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Guaranteed safe controller synthesis for switched systems using
analytical solutions*

Martijn A. Goorden1, Kim G. Larsen1, Jesper E. Nielsen2, Thomas D. Nielsen1, Weizhu Qian1,
Michael R. Rasmussen2, and Guohan Zhao2

Abstract— In this paper we present a method for synthe-
sizing safe controllers for continuous-time sampled switched
systems, where the analytical solution for the state trajectories
is available. The method creates integer-valued lower and
upper bounds on the evolution of the system, so that the tool
UPPAAL TIGA can be used to synthesize a guaranteed safe
controller for the continuous system. We compare our method
to the Euler method, which our method is based upon, using two
case studies covering cruise control and management of storm
water detention ponds. The cruise control example shows that
the proposed method can obtain tighter bounds, allowing the
controller to be less conservative. The industrial case study
on storm water detention ponds shows that we can obtain
reasonable bounds in situations where the Euler method fails
to obtain them.

I. INTRODUCTION

Safety-critical systems have become ubiquitous where
system failures can result in significant damages or even
human fatalities. Hence, increasing emphasis is put into de-
signing correct controller software to ensure safe operation of
these systems. Formal methods like controller synthesis are
concerned with obtaining correct-by-construction controllers,
thereby improving the safety guarantees of the system.

In this work we consider continuous-time sampled
switched systems, which is a sub-class of hybrid systems.
In these systems, the dynamics of the system is time driven,
often given by differential equations, while discrete-state
changes, like the control mode, only occur periodically
at fixed intervals. Models of switched systems have been
used across several domains, such as automotive [1]–[3],
green housing [4]–[6], power electronics [7], and urban
water management [8]. The goal is to synthesize control
strategies for continuous-time sampled switched systems that
are guaranteed to be safe, where safety is defined in terms
of strategies based on which the system avoids reaching a
predefined set of unsafe states.

Recent advances in control synthesis for switched systems
involve the use of symbolic methods, where the aim is to rep-
resent the continuous and infinite state-space of the system
with a finite number of symbols, like discrete points [9], [10]
or sets of states [11]–[13]. These approaches are well suited
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for safety critical systems. Incorporating uncontrollable com-
ponents is however more challenging. Methods like [2], [14]–
[16] model the adversary as a bounded perturbation, often
resulting in too pessimistic safety controllers.

In [3] a method is presented to abstract a switched system
into a timed game, so that the tool UPPAAL TIGA [17]
can synthesize a safe strategy for the original system. A
timed game requires that all bounds in the system are
integer valued. Therefore, [3] introduces a guaranteed Euler
method based on [18]. Instead of using a standard scheme
of discretization for computing the successor state, [3] uses
a guaranteed set-based Euler scheme in combination with
lower and upper integer approximations.

While [3] shows promising results for the cruise control
example from [19], we experience problems obtaining useful
under and upper approximations of the continuous dynamics
for the storm water detention pond case study from [8]. The
bounds explode so quickly that they cannot be stored as
integer values in memory, thus rendering the method useless
for this use case. One reason for this could be that the
guaranteed sets in [3] are spheres, i.e., the approximation
error at any point in time is equal in all states variables
of the system. But this is not always realistic to have. For
example, when it is not raining, the rain intensity can be
precisely represented with the integer 0 regardless of the
approximation errors for other parts of the system. Proper
dimension scaling cannot prevent approximation errors from
‘spoiling’ over to other state variables.

In this paper, we propose a new method to obtain lower
and upper bound integer approximations for continuous-time
sampled switched systems for which analytical solutions are
available describing the trajectories of the state of the system.
The new method uses the analytical solutions of the state
trajectories, so can relax the idea of having a guaranteed
spherical approximation set in [3] and instead obtain inte-
ger approximations for each individual state variable. This
allows the bounds to be stricter in those state variables
where it is possible. Our proposed method uses the same
implementation idea as with the Euler method, enabling a
seamless integration in UPPAAL TIGA. Experimental results
show that we obtain the tightest possible integer under
and upper approximations for the cruise control example,
allowing UPPAAL TIGA to obtain a more optimistic safe
controller than previously possible. Our proposed method
obtains useful bounds for the stormwater pond case study,
i.e., the approximation bounds are not exploding any more.
Thus a guaranteed safe controller can be obtained for fixed



horizons.
The paper is structured as follows. Section II introduces

the preliminaries for this paper: continuous-time sample
switched systems modeled as a hybrid Markov decision
process, synthesis for timed games, and the Euler-based
method from [3]. We present our new method in Section III
where we derive integer-valued bounds for cases where
explicit solutions exist. Then, in Section IV we apply the
new method on the cruise control example and compare
experimental results with those obtained with the Euler-based
method. In Section V we apply the new method successfully
to the stormwater pond industrial case study, so that we
actually can obtain a guaranteed safe controller. Finally,
Section VI concludes the paper.

