
Parallel Shooting Sequential Quadratic Programming for
Nonlinear MPC Problems

P. C. N. Verheijen1, M. Haghi1, M. Lazar1 and D. Goswami1

Abstract— In this paper, we propose a parallel shooting algo-
rithm for solving nonlinear model predictive control problems
using sequential quadratic programming. This algorithm is
built on a two-phase approach where we first test and assess
sequential convergence over many initial trajectories in parallel.
However, if none converge, the algorithm starts varying the
Newton step size in parallel instead. Through this parallel shoot-
ing approach, it is expected that the number of iterations to
converge to an optimal solution can be decreased. Furthermore,
the algorithm can be further expanded and accelerated by
implementing it on GPUs. We illustrate the effectiveness of the
proposed Parallel Shooting Sequential Quadratic Programming
(PS-SQP) method in some benchmark examples for nonlinear
model predictive control. The developed PS-SQP parallel solver
converges faster on average and especially when significant
nonlinear behaviour is excited in the NMPC horizon.

Index Terms— Nonlinear Model Predictive Control, Sequen-
tial Quadratic Programming, Parallel Shooting methods, GPU

I. INTRODUCTION

Model Predictive Control (MPC) is a control strategy
that computes the control input by optimizing the predicted
response over a finite time horizon while respecting system
constraints [1]. Due to this explicit form of computing the
control law, MPC problems are significantly more complex
compared to classical frequency domain or state feedback
controllers. However, the MPC framework is not limited
to LTI systems and can be extended to control nonlinear
systems.

There is a rise in applications of nonlinear MPC (NMPC)
to high-tech fast systems (e.g., motion control, autonomous
vehicles, robotics, power electronics) and to large-scale
interconnected systems (micro-grids, water networks, heat-
ing/cooling networks). In most of these applications real-
time implementation of NMPC is hampered by efficiently
and reliably solving the corresponding constrained nonlinear
program (NLP).

This generated much interest in the development of reli-
able solvers for NMPC, out of which Sequential Quadratic
Programming (SQP) methods [2][3] or interior point methods
[4] or projected gradient methods [5] have become very pop-
ular. SQP in particular is a very effective approach due to its
simplicity (successive linearization and solving QPs) and the
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many reliable QP solvers (qpOases [6], OSQP [7], Hildreth,
etc.). It is therefore also widely implemented in available off-
the-shelf NLP solvers (e.g., NLPQL(P) [8], SNOPT [9], or
KNITRO [2]). Currently, the main challenges with SQP lie
with non-positive definite Hessians, choosing the step size
and limiting the number of iterations [2], which implicitly
reduces the number of QPs to be solved. Non-monotone step-
size selecting algorithms, for example in [10][8], guarantee
convergence, but often at the cost of the number of iterations.
Similarly, Quasi-Newton methods ensure a positive–definite
Hessian, but lose the benefits of using sparse Hessians, such
as efficient numerical calculations and a low memory profile.

Besides the advances in solvers for nonlinear program-
ming, efforts to parallelize NMPC algorithms or numerical
solvers have been made, which coupled with parallel com-
puting architectures (multi-core, FPGA and GPU) can speed-
up NMPC algorithms. In the literature, the parallelization
strategy can be subdivided into 2 categories. At one end,
shooting methods, such as using Monte–Carlo estimates [11],
Particle-Swarm-Optimization [12], policy iteration with par-
allel computing in each predicted time sample (but sequential
over the horizon) [13] or solving many QPs in parallel for
different initial guesses [14]. On the other end, operator
splitting or distributed methods, including Newton methods
with a correction step [15][16], alternating direction method
of multipliers [17] or accelerated proximal gradient methods
[18] have been developed.

Motivated by this state-of-the-art, we propose two ap-
proaches based on parallel shooting for accelerating SQP in
general, and SQP for NMPC in particular. The first approach
is to explore multiple initial trajectories in parallel. The
second approach shoots different step-sizes and tests these
in parallel, where each sequential step is linearized based on
the results of the previous step with the fastest convergence.
We show that the first approach promotes fast converging
trajectories, while the second approach prevents iterations
from getting stuck in a cycle. Therefore, by combining these
approaches into two phases, the proposed PS-SQP algorithm
accelerates convergence with respect to classical SQP. A
further advantage of the parallel shooting approach to SQP
is that it lends itself very well to implementation on GPUs,
which will be the subject of future research. It is worth to
mention that a parallel SQP implementation for GPUs was
already presented in [14], which proposed to solve multiple
QPs in parallel within a GPU architecture. However, therein,
no detail about the initialization of multiple QPs was given.

