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Abstract— In late-stage type 2 diabetes, automated titration
algorithms provide a promising alternative to the current
standard-of-care. Many published methods rely on personalized
dose-response models to predict a safe and effective insulin
dose. In this case study, we address the challenge of how to
collect an informative data set to ensure practical identifiability
of such models. We apply optimal experimental design to
enhance the performance of a published titration algorithm.
For a 24-hour experiment, we solve an optimization problem
to select the size of three meals and the hourly fast-acting insulin
infusion rate. In simulation, we demonstrate how the optimized
protocol improves the safety of the algorithm’s dose-predictions.
The results indicate that optimal experimental design has the
potential to improve model-based algorithms and may be used
as a qualitative tool when planning clinical experiments.

I. INTRODUCTION

Worldwide, one in eleven people lives with diabetes and
the prevalence continues to rise. Of all diabetes cases, type
2 diabetes (T2D) accounts for 90%. In T2D, persistent high
blood glucose levels occur due to an imbalance between the
secretion of the regulatory hormone insulin and the insulin
sensitivity in the body. Left untreated, elevated glucose
levels can have serious consequences, e.g., vision loss or
amputations. Numerous medications exist to enhance insulin
secretion or improve the insulin sensitivity. However, as
T2D progresses over time, daily basal insulin injections can
become necessary to sufficiently lower the glucose levels [1].

Initiating basal insulin treatment is a challenge. The re-
sponse to insulin is highly individual and overdoses can be
both uncomfortable and dangerous. To safely reach the target
glucose range, people with T2D titrate to find a personalized
daily injection dose. Based on daily pre-breakfast finger-
prick measurements, the individual adjusts the insulin dose
in small steps to reach clinical targets. This process can take
several months, and for some even years. Despite a high drug
efficacy in clinical trials, up to 60% of the people initiating
basal insulin treatment never reach clinical targets. The daily
workload is one of many reasons for failed insulin titration
[2].
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To improve clinical outcomes, the titration burden can
be reduced through automation. Published algorithms for
automated titration use combinations of data from insulin in-
jection pens, finger-prick measurements, continuous glucose
monitors (CGM) and/or insulin pumps to identify a person-
alized target insulin dose [3]–[7]. Many of these methods
rely on identifying a dose-response model for the individual
[5]–[7]. The quality of the dose prediction therefore critically
depends on successful model identification.

Model-based design of experiments (MBDoE) has been
applied in diabetes research to enhance the identification
of physiological models and improve control algorithms
for artificial pancreas (AP) systems [8]–[13]. Most work
in this field dates ten years back, where the aim was to
identify when to draw blood samples to obtain the most
information about an individual’s physiological response to
insulin and meals. Today, improvements in sensor technology
have excluded the need for selecting blood sampling times,
as CGMs present reliable measurements every five minutes.
Still, only a few studies on optimal experimental design have
exploited this technological development [12]–[14]. To the
best of our knowledge, no studies have used MBDoE to guide
insulin and meal inputs for identification of dose-response
models in T2D. We believe there is a potential to improve
model-based insulin dosing algorithms in T2D using MBDoE
to select these inputs.

In this case study, we apply optimal experimental design to
improve model identification in a personalized dose-guidance
algorithm from [7]. We design a 24-hour experiment with
three meals and insulin infusion to estimate parameters in
a dose-response model. To evaluate the safety of the new
design, we test the protocol in 100 virtual subjects. From the
experimental data, we identify parameters in a personalized
dose-response model for each subject. With the identified
models, we predict a daily insulin dose to reach clinical
targets. In simulation, we evaluate the safety and efficacy
of the dose prediction and compare the results to [7].

This paper is organized as follows. In Section II, we
introduce the model-based dose-guidance algorithm that we
aim to improve through optimal experimental design. Section
III describes the optimization problem and briefly presents
the two models employed for experimental design and simu-
lation. In Section IV, we present the new experimental design
and show the performance of the dose-guidance algorithm
with the optimal data collection protocol. Section V discusses
the design and results in comparison to [7]. In Section VI,
we conclude on the main findings from this case study.
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Fig. 1. A visualization of the titration solution from [7]. Data from
an artificial pancreas (AP) enables the prediction of an insulin dose for
injection-based therapy with long-acting insulin. In the AP period, fast-
acting insulin (uF ) infusion is based on glucose measurements from
a continuous glucose monitor (CGM). We use the AP data to identify
parameters in a dose-response model. The model predicts an insulin dose
to reach target glucose concentrations. After dose-prediction, a daily dose
of long-acting insulin (uL) is injected before breakfast and fasting blood
glucose (FBG) measurements are used for daily monitoring.