II. PRELIMINARIES

A. Hybrid Markov decision processes

We apply the mathematical modeling framework of hybrid
Markov decision process (HMDP), adapted from [4], [20],
for modeling a hybrid switched system. This notion of an
HMDP describes an uncountable and infinite state Markov
Decision Process, see [21], where both the controller mode
and environment mode switches periodically with interval
τ ∈ R≥0.

Definition 1: A hybrid Markov decision process (HMDP)
M is a tuple (C,U,X, F, δ) where:
• the controller C is a finite set of (controllable) modes
C = {c1, . . . , ck},

• the uncontrollable environment U is a finite set of
(uncontrollable) modes U = {u1, . . . , ul},

• X = {x1, . . . , xn} is a finite set of continuous (real-
valued) variables,

• for each c ∈ C and u ∈ U , the flow function Fc,u :
R≥0 × RX → RX describes the evolution of the
continuous variables over time in the combined mode
(c, u).

• ρ is a family of density functions ργ : U → [0, 1],
where γ = (c, u,x) is a global configuration with x :
X → R being a valuation. More precisely, ργ(u′) is
the probability that in the global configuration (c, u,x)
the uncontrollable mode u will switch to mode u′ at the
end of the switching period.

In the rest of the paper, we denote by C the set of global
configurations C × U × (X → R) of an HMDP.

For continuous-time systems, the flow function F is often
defined as the solution to a set of (nonlinear) differential
equations:

d

dt
x = fc,u(x) (1)

A run of a switched HMDP is a sequence π ∈ CC∗ of
configurations, starting with the initial configuration γ0:

π = γ0γ1γ2 · · ·

where γi = (ci, ui,xi) and for all i
1) the continuous states evolve as xi+1 = Fci,ui(τ,xi),

2) the environment changes to any possible new mode,
i.e., ui+1 ∈ U and ρ(ci,ui,xi+1)(ui+1) > 0, and

3) the controller changes to any possible new mode, i.e.,
ci+1 ∈ C.

For a given HMDP, a memoryless and possibly nondeter-
ministic strategy σ determines which of the control modes
can be used in the next period. Formally, a strategy is a
function σ : C → 2C that returns a nonempty set of
allowed control modes in a configuration. A strategy is called
deterministic if exactly one control mode is permitted in each
configuration.

The behavior of an HMDP M under supervision of a
strategy σ is defined as follows. A run π is according to
the strategy σ if the controller changes mode according to
the strategy σ, i.e., ci+1 ∈ σ((ci, ui,xi+1)). A strategy σ
is called safe with respect to a set of states S ⊆ RX if for
any run π according to σ all states encountered are within
the safe set S, i.e., for all i and ∀t ∈ [0, τ ] it must hold
that Fci,ui

(t,xi) ∈ S. A safe strategy is called maximally
permissive if for each configuration it returns the largest set
of possible actions [22].

B. Synthesis for games

UPPAAL TIGA is able to synthesize controllers for (timed)
games, where it can be either a reachability game or a
safety game. Timed games are represented by (a network
of) timed game automata, which are an extension to timed
automata. Conceptually, a timed game automata consists of
locations, clocks, discrete variables, actions (partitioned into
controllable and uncontrollable actions), transitions between
locations, and location invariants. The reader is referred
to [23] for the formal definition of timed game automata.

A switching HMDP is related to a timed game automaton
as follows. The sets of controller modes and environment
modes can be directly mapped to locations. Continuous
variables with a fixed derivative of 1 are clocks, and can thus
directly be transferred to timed game automata. Furthermore,
the switching period τ can be tracked by a new global clock
(e.g. xτ ). Controllable and uncontrollable mode switching
can be represented by transitions that are only enabled at the
switching times. Finally, all other continuous variables need
to be approximated by discrete variables, like integers. For
example, one could round the continuous state to the nearest
integer at each switching interval [19].