Next, the preliminary information on SQP is presented in
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Section II. In Section III we discuss and explain the parallel
implementation of our approach on SQP. The proposed
algorithm is illustrated on 2 systems in Section IV. First, an
inverted pendulum is considered to illustrate the benefits on
highly nonlinear systems. Secondly, a small water network
is considered to show the applicability of PS-SQP for large
scale NMPC problems. The conclusions are summarized in
Section V.

II. SEQUENTIAL QUADRATIC PROGRAMMING FOR
NMPC

Sequential Quadratic Programming (SQP) solves a non-
linear problem by sequentially linearizing the problem over
its current operating point. The operating point (that we
shall further on refer to as a ”trajectory”) is updated with
the optimal solution from the linearized Quadratic Program
(QP). Although multiple variations of sequential quadratic
programming exist, we will adopt in what follows the version
from [3]. Consider the following nonlinear MPC problem:

min
xi|k,ui|k

N−1∑
i=0

f(xi|k, ui|k) + fT (xN |k)

s.t. g(xi|k, ui|k) ≤ 0, ∀i = {0, . . . , N − 1}
gT (xN |k) ≤ 0,

x0|k = x(k),

h(xi|k, ui|k) = xi+1|k, ∀i = {0, . . . , N − 1},
(1)

which computes a control input u(k) = u0|k for a discrete
nonlinear system

x(k + 1) = h(x(k), u(k)), k ∈ N, (2)

where u(k) ∈ Rq and x(k) ∈ Rn. To simplify the notation
in the remainder of the paper, consider

zi|k =
[
xT
i|k uT

i|k

]T
, ∀i = {0, . . . , N − 1}

zN |k = xN |k.

With this notation, we linearize (1) over an estimated guess
trajectory zgi|k [3], which results in the following QP prob-
lem:

min
∆zi|k

N∑
i=0

1

2
∆zTi|kQi∆zi|k +∆zTi|kFi

s.t. Mi∆zi|k ≤ −si, ∀i = {0, . . . , N − 1}
MN∆zN |k ≤ −sN ,

E∆z0|k = x(k)− Ezg0|k

E∆zi+1|k −Ai∆zi|k = ri+1, ∀i = {0, . . . , N − 2}
∆zN |k −AN−1∆zN−1|k = rN ,

(3)

where the optimization variable ∆zi|k is the optimal step
direction with respect to zgi|k, E =

[
In×n 0n×q

]
and

Qi =
∂2f(z)

∂z2

∣∣∣∣
zg
i|k

, Fi =
∂f(z)

∂z

∣∣∣∣
zg
i|k

,Mi =
∂g(z)

∂z

∣∣∣∣
zg
i|k

,

QN =
∂2fT (z)

∂z2

∣∣∣∣
zg
N|k

, FN =
∂fT (z)

∂z

∣∣∣∣
zg
N|k

, si = g(zgi|k),

MN =
∂gT (z)

∂z

∣∣∣∣
zg
N|k

, sN = gT (z
g
N |k),

Ai =
∂h(z)

∂z

∣∣∣∣
zg
i|k

, ri = h(zgi|k)− Ezgi+1|k,

rN = h(zgN−1|k)− zgN |k.
(4)

To express the cost function without the prediction time index
i, consider the following augmented vectors and matrices:

zg =

 zg0|k
...

zgN |k

 ,A =


E

−A0
. . .
. . . E

−AN−1 I

 ,

Q =

Q1

. . .
QN

 ,M =

M0

. . .
MN

 ,

F =

F1

...
FN

 , r =


x(k)− Ezg0|k

r1
...
rN

 , s =

 s1
...
sN

 ,

(5)

where zg ∈ Rp, with p = N(n+ q) + n, and corresponding
control problem

min
∆z

∆zTQ∆z+∆zTF

s.t. M∆z ≤ −s
A∆z = r.

