the diagonal
entries are allowed to be state-dependent,

ϵk ∼ N (0,Σ(xk,uk)) (3)

with the diagonal matrix Σ(xk,uk).
The dynamical system is subject to state and input con-

straints, which are enforced as chance constraints,

Pr(xk ∈ X) ≥ px (4a)
Pr(uk ∈ U) ≥ pu, (4b)

where X and U are the state and input constraint sets that
are to be satisfied with px and pu probability, respectively.

The goal is thus to control the dynamical system in (2)
in the presence of the noise/disturbances in (3) such that the
chance constraints in (4) are not violated. In the following,
we drop the dependence of h and Σ on uk to ease exposition.



In order to learn the unknown function h and unknown
covariance matrix Σ, we use (2) to form

y = B+ (xk+1 − f(xk,uk)) = h(xk) + ϵ

with the Moore-Penrose pseudo inverse B+.

B. Gaussian-Process Regression

As the covariance in (3) is diagonal, we present the
estimation problem for the one-dimensional case nh = 1 for
simplicity. However, nh ≥ 2 follows immediately by using
nh GPs, i.e., one GP for each of the nh dimensions. Hence,
we use

yi = h(xi) + ϵi, (5a)

where i indicates the ith data point and

ϵi ∼ N
(
0, g(xi)

)
, (5b)

with state-dependent variance g(xi) > 0 of the noise ϵi.
This paper addresses how to simultaneously learn a sur-

rogate function of h with state-dependent variance g using
GPs with the training data

Dλ = {xi, yi}Ni=1 (6a)

X =
[
x1 x2 . . . xN

]
∈ Rnx×N (6b)

Y =
[
y1 y2 . . . yN

]T ∈ RN , (6c)

where N is the number of data samples.

III. MATHEMATICAL FORMULATION OF GAUSSIAN
PROCESSES WITH STATE-DEPENDENT NOISE

This section presents the proposed learning algorithm, in
which one GP is used to approximate the unknown function h
in (5a), which we refer to as posterior-GP. In order to reflect
state-dependent noise, the posterior-GP uses a prior estimate
of the noise distribution. In this paper, this prior estimate is
provided by a second GP, which adjusts the prior in order to
reflect the noise distribution and is thus referred to as prior-
GP. Both the posterior-GP and the prior-GP are determined
using the data in (6), where the posterior-GP uses the data
in (6c) directly, and the prior-GP uses the variance of the data
in (6c). However, computing the variance requires a mean
estimate—provided by the posterior-GP. In turn, the mean
estimate depends on the prior—provided by the prior-GP.
Hence, the posterior-GP and the prior-GP are interdependent,
which we address next.

A. Posterior-GP

In order to derive the posterior distribution of the unknown
function in (5a) given the measurement data, we use[
Y
y

]
∼ N

(
0,

[
KX,X+σ2

0I+γ̄(X) kX,x

kx,X kx,x+σ2
0+γ(x)

])
where γ(x) is an initially unknown function, which assigns
a prior to the measurement data. Then, the conditional
distribution p(y|Y ,X,x) is a normal distribution with

y ∼ N (λ(x),Λ(x)) ,

where the mean and the posterior variance are given by

λ(x) = kx,X

(
KX,X + σ2

0I + γ̄(X)
)−1

Y (7a)

Λ(x) = kx,x+σ2
0+γ(x)

− kx,X

(
KX,X+σ2

0I+γ̄(X)
)−1

kX,x. (7b)

Remark 1 (Connection to classical GPs): In classical GP
regression, the prior is assumed to be known and γ̄(x)=0.
We will use this as baseline comparison in Section V.

B. Prior-GP

To infer an accurate uncertainty quantification or noise
estimate from data, this paper proposes to utilize a prior-GP.
The prior-GP is trained using the measurements, yi, and the
mean estimate of the posterior-GP, λ(x) in (7a). Hence, the
prior-GP uses training data computed as the second moment
of the measurements, yi, i.e.,

Dγ = {xi, zi}Ni=1, (8a)

with

zi =
(
yi − λ(xi)

)2 − σ2
0 , (8b)

Z =
[
z1 z2 . . . zN

]T ∈ RN . (8c)

Then, the prior-GP uses the data in (8) and[
Z
z

]
∼ N

(
0,

[
KX,X + σ2

0I kX,x

kx,X kx,x + σ2
0

])
.