A control strategy for a timed game is considered to be
safe if all reachable states remain within the set of safe states.
In UPPAAL TIGA, the set of safe states can be specified using
a fragment of timed computational tree logic (TCTL) [17].

C. Euler method

In [3], a set-based Euler method is proposed to synthesize
guaranteed safe controllers for continuous-time switched
systems with UPPAAL TIGA. The continuous dynamics of
the system are approximated by the explicit forward Euler
scheme of order 1: given a configuration γ = (c, u,x) at
the start of a period where x ∈ S, the linear approximate
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Fig. 1. The purpose of xmin , xmax , H , and G for variable x.

solution φ̃(t, γ) for t ∈ [0, τ ] is

φ̃(t, γ) = x+ tfc,u(x).

The approximation error of a state is then captured by a
closed ball around center x ∈ RX and radius r, denoted
by B(x, r). An upper bound on the evolution of the ap-
proximation error r over time is expressed by δc,u(r, t),
which depends on three system-based constants including
the one-sided Lipschitz (OSL) constant (see [3] for the full
expression of δc,u(r, t) and the three constants). Then the
following theorem captures the bounds on the evolution of
the continuous dynamics.

Theorem 1: [3] Given a switched system that is locally
and one-sided Lipschitz in S, point x̃0 ∈ S, and a positive
real r. Then ∀x0 ∈ B(x̃0, r), t ∈ [0, τ ], c ∈ C, and u ∈ U :
Fc,u(t,x0) ∈ B(φ̃(t, (c, u, x̃0)), δc,u(r, t)).
This theorem assumes that the step size h in the Euler’s
method is equal to the switching period τ . To obtain better
approximations, i.e., a smaller radius of the ball B, one can
consider a uniform subdivision of [0, τ ] into k steps and
apply the Euler’s method with step size h = τ

k .

III. SAFE SYNTHESIS USING ANALYTICAL SOLUTIONS

While the Euler method is applicable to almost any
system using (1), some systems have closed-form solutions
φ(t, γ) describing the continuous state evolution, resulting
in Fc,u(t,x) = φ(t, (c, u,x)) where γ = (c, u,x). We
can utilize the closed-form solution to obtain tighter integer
bounds for the transformation of a switched HMDP to
a timed game automaton, because using the closed-form
solution eliminates the error from approximating the state
trajectory with the Euler method. With our new method the
only source of uncertainty is the approximation of the state
by integers at the end of each switching interval.

At each step i of a run of a switched HMDP, we need
to obtain an integer-valued lower bound xmin

i and upper
bound xmax

i such that the true state xi is within the bounds,
i.e., ∀x ∈ X : xmin

i ≤ xi ≤ xmax
i . For guaranteed safety

synthesis, we also need to keep track of the minimum lower
bound and maximum upper bound during a period, as the true
state trajectory might have local minima or maxima, see the
example in Fig. 1. We denote with Hx

i and Gx
i the integer-

valued lower and upper bound, respectively, of state variable
x in interval [iτ, (i+ 1)τ ], i.e., ∀t ∈ [iτ, (i+ 1)τ ],∀x ∈ X :
Hx
i ≤ x(t) ≤ Gx

i .

The following analysis holds when we have the following
two assumptions, which hold for many physical systems.

Assumption 1: φ(t, γ) is differentiable on [0, τ ], i.e., ∀t ∈
[0, τ ] : d

dtφ(t, γ) exists.
Assumption 2: φ(t, γ) is monotone with respect to or-

dering ≤, i.e., ∀x1,x2 ∈ X → R, if x1 ≤ x2, then
∀t > 0, c ∈ C, u ∈ U : φ(t, (c, u,x1)) ≤ φ(t, (c, u,x2)).