The solution ∆z of the quadratic program (3) is used to
update zg+ = zg + α∆z, for some α ∈ (0, 1]. The step size
α can be estimated using backtracking on the Armijo/Wolfe
conditions [19], or using algebraic approximations [20].
The final solution of the nonlinear problem is obtained by
sequentially linearizing problem (1) over the updated zg until
convergence. Convergence is achieved if zg satisfies the KKT
corresponding to (1), i.e.

0 = F +MTλ+ATµ

λ ≥ 0

0 = λ ◦ s
0 = r,

(6)

which holds if ∆z satisfies:

0 = Q∆z

0 = A∆z

0 = λ ◦M∆z,

(7)



where ◦ denotes the Hadamard product. Therefore, if ∆z
satisfies (7), zg satisfies (6), which implies solving the last
QP was not necessary (aside from validating convergence).

Assuring that the initial guess for zg is close to the final
solution is key to fast convergence [3]. When the solution of
the previous time–step is available, the initial guess of the
current time–step can be simply obtained as

zgi|k = zgi+1|k−1, ∀i = {0, . . . , N − 2}

zgN−1|k =

[
xg
N |k−1

ug
N−1|k−1

]
zgN |k = h(zgN |k−1, u

g
N−1|k−1).

(8)

Otherwise, some (preferably feasible) initial starting point
must be estimated. Furthermore, if under any circumstances,
the control problem differs significantly from the previous
one (e.g., setpoint change), fast convergence is still not
guaranteed. Next, we introduce a method to improve con-
vergence, by combining parallel shooting of the initial guess
and the step size with SQP.

III. PARALLEL SHOOTING SQP

Provided the sequential nature of SQP, convergence re-
quires a varying number of iterations. This generally depends
on the nonlinear behaviour that is observed between the
initial point and the actual optimal solution. In this section,
we propose an algorithm that uses the advantages of parallel
computing in SQP to reduce the amount of iterations required
to converge. Herein, we propose two sequential phases:
shooting over various initial trajectories and shooting over
the step-size.

Remark 1: To provide clarity to the reader, we only
consider the entire vector of optimization variables z, and
introduce the new subscript zt,j , where t denotes the SQP
iteration and j denotes the parallel process index. Since the
SQP algorithm is used to solve a nonlinear MPC problem at
every time instant k, and we focus on the solution for any
such time instant, the time index k is omitted.
Phase 1: Parallel Shooting in multiple initial trajectories
In this first phase, we construct m initial guesses of the initial
trajectory and generate corresponding QP problems that can
be solved in parallel. This increases the likelihood that one of
the initial guesses is closer to the final solution and could thus
converge faster and is similar to the parallelization method
proposed by [14]. Note however, a method to generate the
initial trajectories for the parallel QPs is not specified in [14],
to the best of our understanding. Our proposal to generate
various initial trajectories is the following

zg0,j = zg0,1 + ϵj , ∀ϵj ∈ ker{A} and j ∈ {2, . . . ,m} (9)

where A is derived from zg0,1 as in (4) and (5). This can
be reasoned through the following: any trajectory zt,j is a
trajectory of the nonlinear system (2) if the corresponding
rt,j = 0, with rt,j computed as in (4) and (5). A suitable
initial trajectory for the SQP problem is a trajectory with
minimal linearization error (as this trajectory is then close

the system dynamics). For any offset ϵj from (9), the
linearization error can be expressed as:

r0,j = r0,1 +Aϵj +O(∥ϵj∥2) = O(∥ϵj∥2). (10)

This is a valid assumption, as the solution of the last time it-
eration satisfies the system dynamics and the shifted estimate
(8) is computed such that it also satisfies system dynamics
(2). Then, by keeping ∥ϵj∥2 appropriately bounded, it can
be assumed that the corresponding SQP problem is feasible.

For practical use, note that if

ϵj = (I −A†A)ω, then ϵj ∈ ker{A} ∀ω ∈ Rp. (11)

Thus, one can randomly generate any ω to obtain a suitable
ϵ. Here, (·)† denotes the generalized pseudo–inverse. It
should be mentioned that computing pseudo–inverses can be
computationally expensive. Alternatively, it is also possible
to generate a random input offset, and compose zg0,j by
iterating over the discretized system dynamics.