Using the conditional distribution p(z|Z,X,x), the prior-
GP is given by

z ∼ N (γ(x),Γ(x)) ,

with

γ(x) = kx,X

(
KX,X + σ2

0I
)−1

Z, (9a)

Γ(x) = kx,x+σ2
0 − kx,X

(
KX,X+σ2

0I
)−1

kX,x. (9b)

On the one hand, the training data for the prior-GP in (8)
require a mean estimate of the unknown function h. On
the other hand, the posterior-GP requires a prior estimate
of the noise distribution. Hence, the posterior-GP in (7) and
the prior-GP in (9) need to be estimated jointly, which we
address using an iterative algorithm in Section III-C.

Remark 2 (Exploitation-exploration): GP models are of-
ten used as a surrogate function for black-box optimization,
e.g., in Bayesian optimization. For this application, λ(x)
in (7a) quantifies the mean estimate and Γ(x) in (9b)
quantifies the uncertainty, which can be used for exploration,
whereas Λ(x) in (7b) quantifies the noise in the data.

Remark 3 (Parametric model): An alternative to using a
prior-GP is to use a parametric model, e.g., using basis
functions. In this case,

γ(x) = ϕ(x)θ,



where ϕ : Rnx → Rnϕ denotes the vector of nϕ basis
functions and θ is the vector of parameters to be learned.
The parameter vector, θ, can be learned using regression,

θ = argmin
θ̃

N∑
i=1

(
zi − ϕ

(
xi
)
θ̃
)2

.

Note that there is a connection between GPs and basis-
function expansions through a Hilbert-space interpreta-
tion [22].

C. Iterative algorithm

We jointly estimate the unknown function in (5a) and the
noise distribution of its data samples in (5b) by iteratively
refining the posterior estimate and the prior estimate. Algo-
rithm 1 summarizes the procedure. At iteration j, on Line 4,
the iterative algorithm first updates the posterior-GP using
the mean estimate of the prior-GP at the previous iteration
with

λj+1(X) = KX,X

(
KX,X + σ2

0I + γ̄j(X)
)−1

Y , (10a)

Then, on Line 6 it uses the updated posterior-GP estimate
in (10a) to update the training data for the prior-GP,

Zj+1 =
(
(Y −λj+1(X))

◦2−σ2
01
)
, (10b)

Next, it uses the training data in (10b) to update the prior
GP,

γj+1(X) = KX,X

(
KX,X+σ2

0I
)−1

Zj+1, (10c)

see Line 8 in Algorithm 1. Finally, Algorithm 1 is stopped
if a stopping criterion is met. We use a stopping criterion
based on the basis-function interpretation of GPs, i.e.,

αj+1 = (KX,X + σ2
0I + γ̄j+1(X))−1Y ,

where α can be thought of as weights for the basis functions,
i.e., λ(x) = kx,Xα. This choice is motivated by the
impact that the prior-GP has on the posterior-GP. In the
following, we show that this iterative procedure converges
to its optimum under some assumptions.

IV. THEORETICAL PROPERTIES OF ALGORITHM

In order to analyze the convergence characteristics of the
algorithm, we make a simplifying assumption, i.e., we study
the algorithm in the presence of a small length scale l in (1).
Using a small length scale l→ 0, we can simplify KX,X →
I , which allows for formulating analytical expressions of the
matrix inverses in (10). Note that the assumption of a small
length scale is only needed to establish a series of (nontight)
bounds for the optimizer in Algorithm 1. Moreover, the as-
sumption is utilized to show how to choose σ2

0 appropriately.
Therefore, in practice, this assumption is not needed.

The main steps of the proof are outlined in Lemma 1,
Lemma 2, and Theorem 1. In particular, Lemma 1 shows that
if the prior-GP converges, then the posterior-GP converges as
well; Lemma 2 shows that the estimated prior-GP remains
bounded for all iterations; and Theorem 1 proves that the

Algorithm 1: Iterative algorithm for GP regression
with state-dependent noise

1 Initialize α0 = 0, Z0 = 0, γ0(X) = 0, j = 0 ;
2 do
3 %% update posterior-GP estimate;
4 λj+1(X)=KX,X

(
KX,X+σ2

0I+γ̄j(X)
)−1

Y ;
5 %% update training data for

prior-GP using posterior-GP;

6 Zj+1 =
(
(Y −λj+1(X))

◦2−σ2
01
)

;
7 %% update prior-GP;
8 γj+1(X) = KX,X

(
KX,X+σ2

0I
)−1

Zj+1 ;
9 %% check stopping criterion ;

10 αj+1 = (KX,X + σ2
0I + γ̄j+1(X))−1Y ;

11 j ← j + 1 ;
12 while ∥αj+1 −αj∥2 ≤ δ;

prior GP is contracting, i.e., the prior GP converges to its
optimum.