A. 1-dimensional system

We first focus the analysis on an 1-dimensional system,
i.e., X = {x}. In each of the switching periods, the dynamics
of state variable x can be either increasing, decreasing, or
neither of those depending on the initial value of x in that
period. Since we approximate xi with xmin

i and xmax
i , we

have to check the evolution of both bounds. It can be easily
true that the lower bound is increasing while the upper bound
is decreasing. Nonetheless, in all cases we have that xmin

i+1 =
bφ(τ, (ci, ui, xmin

i ))c and xmax
i+1 = dφ(τ, (ci, ui, xmax

i ))e.
If a system is increasing in period i, it holds that ∀t ∈

[0, τ ] : d
dtφ(t, γi) ≥ 0. If we are analyzing the evolution of

the lower bound, i.e. γi = (ci, ui, x
min
i ), we immediately

know that the lowest value of φ(t, γi) in this interval is the
initial state, i.e., Hx

i = xmin
i . Similarly, if we are analyzing

the evolution of the upper bound with γi = (ci, ui, x
max
i ),

the greatest value of φ(t, γi) is the final state, i.e., Gx
i =

xmax
i+1 .
If a system is decreasing in period i, it holds that ∀t ∈

[0, τ ] : d
dtφ(t, γi) ≤ 0. Using the same analysis as for

increasing functions, we can immediately note that when
analyzing the lower bound, Hx

i = xmin
i+1 , and when analyzing

the upper bound, Gx
i = xmax

i .
If a system has one or more local minima or maxima,

it holds that for some t1, t2 ∈ [0, τ ] : d
dtφ(t1, γi) <

0 ∧ d
dtφ(t2, γi) > 0. We can obtain the local minima

and maxima by solving for d
dtφ(t, γi) = 0. Let X0

γi =

{φ(t0, γi) | t0 ∈ [0, τ ], d
dtφ(t

0, γi) = 0} be the state
values of these local minima and maxima. Now, if γi =
(ci, ui, x

min
i ), then Hx

i = bmin{X0
γi ∪ {x

min
i , xmin

i+1 }}c;
similarly, if γi = (ci, ui, x

max
i ), then Gx

i = dmax{X0
γi ∪

{xmax
i , xmax

i+1 }}e. Fig. 1 shows an example where the lower
bound of variable x has a single local minimum at t0. Here
Hx
i = bmin{{φ(t0, γi)} ∪ {xmin

i , xmin
i+1 }}c = bφ(t0, γi)c.

Now, Theorem 2 confirms that xmin , xmax , H , and G
as calculated above are indeed bounds for the continuous
evolution of a 1-dimensional system.

Theorem 2: Given a one-dimensional switched system
with the closed-form solution φ(t, γ) that is differentiable
and monotone, and bounds xmin

i and xmax
i . Then ∀xi ∈

[xmin
i ,xmax

i ], t ∈ [0, τ ], c ∈ C, and u ∈ U : Fc,u(t,xi) ∈
[Hi,Gi] and Fc,u(τ,xi) ∈ [xmin

i+1 ,x
max
i+1 ].

B. n-dimensional system

When the system consists of multiple state variables, the
analysis from the previous section becomes more involved.
Nonetheless, the fundamental idea behind the analysis re-
mains the same. Due to the monotonicity assumption of the
system, it suffice the perform the 1-dimensional analysis on
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each of the corners of the plane spanned by the state bounds,
i.e., in period i we have to analyze the trajectories originating
from P = {(x1,i, x2,i, . . . , xn,i) | ∀xj ∈ X : xj,i ∈
{xmin

j,i , x
max
j,i }}. For example, consider a 2-dimensional

system. Then the four initial states to consider are
{(xmin

1,i , x
min
2,i ), (xmin

1,i , x
max
2,i ), (xmax

1,i , xmin
2,i ), (xmax

1,i , xmax
2,i )}.

Now, for each corner in the n-dimensional plane xci ∈ P ,
we perform the 1-dimensional analysis for each state variable
x ∈ X separately using xci as the initial state. This results
in lower and upper bounds specifically for that initial state,
i.e., xmin

i+1,xc
i

or xmax
i+1,xc

i
, and Hx

i,xc
i

or Gx
i,xc

i
(depending on

whether xci contains the lower or upper bound of x). Now, for
each state variable x the overall lower and upper bound at the
end of the period are given by xmin

i+1 = min{xmin
i+1,xc

i
| xci ∈

P} and xmax
i+1 = max{xmax

i+1,xc
i
| xci ∈ P}, respectively, and

the overall lower and upper bound during the period are given
by Hx

i = min{Hx
i,xc

i
| xci ∈ P} and Gxi = min{Gxi,xc

i
|

xci ∈ P}, respectively.
Fig. 2 shows an example of a 2-dimensional system

and the evolution of the corners in the plane spanned by
xmin
1,i , xmax

1,i , xmin
2,i , and xmax

2,i . In this particular period, all
trajectories evolve linear over time, but the slopes in the x1
and x2 domains are dependent on the initial location of the
trajectory. Looking at the corner (xmin