By iterating over this set of parallel trajectories, either one
(or more) will satisfy the convergence conditions, or all will
get stuck in a cycle. To prevent the latter, we introduce phase
2.

Remark 2: Note that the proposed method to generate
guess trajectories in (9) is not the only suitable method.
Technically, zg0,j can be initialized with any arbitrary value,
as long as the corresponding QP is feasible.

Phase 2: Parallel Shooting for multiple step-sizes
To trigger this phase, one of the following conditions must
be satisfied, where

et,j =

∥∥∥∥∥∥
Q∆zt,j
λj ◦ st,j
γrt,j

∥∥∥∥∥∥ (12)

denotes the residual linearization error for process j at
iteration t and I = 1, . . . ,m:

1) no convergent trajectories, i.e. (given t ≥ 1)

max
j∈I

(et,j − et−1,j) > 0, (13a)

2) all trajectories are close to equal, i.e.

zt,1 ≈ zt,2 ≈ . . . ≈ zt,m, (13b)

3) all trajectories are stuck in a loop, i.e.

∆zt−1,j = −∆zt,j ,∀j ∈ I. (13c)

In this phase, we linearize every parallel NLP over the
best trajectory of the previous iteration, but now give each
a different step-size α for the step ∆z. If the phase is
triggered, the algorithm will not return back to phase 1 until
convergence is achieved. The distribution of the different
step-sizes to the parallel QPs is open to different designs.
Using αj = j/m already provided good results, but other
strategies could be explored. Nonetheless, it is recommended
to always keep α = 1 in the set of step-size shooting.
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Fig. 1. GPU diagram of the PS-SQP algorithm

Algorithm 1 Parallel Shooting SQP
Input: zg0,1, f(z), g(z), h(z), m, δ, γ

1: for j = 2 : m do
2: Generate vector ϵj as in (11)
3: zg0,j = zg0,1 + ϵj
4: end for
5: t← 0
6: P2← 0
7: e−1,j ← 2δ, ∀j ∈ I
8: while minj∈I(et−1,j) ≥ δ do
9: for j = 1 : m do in parallel

10: Build Linearized problem (3) using zgt,j
11: Solve QP and obtain ∆zt,j , λj

12: Compute et,j as in (12)
13: end for
14: if (13a) or (13b) or (13c) then
15: P2← 1
16: end if
17: if P2 = 0 then
18: zgt+1,j ← zgt,j +∆zt,j ,∀j ∈ I
19: else
20: b← argminj∈I(et,j)
21: for j = 1 : m do
22: αj ← j

m
23: zgt+1,j ← zgt,b + αj∆zt,b
24: end for
25: end if
26: t← t+ 1
27: end while
28: b← argminj∈I(et−1,j)
Return: zgt+1,b

When convergence of the Parallel Shooting Sequential
Quadratic Programming (PS-SQP) algorithm is achieved, the
first control input can be applied to the system following the
receding horizon principle. The complete PS-SQP solver for
a single sampling interval is explained in Algorithm 1, where
the parallel part is described, as well as the implementation
of the two phases. The data communication between the QPs

in sequential steps is illustrated in Figure 1. Mind that this
illustrates just 4 sequential steps, whereas in practice, both
parallelization techniques might take more sequential steps
for convergence (similarly, it could also finish in just 2 or
even 1 sequential step).

As shown in Algorithm 1, convergence is achieved if the
linearization error et,j < δ. Selecting a suitable δ can require
some testing and is highly dependent on the weights in Q.
Furthermore, assuming large weights in Q, this term will be
dominant in the assessment of the error (12). We thus also
introduce γ, which can be used to boost the influence of the
error in the equality constraints. Furthermore, if the PS-SQP
algorithm switches to phase two, a properly tuned γ will
prioritize solutions with smaller norms of rt first.

Remark 3: As an alternative to Algorithm 1, one can
initialize for each core in Phase 1 multiple parallel cores
that each test different values for α. This does require a sig-
nificant larger amount of available parallel cores. However,
this could improve convergence speed.