Lemma 1: If prior-GP converges, then the posterior-GP
converges as well, i.e., if γj(X)→γ⋆(X), then λj(X)→
λ⋆(X).

Proof: This follows immediately
from the iterations (10) with λ⋆(X) =

KX,X

(
KX,X + σ2

0I + γ̄⋆(X)
)−1

Y .
Lemma 2: Let the prior-GP be initialized as in Line 1

in Algorithm 1. For a small length scale l → 0, the prior
estimate γj(X) is bounded below and above with

− σ2
0

1 + σ2
0

1 ≤ γj(X) ≤ 1

1 + σ2
0

(Y ◦2 − σ2
01)

for all iterations j.
Proof: [Sketch] The proof detailed in the Appendix uses

induction arguments in order to show that the iterations j of
Algorithm 1 remain bounded.

Theorem 1: Let σ2
0 be chosen such that σ2

01 ≥ Y ◦2 and
let γ⋆(X) denote the optimum of the prior-GP. Then, using
the assumption of a small length scale, we can show that
Algorithm 1 converges to the optimum, γj(X) → γ⋆(X)
for j →∞.

Proof: [Sketch] The proof detailed in the Appendix uses
the bounds established in Lemma 2 in order to show that the
prior-GP is contracting with

γj+1(X)− γ⋆(X) = Aj(γj(X)− γ⋆(X)),

i.e., the eigenvalues of Aj are inside the unit circle for every
iteration j of Algorithm 1.

Remark 4: The design choice and condition for conver-
gence σ2

01 ≥ Y ◦2 makes sense intuitively, because it means
that the prior σ2

0 should be chosen to cover the square root
of the data points yi. In other words, the prior should have
at least the support of the posterior, akin to why proposal
densities work for sequential Monte-Carlo methods [23].



V. SIMULATION RESULTS

In this section, we validate our proposed method using
two numerical examples. The first is a non-physical system
meant to illustrate the efficacy of the proposed method. The
second example shows how to leverage the state-dependent
variance estimates for stochastic control.

A. Illustrative Estimation Example

In order to study the proposed method, we generate data
according to the ground-truth function

yi = 0.5(cosxi + 1) + ϵi (11a)

ϵi ∼ N
(
0, 0.19xi + 0.1

)
, (11b)

where the data points xi are sampled from a uniform
distribution xi∼U(0, 10). Next, we study the number of data
samples required to accurately approximate both the mean
and the noise distribution in (11).

1) Qualitative results: Fig. 2 illustrates a comparison of a
classical implementation of a GP and the proposed solution
for different numbers of collected data points N . First,
consider N =1. As the one collected data point is far from
zero (around the 2σ0 bound), the proposed solution does
not trust the data point as much as the classical solution.
Hence, in such an instance, the proposed solution is more
conservative. Next, consider N=5. Here, it can be seen that
the “closeness” of the four measurements between x ∈ [0, 5]
gives the proposed Gaussian process regression algorithm
confidence in its estimate. Consequently, the uncertainty is
decreased more than for the classical GP. For N = 20,
the proposed algorithm increases the uncertainty between
x ∈ [5, 10] as measurements are more spread out. Here, it
can be seen that the classical GP underestimates the noise
for x ∈ [5, 10] and overestimates the noise for x ∈ [0, 5].
In contrast, the proposed GP correctly predicts the trend of
the uncertainty in the data of the unknown function. For
N=100, the proposed solution accurately estimates both the
mean function and its noise distribution, whereas the classical
GP solution can only approximate the mean.