1,i , x
min
2,i ), we can see

that the trajectory φ is decreasing in both state variables.
But from the corner (xmax

1,i , xmax
2,i ), φ is decreasing in x1

and increasing in x2.
Theorem 3: Given an n-dimensional switched system

with the closed-form solution φ(t, γ) that is differentiable
and monotone, and bounds xmin

i and xmax
i . Then ∀xi ∈

[xmin
i ,xmax

i ], t ∈ [0, τ ], c ∈ C, and u ∈ U : Fc,u(t,xi) ∈
[Hi,Gi] and Fc,u(τ,xi) ∈ [xmin

i+1 ,x
max
i+1 ].

IV. CRUISE CONTROL EXAMPLE

In [3], the Euler method is illustrated with a cruise control
example from [19]. In this case study there are two cars,

Fig. 3. Overview of the cruise control example. From [19]

Ego and Front, driving on a road, see Fig.3. We are able to
control the acceleration of Ego, but not of Front. Each car
can accelerate with -2 m/s2, 0 m/s2, and 2 m/s2, between
which they can switch instantaneously. Furthermore, both
cars are capable of driving maximally 20 m/s forward and
10 m/s backwards. Ego is able to detect the distance to
Front within a range of 200 m. If the distance is larger,
Front is considered far away and out of range. The aim is to
synthesize a controller such that the distance between Ego
and Front is never less than 5 m.

This system can be described using the following system
of differential equations:

d

dt
vf = af

d

dt
ve = ae

d

dt
d = vf − ve

where vf and ve are the speed of Front and Ego, respectively,
af and ae the acceleration of Front and Ego, respectively,
which can take the values -2, 0, and 2, and d is the distance
between Front and Ego. The set of safe states S is considered
to be S = [−10, 20]× [−10, 20]× [5, 200]. The controller has
three possible modes relating to the acceleration of Ego, i.e.,
C = {ae = −2, ae = 0, ae = 2}, while the environment has
three possible modes relating to the acceleration of Front,
i.e., U = {af = −2, af = 0, af = 2}. Finally, the switching
period is τ = 1.

We can solve the system of differential equations ana-
lytically to obtain a closed-form of φ(t, (ci, ui,xi)) where
x = (vf,i, fe,i, di):

φvf (t, (ci, ui,xi)) = vf,i + taf

φve(t, (c, u,xi)) = ve,i + tae

φd(t, (ci, ui,xi)) = di +
af − ae

2
t2 + (vf,i + ve,i)t

Observe that with the chosen values for af , ae, and τ , vf,i+1

and ve,i+1 are integers if vf,i and ve,i are integers as well.
Therefore, if the initial state is known precisely, i.e., x0 =
xmin
0 = xmax

0 , we have that vmin
f,i = vmax

f,i and vmin
e,i = vmax

e,i

for all periods i.
For all state variables we can also derive the derivative:
d

dt
φvf (t, (c, u,x)) = af

d

dt
φve(t, (c, u,x)) = ae

d

dt
φd(t, (c, u,x)) = (af − ae)t+ (vf,0 + ve,0)

We can now immediately observe that both vf and ve are
either increasing or decreasing in all periods, since the
derivatives are constant over a period. But d might have local
minima or maxima within a period. If we look at the second
derivative of φd, i.e., d2

dt2φd(t, (c, u,x)) = (af −ae), we see
that this is constant within a period. Therefore, d can have
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at most one local minimum or maximum within a period.
If there is such a local minimum or maximum, it will be at
tm =

ve,0−vf,0
af−ae , so φd(tm, (c, u,x)) = d0 − (ve,0−vf,0)2

2(af−ae) .
We have implemented our new integer approximation into

the UPPAAL model of the cruise control example from [3] so
we can compare our approximations with the ones obtained
using the Euler method. The model can be found at [24].
Fig. 4 shows the real distance and the calculated guaranteed
lower and upper bounds using both methods. For the Euler
method, we set the step size h = τ/5. The results show that
the new method outperforms the Euler method in the sense
that the bounds are as tight as possible in this special case: in
any interval the guaranteed lower and upper bound touches
the true distance within that interval. This is due to the fact
that the parameters chosen by the original creators of the
case study ensure that the true values of the state variables
at any switching point are precisely integer values. Finally,
as mentioned in [3], the bounds of the Euler method can be
made tighter by lowering the step size to h = τ/k. After
some experimentation it was found that the Euler bounds
approximate the new bounds using a value of k = 60.