II. THE TEST CASE

In previous work, we present a model-based titration algo-
rithm to predict a personalized daily insulin dose [7]. With 24
hours of data from an AP, we identify a dose-response model.
For parameter estimation, we use a one step prediction error
method (PEM) using maximum likelihood estimation (MLE).
We apply the continuous-discrete extended Kalman filter
(CDEKF) to approximate the likelihood function. We refer
to [7] for technical details on the titration algorithm. Fig. 1
shows the conceptual setup of the original titration solution.
In this paper, we revisit this algorithm and apply optimal
experimental design to maximize the information collected
with the AP. The former design does not include meals and
requires fasting for the 24 hour long AP period. In this work,
we solve an optimization problem to find a protocol for both
meal and insulin inputs. Fig. 2 (adapted from [7]) shows
that several dose predictions are unsafe when we use the
original data collection protocol. We aim to decrease the
amount of unsafe dose estimates, whilst meeting clinical
safety requirements during experimental data collection.

III. METHODS

In this section, we introduce the two models we use for
experimental design, prediction, and simulation. We define
the optimization problem, the decision variable and the
constraints.

A. Design model

To optimize the experimental design, we employ a phys-
iological T2D model from [15]. We include the adaptations
from [5] to ensure structural identifiability. The design model
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Fig. 2. Simulation results for 100 virtual people using the titration solution
in [7]. During the first 24 hours, a closed-loop system gradually increases
fast-acting insulin infusion and the plasma glucose drops. After 24 hours, the
collected data enables parametrization of a dose-response model. The model
predicts a daily insulin dose to reach glucose targets. For the remaining days,
the predicted dose is injected prior to breakfast. Seven people have unsafe
dose-estimates.

describes the impact of meals and insulin on plasma glucose
levels and consists of six differential equations,

Ḋ1(t) = d(t)
1000 ·AG

MwG
− 1

τm
D1(t) (1a)

Ḋ2(t) =
1

τm
D1(t)−

1

τm
D2(t) (1b)

İsc(t) =
1

τI
u(t)− 1

τI
Isc(t) (1c)

İp(t) =
1

τI
Isc(t)−

1

τI
Ip(t) (1d)

İeff (t) = p3[Ip(t) + βG(t)]− p3Ieff (t) (1e)

Ġ(t) = −[pGEZI + SIIeff (t)] ·G(t)
+ pEGP +RA(t). (1f)

D1 [mmol/min] and D2 [mmol/min] are meal compartments
representing absorption of carbohydrate intake, d(t) [g/min].
The exogenous insulin input, u(t) [U/min], is absorbed
subcutaneously in Isc [U/min] before reaching plasma, Ip
[U/min]. Ieff [U/min] describes the combined insulin ef-
fect of exogenous insulin input and the endogenous insulin
production, β [U·L/mmol·min]. G [mmol/L] is the plasma
glucose level. RA(t) = D2(t)

VGτm
[mmol/L/min] is the rate of

appearance of glucose from consumed meals. Table I lists
parameter descriptions and provides a reference for each
parameter value.

The system outputs discrete sensor measurements,

yk = G(tk) + vk. (2)



affected by independent and identically distributed noise,
vk ∼ Niid(0, R). Through these measurements, we aim to
determine the parameter set θ = [SI , pEGP , β]. The selected
parameters are known to be identifiable from sparse data [16]
and therefore may also be identified from this experimental
data set. To provide dose-guidance, we utilize a personalized
version of the model (1) with the individual estimates of
θ, and for the rest of the model parameters we adopt the
published values listed in Table I.

B. Optimal Experimental Design

The aim of optimal experimental design is to maximize
the information collected in an experimental data set [19]. To
enhance the estimation of the parameter set, θ, we solve an
optimization problem to find an experimental design vector,
ϕ, that best excites the system,

min
ϕ

ψ(ϕ, θ) (3a)

s.t. ϕ = [u(t), d(t)] (3b)
x(0) = x0 (3c)
ẋ(t) = f(t, x(t), u(t), d(t), θ) (3d)
ŷk = h(tk, x(tk)) + vk (3e)
0 ≥ c(t, x(t), u(t), d(t), θ). (3f)

The dynamics of the system we wish to identify are ap-
proximated by the model, f(·), a discrete measurement
function, h(·), and measurement noise, vk ∼ Niid(0, R).
The system states, x(t), are a Nx-dimensional vector and
x0 contains the initial state values. The exogenous insulin,
u(t), and the meals, d(t), are the system inputs. ŷ denotes
a vector of discrete measurements estimated by the model.
The constraints on the inputs and output are given by (3f).