2) Quantitative results: Fig. 3 shows the convergence rate
of the GP to the ground truth function, i.e., ∥λ(x)− h(x)∥2
and ∥γ(x) − g(x)∥2. It shows that the proposed GP with
state-dependent noise is able to learn both the mean and the
variance of the ground-truth function. First, the convergence
rate of the mean estimate in the proposed method is faster
than the standard GP implementation with a constant prior.
The reason for the faster convergence rate is that the pro-
posed GP implicitly learns that it can trust the measurements
more if they are closer together, and also that it cannot
trust the measurements as much if they are further apart.
As N → ∞, the mean estimates of both the classical GP
and the proposed GP formulations converge to the ground
truth. However, the variance estimates of the constant-prior
implementation will inaccurately reflect the true uncertainty,
which can be detrimental when used in combination with a
feedback controller.

Fig. 2. Comparison of classical GP regression and the proposed GP
regression with state-dependent noise. Left column: Classical GP regression.
Right column: Proposed GP regression. The plot illustrates the mean in red
as well as the 1σ bound and 2σ bound in different shades of red. The
training data points are illustrated in and are the same for both classical GP
regression and the proposed method.

B. Application to Stochastic Control

Next, we apply the proposed GP regression model to an
illustrative stochastic control example. We employ the solver
in [24]. However, any stochastic control method, see e.g.,
[4], can be utilized as long the control formulation considers
uncertainty bounds. We consider the dynamical system[

pk+1

vk+1

]
=

[
1 Ts

0 1

] [
pk
vk

]
−
[

0
TsF (vk)

]
+

[
0
Ts

]
uk,

with the a-priori unknown friction term F (vk) given by

F (v) ∼ N (h(v), g(v)), (12a)

with

h(v) = v + sin(3v), (12b)
g(v) = 0.8max(0, v) + 0.2. (12c)

Hence, the dynamics model studied in this section exhibits
an uncertain friction term (12a), which we learn using the
proposed algorithm. The GP model is subsequently used
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within a stochastic controller as state constraints, which are
enforced as chance constraints,

Pr(vk ∈ X) ≥ px, (13)

with X = [−1, 1]m/s and confidence interval px = 95.44%,
i.e., ±2σ for a normal distribution. The results in the fol-
lowing use GP models learned using N = 100 data points,
which are randomly generated according to vi ∼ U(−1, 1)
for each Monte-Carlo trial. The optimal controller optimizes
the cost function

∑N
k=0(10(pk−pref)2+u2

k), where pref = 1
for 0–2s and pref = 0 after 2s.

Fig. 4 shows statistics of 500 Monte-Carlo trials of the
stochastic controller using three different implementations
of GP models. It shows the stochastic controller using the
proposed GP model and two GPs with constant priors as
a comparison, one that uses a prior to remain cautious and
one that uses a prior to be aggressive. The aggressive GP
implementation uses a prior σ2

0 = 0.2, which is the smallest
noise in the data (12). The cautious GP implementation
uses σ2

0 = 1, which is the highest noise level inside the
chance constraints in (13). Fig. 4 illustrates the median
of the position and the velocity, as well as the 2σ-bound
of the velocity spread. It shows that the proposed GP
implementation is cautious between 0–1s, which is needed
to satisfy the chance constraints in (13). During this time
interval, this behavior resembles the cautious GP very closely
(see middle plot). Next, Fig. 4 shows that the proposed GP
implementation is aggressive during the time interval 2–3s,
which is caused by the low noise characteristics for negative
velocities. During this time interval, this behavior resembles
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Fig. 4. Qualitative performance results of stochastic control using different
GP models, i.e., three stochastic controllers. Top: Position achieved by the
three different stochastic controllers. Middle: Velocity profile of stochastic
controller using proposed GP with state-dependent noise inference (in black)
and stochastic controller using GP with cautious choice of constant prior
(in yellow). Bottom: Velocity profile of stochastic controller using proposed
GP with state-dependent noise inference (in black) and stochastic controller
using GP with aggressive choice of constant prior (in purple). The figure
shows the median of 500 Monte-Carlo runs as well as the 2σ bound.

TABLE I
COST AND CONSTRAINT VIOLATIONS

Closed-loop Cost Constraint Violations
Approach Min. Median Max. during 0–1s and 2–3s

Proposed 82.2 86.8 92.1 2%
Aggressive 77.1 81.3 86.6 22%
Cautious 89.0 94.1 100.2 1%

the aggressive GP very closely (see bottom plot). On the
other hand, the aggressive GP is too aggressive during 0–1s
and the cautious GP is not aggressive enough during 2–3s.
Overall, the proposed GP is cautious when its needed to
satisfy (13), but is aggressive whenever possible.