The resources required to synthesize a safe strategy are
similar for both approximation methods. The same number
of state variables are calculated at each switching period,
resulting in a similar size of the explored state space. While
the Euler method might require more calculation time when
k > 1, memory is the limiting factor for this use case. In
both situations, synthesis had to be performed on a dedicated
computation server having 100 GB of memory available.
After synthesizing the strategies, UPPAAL model checking
is used explore the distance between the cars. Fig. 5 shows
the infimum distance between the cars for different relative
velocities using the strategies from both methods. Note that
UPPAAL can only calculate the infimum using symbolic
methods, hence the variables used are also the approximated
ones instead of the continuous ones. The results show that
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Fig. 6. Overview of the storm water detention pond. From [8]

the two strategies have similar performance.

V. STORMWATER DETENTION POND EXAMPLE

In [8] a HMDP of a stormwater detention pond is pro-
vided. If we set the switching period to τ = 1 minute,
the model becomes a switched HMDP. Applying the Euler
method to this case study resulted in exploding bounds.
While the main theorem of [3] still holds, i.e., the true
value is always between the bounds, exploding bounds are
useless in a practical sense for synthesizing a guaranteed safe
controller.

Fig. 6 shows a schematic overview of a stormwater de-
tention pond. The stormwater detention pond contains two
continuous state variables: the height of the stormwater S on
the surface of the urban catchment area and the height of the
water w in the stormwater detention pond. The environment
rainfall intensity rain and the controlled outflow Qout are
determined by the environment mode u and the control mode
c, respectively, and constant within a switching period. I.e.,
each uncontrollable environment mode u is associated with a
particular rainfall intensity and the switching density function
family ρ is based on the weather forecast. The dynamics of
the system are given by [8]

d

dt
S = fSrain − kS

d

dt
w =

fS
fw
k
Auc

Ap
S − fw

Qout

Ap



where fS and fw are scaling factors for S and w, respec-
tively, k is the urban surface reaction factor, Auc the surface
area of the urban catchment area, and Ap the surface area of
the stormwater pond.

From this system of differential equations we obtain the
exact solutions where γi = (ci, ui,xi) and t ∈ [0, τ ]

φS(t, γi) =
fSrain

k
+

(
Si −

fsrain

k

)
e−kt

φw(t, γi) = wi + fw
rainAuc −Qout

Ap
t

+
fw
fS

Auc

Ap

(
Si −

fsrain

k

)
(1− e−kt)

Thus the derivatives are given by

d

dt
φS(t, γi) = −k

(
Sk −

fSrain

k

)
e−kt

d

dt
φw(t, γi) = fw

rainAuc −Qout

Ap

+ k
fw
fS

Auc

Ap

(
Si −

fSrain

k

)
e−kt

In these equations, fS , fw, k, Auc , and Ap are time-global
constants > 0, and rain and Qout are period-local constants
≥ 0. Therefore, d

dtφS(t, γi) is either increasing or decreasing
in any period i. For the water level w in the pond we have

d2

dt2
φw(t, γi) = −k2

fw
fS

Auc

Ap

(
Si −

fSrain

k

)
e−kt

So, ∀t ∈ [0, τ ] : d2

dt2φ
w(t, γi) ≤ 0 or ∀t ∈ [0, τ ] :

d2

dt2φw(t, γi) ≥ 0. Therefore, we can conclude that
d
dtφS(t, γi) is either increasing, decreasing, or has a single
local minimum or maximum within a period i. If there is
such a local minimum or maximum, it will be at

tm = −1

k
ln

(
fS

rainAuc −Qout

Auc (fSrain − kSi)

)
resulting in a water level of

φw(tm, γi) = wi + fw
rainAuc −Qout

Ap

(
tm +

1

k

)
+
fw
fS

Auc

Ap

(
Si −

fsrain

k

)
.