The cost function of the optimization problem acts on the
parameter variance-covariance matrix, Cθ, which quantifies
the parametric uncertainty. Reducing the value of Cθ is
equivalent to improving the parameter estimates. Hence, we
wish to determine,

ϕ = argmin{ψ[Cθ(θ, ϕ)]} ≈ argmin{ψ[I(θ, ϕ)−1]} (4)

where ψ is the design criterion, an assigned measurement
function of Cθ. As an approximation of Cθ, we apply the
inverse of Fisher’s information matrix, I(θ, ϕ).

Several design criteria exist [19]. To minimize the volume
of the hyper box which bounds the variance ellipsoid, we
apply A-optimality, i.e. minimizing the trace of the inverse
Fisher Information matrix,

ψA(ϕ, θ) = tr
(
I(θ, ϕ)−1

)
, (5)

where Fisher’s Information matrix is defined as

I(θ, ϕ) =

N∑
k=1

Sy(tk)
TR−1Sy(tk). (6)

R is the covariance matrix of the measurements, N is
the total number of measurements over the length of the
experiment, and Sy is the output sensitivity matrix. Sy(tk)

is a measure of the change in the output, y, for each of the
nθ estimated parameters at sampling point k,

Sy(tk) =
[
∂y(tk)

∂θ̂1
. . . ∂y(tk)

∂θ̂nθ

]
(7)

We compute Sy using central differentiation. To avoid nu-
merical issues during the optimization, we normalize the
parameters with respect to the (supposed) true values for the
subject shown in Table I. We adjust the value for insulin
sensitivity, SI , to ensure that the design and simulation
models reach the same fasting glucose, y0, at zero insulin
infusion,

SI =

pEGP

y0
− pGEZI

β · y0
. (8)

To reduce the risk of numerical errors, we scale the state
Ieff by a factor cf = 1000 and obtain similar orders of
magnitude for all states. The equations (1e) and (1f) become,

İeff (t) = cf · p3[Ip(t) + βG(t)]− p3Ieff (t) (9a)

Ġ(t) = −[pGEZI + SIIeff (t)/cf ] ·G(t)
+ pEGP +RA(t). (9b)

C. Decision Variable

We fix the length of the experiment to 24 hours. To ensure
that the optimization problem is tractable, we describe the
inputs of the design vector, ϕ, in the following way.

ϕ = [u(t), d(t)] = [u1, u2, . . . , u24, dB , dL, dD] (10)

We apply a zero-order hold parametrization on u(t), and
fix the duration and mealtimes for the meal input, d(t). For
the insulin input, we determine the optimal insulin infusion
over 24 one-hour blocks of piece-wise constant input. The
three meals are consumed over five minute intervals at 07:00,
12:30 and 18:00. We determine the optimal size of each meal.

D. Design Constraints

To design a physically feasible and safe experiment, we
select a set of input and output constraints. The insulin input
must be non-negative and may not exceed an infusion rate of
15 mU/min. All three meals must be within a minimum 20 g
and maximum 100 g of carbohydrates. We select a minimal
meal size to ensure that the optimal solution contains all
three meals.

In current clinical guidelines, the target range for fasting
glucose levels is 4.4-7.2 mmol/L [1]. We strive to achieve
glucose levels within the range, however a swift drop in
glucose concentration can lead to complications, e.g., vision-
loss and nerve-damage [20]. To avoid complications, we
enforce a maximal drop rate for the glucose concentration.
We simulate how much the fasting glucose decreases in an
insulin naive cohort after a standardized first dose of 0.1U/kg
insulin [1]. Based on the simulation results, we fix the drop
rate to −0.001 (mmol/L)/min.