Table I summarizes the closed-loop cost and percentages
of constraint violations of the three GP implementations.
As expected, the aggressive GP implementation violates the
chance constraints in (13) with an average 22% of constraints
violations during intervals 0–1s and 2–3s. Next, the cautious
GP implementation is overly conservative, which can be seen
by its higher closed-loop operating cost. The proposed GP
implementation’s constraint violations matches the 2σ-bound
according to the requirements in the chance constraints
in (13). Consequently, its operating cost are lower than the
cautious GP implementation.



VI. CONCLUSIONS

This paper considered a stochastic control formulation,
in which the residual model uncertainty of the dynamical
system consists of a nonlinear function and state-dependent
noise. It presented an iterative algorithm to learn the un-
known nonlinear function along with the state-dependent
noise distribution using GP regression. The iterative algo-
rithm used a posterior-GP to approximate the residual model
uncertainty and a prior-GP to account for state-dependent
noise. The iterative algorithm was shown to converge under
simplifying assumptions. Simulation results showed that the
proposed GP formulation enables faster convergence of the
GP as the algorithm leverages the trustworthiness of the data
by means of the prior, Further, simulation results showed the
advantages of using the proposed GP formulation within a
stochastic control framework.

APPENDIX: PROOFS

Proof of Lemma 2: The update equations at iteration j
used in Algorithm 1 are given by (10). Approximating (10)
with a small length scale, KX,X → I , yields

λj+1(X) ≈
((
1+σ2

0

)
I + γ̄j(X)

)−1
Y

and

γj+1(X) ≈ 1

1 + σ2
0

(
(Y − λj+1(X))

◦2 − σ2
01
)

=
1

1 + σ2
0

((
Y −

((
1 + σ2

0

)
I + γ̄j(X)

)−1
Y
)◦2
− σ2

01

)
=

1

1 + σ2
0

((
I −

((
1 + σ2

0

)
I + γ̄j(X)

)−1
)2

Y ◦2 − σ2
01

)
Exploiting the diagonal structure of the matrix inverse, an
analytical expression can be formulated,

γj+1(X) =
1

1 + σ2
0

((
M(γj(X))

)2
Y ◦2 − σ2

01
)

(14)

with the diagonal matrix M(γj(X)), whose element on the
i-th row and column is given by

[M(γj(X))]
ii
=

σ2
0+ [γj(X)]

i

1+σ2
0+[γj(X)]

i
.

We proceed using induction-based arguments. Suppose
− σ2

0

1+σ2
0
≤ [γj(X)]

i, then, it is easy to verify that bounds
can be established with

0 ≤ [M(γj(X))]
ii
=

σ2
0+ [γj(X)]

i

1+σ2
0+[γj(X)]

i
≤ 1. (15)

Using the lower bound and the upper bound in (15), the
expression in (14) can be bounded with

− σ2
0

1 + σ2
0

1 ≤ γj+1(X) ≤ 1

1 + σ2
0

(Y ◦2 − σ2
01).

Finally, the Algorithm uses the initialization γ0(X) = 0,
which completes the induction. ■

Proof of Theorem 1: For the converged optimizer of
Algorithm 1,

γ⋆(X) =
1

1 + σ2
0

(
(M(γ⋆(X)))

2
Y ◦2 − σ2

01
)

(16)

with the diagonal matrix M(γ⋆(X)) whose element on the
ith row and column is given by

[M(γ⋆(X))]
ii
=

σ2
0+ [γ⋆(X)]

i

1+σ2
0+[γ⋆(X)]

i
.

Next, consider the difference of the optimizer update to the
converged optimizer, γj+1(X)−γ⋆(X). To ease exposition,
let γi

j := [γj(X)]
i and γi

⋆ := [γ⋆(X)]
i. For the i-th element,

and using some algebraic reformulations

[γj+1(X)− γ⋆(X)]
i
= γi

j+1 − γi
⋆

=
1

1+σ2
0

( σ2
0+γi

j

1+σ2
0+γi

j

)2

(yi)2 −
(

σ2
0+γi

⋆

1+σ2
0+γi

⋆

)2

(yi)2
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0+γi
⋆)

2−(σ2
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⋆)
2(1+σ2

0+γi
j)

2

(1+σ2
0+γi
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2(1+σ2
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2

=
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0γ
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⋆)

2︸ ︷︷ ︸
=:ai

j

(γi
j−γi

⋆)

Note that the reformulation in the last line can be obtained
by polynomial long division.