We have incorporated this new method into the UPPAAL
model of the stormwater detention pond from [8]. The
model can be found at [24]. Compared to the cruise control
example, we scaled the dimensions of S and w to allow for
reasonable integer approximations of the continuous dynam-
ics. Technically speaking rationals are also possible, but they
can be transformed into integers by using a proper scaling.
In [8], the least intense rain event has an intensity of 0.00952
cm/min. So rounding this to the nearest integers introduces
a significant rounding error. A first reasonable scaling of S
is fS = 1000, so the least rain intensity becomes 9.52/fS
cm/min. But this scaling is insufficient. After the rain, the
surface stormwater level will asymptotically approach 0, but
the integer approximation will suffer again from rounding
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Fig. 7. Simulation of the stormwater pond model including integer bounds.
Solid lines indicate the water level in the pond; the black and dotted line
indicates the rain fall. As a quick reference, 1440 minutes is 1 day, and the
total time scale is 3 days.

errors once the change is less than one. With fS = 1000, the
upper bound will stuck at S = 5 in this situation. After some
experimentation we found that reducing this rounding error
by fivefold results in an acceptable error. Thus we obtained
fS = 5000. Using a similar analysis, we obtained fw = 200.

Fig. 7 shows simulation results using the new method to
obtain integer bounds for both w (the bounds for S too tight
to be visible in the figure). As can be seen, we no longer
have integer bounds that explode, i.e., the bound captures
the continues dynamics reasonably well. Furthermore, the
bounds of w are not symmetric around the true value of
w. This can mostly be explained by the fact that the upper
bound of S does not asymptotically reach 0 but the value 4
(or the lower bound reaching the equilibrium when raining).
So, in dry periods when it is not raining, the non-zero upper
bound of S still causes inflow into the pond for the upper
bound analysis.

We are now able to synthesize a guaranteed safe controller
for the stormwater detention pond. While an infinite horizon
controller has been synthesized for the cruise control exam-
ple, we synthesize finite horizon controllers for stormwater
detention ponds, as weather forecasts are only available for
a limited horizon into the future and the accuracy of the
predicted rain decreases quickly the longer in the future the
prediction is for. We were able to synthesize a safe controller
for a time horizon of 5 hours using a Macbook in 2 minutes
and using 4.6 GB RAM. Increasing the time horizon to
6 hours fails due to running our-of-memory, also on the
computational cluster having 200 GB RAM available. A
control horizon of 5 hours might be sufficient when controller
synthesis is used in a model-predictive control setting [25].

VI. CONCLUSION

In this paper an new method is presented to obtain integer-
valued bounds for continuous-time sample switched systems
where analytical solutions for the trajectories are available.



With these bounds, UPPAAL TIGA is able to synthesize maxi-
mally permissive guaranteed safe controllers for the original
continuous switched system. After obtaining a maximally
permissive controller, further analysis can now be done to
obtain an optimal and safe controller, for example using
reinforcement learning as implemented in UPPAAL STRAT-
EGO [22].

The new method is applied on a cruise control case study
and an stormwater detention pond case study. For the cruise
control example, the new method results in tighter bounds
compared to the Euler method from [3]. Therefore, the
synthesized safe controller can be more optimistic, as the
approximation error is less. For the stormwater detention
pond example, we are now able to obtain reasonable bounds,
so that we can now actually synthesize a guaranteed safe
controller for a fixed control horizon.

Future work could investigate whether we can obtain
tighter bounds in the n-dimensional case, as we now only
keep track of the minimum and maximum value of each
state variable regardless of the values in combination with
the other state variables. Furthermore, it would help if the
integer bounds also approximate the same limit as the under-
lying continuous dynamics. But this might require additional
variables that act as temporarily memory. Another direction
could be to relax the assumption that the environment also
switches periodically, so we can, e.g., synthesize a safe
strategy for the bouncing ball example of [26]. Finally,
memory usage of UPPAAL TIGA seems to be the limiting
factor in applying the method to large-scale systems. Our
proposed method turned the original continuous-time model
of the cruise control example into effectively an untimed
model where the progress of a period can be represented by
a single event. It might be interesting to see whether untimed
synthesis methods like [27], [28] can help.
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