From the initial fasting blood glucose measurement, y0,
and the 4.4-7.2 mmol/L target glucose range, we select



TABLE I
POPULATION PARAMETERS FOR THE DESIGN MODEL

Parameter Value Unit Description Reference
τI 60 [min] Time constant for fast-acting insulin absorption [17]
τm 40 [min] Time constant for meal absorption [18]
VG 25 [L] Glucose distribution volume [17]
AG 0.8 [unitless] Bioavailability of consumed carbohydrates [18]

MwG 180.1559 [g/mol] Molecular weight of glucose [15]
p3 0.011 [1/min] Delay in insulin action [16]
SI 0.44 [L/U·min] Insulin sensitivity [16]

pGEZI 0.0023 [1/min] Insulin-independent glucose clearance [16]
pEGP 0.0672 [mmol/L·min] Endogenous glucose production [16]

β 0.0018 [U/mmol] Endogenous insulin production [16]

bt

bG

MEAL

Time

Glucose
[mmol/L]

[min]

y0 + δ

y0

y0 − δ

4.4

7.2
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Fig. 3. Output constraints for the optimal experimental design. Over
the course of the experiment, the glucose concentration must drop slowly
towards the target range. We allow the glucose to fluctuate within the
constraints y0 − 0.001 · tk − δ ≤ yk ≤ y0 − 0.001 · tk + δ. Where
y0 is initial fasting glucose, tk is the time in minutes, yk is the output
at time tk , and δ is half of the width of the target range. Once the target
range is reached, it defines the output constraints. After meals, the output
constraint is raised by bG = 5.0 mmol/L for the next bt = 5.5 hours.

constraints that define how quick the fasting glucose concen-
tration may drop. Following meals, we increase the upper
glucose constraint by 5 mmol/L for 5.5 hours to ensure
that the optimized insulin input is selected to excite the
system, rather than compensating for postprandial peaks. Fig.
3 shows the output constraints.

E. Simulation model and implementation

We test the MBDoE protocol in simulation on a model
with higher complexity. In [7], Engell et al. employ an
augmented version of the integrated glucose-insulin (IGI)
model from [21]. We use the same model together with the
simulation setup from [7] to generate a virtual cohort of 100
people with T2D. We implement the simulation, MBDoE
and parameter estimation in Matlab R2020b, and solve
the optimization problem using sqp.

IV. RESULTS

In this work, we investigate how optimal experimental
design may improve the performance of an insulin titration
algorithm for people with T2D. We solve the optimization
problem in (3) to design a 24 hour long experiment to
capture data for parameter identification. Fig. 4 shows the
resulting experimental protocol where all design constraints
are met. The first two meals (57g and 67g of carbohydrate,
respectively) drive the glucose concentration to the upper
bound and maximize the effect of β. The last meal is smaller,
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Fig. 4. The optimal experimental design for parameter estimation given the
input and output constraints. Meal consumption happens over a five minute
interval, hence the three meal sizes are 57g, 67g, and 31g of carbohydrates.
The insulin infusion starts three hours after the first meal and remains on the
maximal infusion rate, 15mU/min, throughout the rest of the experiment.

31g of carbohydrate, and lets the insulin input drive the
glucose concentration closer to the lower bound emphasizing
the influence of SI . The insulin infusion resembles a step
function. At 10AM, the infusion increases from 0 mU/min to
15 mU/min and remains at maximal infusion until the end of
the experiment. The optimal input strategy separates different
model dynamics as the insulin input increases three hours
after the first meal. Fig. 5 presents the output sensitivity of
each of the three estimated parameters during the experiment.
The sensitivities appear to be somewhat correlated and all
three are of similar absolute magnitude.

We test the design protocol in a simulation model which
has a higher complexity than the design model. Fig. 6
shows how the structural mismatch leads to a different
glucose response. Over the majority of the experiment, the
mean glucose curve remains within the output constraints.
However, the first two meals cause a slightly higher rise in
glucose than the design model prediction in Fig. 4. Towards
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the end of the experiment, the insulin infusion drives the
glucose concentration lower than the design model predicts.
Still, due to the tight constraints in the optimization problem,
the over and undershoot is minimal and the experiment
appears to be safe for all the people in the simulated cohort.
Compared to the original algorithm performance in Fig. 2,
the new protocol improves the quality and safety of the dose
predictions. In Fig. 6, all 100 dose predictions for injection-
based treatment drive the glucose concentration into the 4.4-
7.2 mmol/L target range.

V. DISCUSSION

Safety is critical in diabetes treatment. An open-loop im-
plementation of an untested experimental design poses a sig-
nificant risk and may have limited uptake in clinics. Instead, a
qualitative assessment of the new design, rather than a direct
implementation, may still improve dose predictions. Fig. 6
shows that the system identification improves when insulin
infusion starts three hours after the first meal. This split
between insulin and meal response could be incorporated
when collecting data for parameter estimation. In a real-
world implementation, health care professionals may select
the maximal insulin infusion rate for each individual or adjust
it to match existing treatment guidelines. Closed-loop control
could provide an additional safety measure as an AP would
reduce the insulin infusion in case of too low glucose values.