The proof proceeds by establishing bounds for aij . Using
the design choice σ2

0 ≥ maxi (yi)2 and the bounds estab-
lished in Lemma 2,

− σ2
0

1 + σ2
0

1 ≤ γj+1(X) ≤ 0. (17)

Upper bound on aij: In order to derive the upper bound
on aij , we use (17) to find the worst-case nominator with

γi
j ≤ 0, γi

⋆ ≤ 0, γi
jγ

i
⋆ ≤ (

σ2
0

1+σ2
0
)2, and (yi)2 ≤ σ2

0 ; and the

worst-case denominator with − σ2
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1+σ2
0
≤ γi
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0
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0
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⋆.
Hence,
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< 1.

Note that the second fraction being less than one is not easy
to see, but can be easily established using any numerical
software.

Lower bound on aij: In order to derive the lower bound

on aij , we use (17) with γi
j ≥ −

σ2
0

1+σ2
0

, γi
⋆ ≥ −

σ2
0

1+σ2
0

, and

γi
jγ

i
⋆ ≥ −(

σ2
0

1+σ2
0
)2 for the nominator; and − σ2

0

1+σ2
0
≤ γi
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− σ2
0

1+σ2
0
≤ γi

⋆ for the denominator, i.e.,

aij ≥
σ2
0
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−2 σ2
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Hence, overall,

γj+1(X)− γ⋆(X) = Aj(γj(X)− γ⋆(X))

with the diagonal matrix Aj , whose diagonal elements −1 <
aij < 1, and thus, γj(X)→ γ⋆(X) for j →∞. ■

REFERENCES

[1] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 3, pp. 269–296, 2020.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2005.

[3] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious nmpc with
gaussian process dynamics for autonomous miniature race cars,” in
2018 European Control Conference (ECC), pp. 1341–1348, 2018.

[4] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using Gaussian process regression,” IEEE Transactions on
Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2020.

[5] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-
based model predictive control for autonomous racing,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.

[6] S. Vaskov, R. Quirynen, M. Menner, and K. Berntorp, “Friction-
adaptive stochastic predictive control for trajectory tracking of au-
tonomous vehicles,” in 2022 American Control Conference (ACC),
pp. 1970–1975, 2022.

[7] S. Mosharafian, M. Razzaghpour, Y. P. Fallah, and J. M. Velni,
“Gaussian process based stochastic model predictive control for coop-
erative adaptive cruise control,” in 2021 IEEE Vehicular Networking
Conference (VNC), pp. 17–23, 2021.

[8] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with Gaussian processes,” Advances in neural information
processing systems, vol. 24, 2011.

[9] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in 29th International Coference on Inter-
national Conference on Machine Learning, pp. 475–482, 2012.

[10] C. Jidling, N. Wahlström, A. Wills, and T. B. Schön, “Linearly
constrained Gaussian processes,” Advances in neural information
processing systems, vol. 30, 2017.

[11] H. Maatouk and X. Bay, “Gaussian process emulators for computer
experiments with inequality constraints,” Mathematical Geosciences,
vol. 49, pp. 557–582, 2017.

[12] J. Matschek, A. Himmel, K. Sundmacher, and R. Findeisen, “Con-
strained Gaussian process learning for model predictive control,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 971–976, 2020.

[13] K. Berntorp and M. Menner, “Online constrained Bayesian inference
and learning of Gaussian-process state-space models,” in 2022 Amer-
ican Control Conference (ACC), pp. 940–945, 2022.

[14] L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D. Jakeman,
“A survey of constrained Gaussian process regression: Approaches
and implementation challenges,” Journal of Machine Learning for
Modeling and Computing, vol. 1, no. 2, 2020.

[15] S. Da Veiga and A. Marrel, “Gaussian process modeling with inequal-
ity constraints,” in Annales de la Faculté des sciences de Toulouse:
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