Compared to the original design, the new protocol has an
equivalent amount of insulin input. The mean fast-acting in-
sulin infusion in Fig. 2 is 13 U/day. In the new experimental
protocol, each individual receives 12.6 U/day. The combined
excitation from meals and insulin appears to benefit system
identification. However, fixed meal sizes and times can be
hard to enforce in a real-world setting. Based on the optimal
design, the evening meal needs to have a low carbohydrate
content, but the exact number of carbs in each meal may be
less important. Still, the timing of and carbohydrate content
of meals must be recorded accurately to provide data for
system identification. Compared to the original design, meal
logging will place a larger work load on the individual. Still,
one day of logging carbs may pose an appealing alternative
to 24 hours of fasting or several months of manual titration.
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Fig. 6. Test of the experimental design on 100 virtual patients. Over
the first 24 hours, we administer the optimized meal, d(t), and fast-acting
insulin, uF (t), inputs. Meals are consumed over 5 minute intervals. In the
experiment, the mean glucose curve mildly exceeds the output constraints
after the first and second meal. After 24 hours of data collection, we
parameterize a dose-response model for each individual and predict a basal
insulin dose, uL(t), to reach the glucose target range. Each subject receives
a daily injection with the estimated basal insulin dose at 7AM. To test if the
basal insulin dose can control the fasting glucose levels we do not administer
meals during the last five days of the simulation. All basal dose estimates
are safe and effective.

In manual titration, the slow iterative journey to the
clinical target minimizes the risk of nerve- and eye-damage
caused by swift drops in glucose concentration. Although
the simulation results in this work show that it is possible
to find a personalized insulin dose in 24 hours, it can be
unsafe to deliver the full dose in an injection of long-acting
insulin on the next day. In Fig. 2 and 6, the glucose levels
drop drastically on the second simulation day when the first
long-acting insulin injection is administered. The figures are
not meant as implementation proposals to use in clinics. The
plots serve to evaluate whether the predicted dose is safe and
effective, i.e. that it does not cause low glucose levels and
can drive the fasting glucose levels into the target range. To
only evaluate the control of fasting blood glucose, we do not
consider meals in the last four days. Here, the oscillations in
glucose stem from the dynamics of the long-acting insulin.
In a real-world implementation, the individuals would eat as
usual during these days of injection-based treatment.

For a clinical implementation, the person with T2D may
step-wise increase the daily dose over a number of weeks,
similar to standard-of-care insulin titration. Knowing the
target insulin dose, would allow greater step-wise increases
and reduce the length of the titration period. The predicted
target dose can help people with T2D and their health care
professionals to set goals, balance expectations and evaluate



progress of the insulin titration process. Additionally, know-
ing the target dose size may reduce the fear of overdosing.

In this case study, 24 hours of experimental data is enough
to parameterize a dose-response model. In a real-world set-
ting, inter and intraday variations in insulin response may call
for longer data collection periods and a different approach to
computing the output sensitivities. Due to interday variations,
a model identified today may not be representative tomorrow.
Hence, data collection over several days, and potentially even
weeks, could very well be required to fully understand the
dose-response. Additionally, intraday parameter variations
can lead to sub-optimal experimental designs, since we base
the optimization on output sensitivities we compute from a
fixed parameter value.

In this work, we evaluate the output sensitivities locally
based on the published population parameters. The local
sensitivities provide information about the relevance of θ in
the proximity of the reference point. Ideally, the reference
point should be the true parameter set for the population as a
wrong assumption can lead to sub-optimal design protocols.
We test our design in a simulation model with structural
and parametric differences. Despite model mismatch, the new
experimental protocol improves dose predictions hinting that
the parameter assumptions are sufficiently representative to
design an informative experiment. For future work, testing
alternative computation methods for global sensitivities could
be a relevant step before clinical implementation of an
experimental design in a nonlinear physiological system.

VI. CONCLUSION

In this case study, we use MBDoE to improve the per-
formance of a model-based insulin titration algorithm. In
the framework of a published algorithm, we optimize meal
and insulin inputs in a 24-hour data collection period to
parameterize a dose-response model. In simulation, we test
the safety and efficacy of the model-based dose predictions.
The previously published algorithm provides 93% safe and
effective insulin doses. By exploiting MBDoE to optimize the
titration experiment, the safety and effectiveness is improved
and all of the dose predictions are safe in the simulations.
We conclude that MBDoE has a potential to improve the
performance of model-based dose-guidance solutions. How-
ever, it is essential to consider the variations in real-world
data before implementing an optimal protocol in clinics.
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