A. GPU implementation of PS-SQP

To enable the full potential of the PS-SQP algorithm it
can be implemented on a GPU. By doing so, there are
two main advantages to consider depending on the level of
GPU implementation: First, the QPs can be computed in
parallel in m GPU kernels (see Figure 1). However, one
main design challenge of such parallel implementation is
to deal with large overhead due to communication over the
interconnect between the GPU kernels. Since the transfer
of large matrices is required between the iterations, the
communication overhead may be high. To address this chal-
lenge, the large matrices in the linearized control problem
can be transferred on the GPU kernels in a sparse format.
Furthermore, since the linearized problem matrices do not
change the sparsity pattern, regardless of the operating point,
every GPU kernel can store the same sparsity pattern once
and then only needs to receive the individual values from the
CPU. This strategy can massively reduce the communication
overhead, which is considered a significant bottleneck in
GPU–accelerated computing [21]. The second advantage is



that every individual QP can be computed in parallel on the
GPU as well. Here, available methods such as qpDUNES
[22], accelerated ADMM [17], parallel Interior Point [14] or
PQP [23] can provide a significant speedup. However, each
QP will utilize a block of GPU kernels, which reduces the
number of kernels available for the PS-SQP.

IV. ILLUSTRATIVE EXAMPLES

To illustrate the effectiveness of the algorithm, we im-
plemented the solver on an MPC problem for an inverted
pendulum system as shown in [24]. This system has strong
nonlinear dynamics, and the solver is prone to get stuck at
challenging setpoints [25]. Additionally, the PS-SQP solver
is also tested on a small water distribution network. These
systems generate large–scale NMPC problems.

A. Inverted Pendulum

Consider the following continuous time dynamics [24]:

ẋ1 = x2

ẋ2 =
u cosx1 − (M +m)g sinx1 +ml(cosx1 sinx1)x

2
2

ml cos2 x1 − (M +m)l

ẋ3 = x4

ẋ4 =
u+ml sinx1x

2
2 −mg cosx1sinx1

M +m−m cos2 x1
(14)

where x1 is the pendulum angle, with x1 = 0 corresponding
to the upright position, x2 is the angular velocity, x3 is the
position of the cart, x4 is the cart velocity. The remaining
parameters are selected as [24]:

• mass of cart M = 2.4kg;
• mass of pendulum m = 0.23kg;
• length of pendulum l = 0.36m;
• gravity constant g = 9.81m/s2.

The model in (14) is discretized using backwards Euler with
a sampling period of Ts = 0.02s. However, in the simulation,
the system response is computed using an ode45 solver
for the continuous time dynamics. The position of the cart
is constrained by −10 ≤ x1 ≤ 10, and the input force is
constrained to −500 ≤ u ≤ 500. The controller is tasked to
track a position reference with amplitude ±3[m] for the cart,
whilst keeping the pendulum upright. For this, we construct
a standard quadratic cost function over a prediction horizon
of N = 40, with weights Q = diag(100, 0.1, 500, 0.1), R =
0.001 and QT = diag(1000, 10, 500, 10). We assume that
the full state is measurable. The pendulum starts initially in
the downwards position.

Figure 2 illustrates the simulated response. The steep
setpoint change caused the pendulum to take a significant
swing, which shows the effectiveness of the nonlinear control
law. To provide a baseline, we constructed the same control
problem to be solved by MATLAB’s fmincon.m using the
SQP option. Note that to accelerate the convergence of this
routine, the gradients of the nonlinear dynamics are provided.
For both the baseline simulation and the implemented PS-
SQP simulations, we used δ = 0.5 as the linearization
tolerance. The comparison in SQP iteration between the

Fig. 2. Simulation results of the inverted pendulum

baseline and the PS-SQP algorithm is illustrated in Figure 3.
Note that the x-axis represent the simulation time in Figure
2, but only up to the first 3 seconds. When the nonlinear
dynamics must be excited by the controller, a noticeable
reduction can be observed. Furthermore, as also illustrated,
a small amount of parallel cores is already sufficient for this
NLP, as the improvement between 32 cores and 4 cores is
minor. Although hard to observe, the BaseLine does converge
in less steps for a few time–samples, most notably when the
system is almost static.

Fig. 3. Number of SQP iterations required per simulation time sample

B. Small Water Distribution Network

In this example we consider a small water distribution
network, as seen in Figure 4. This water network can be
modeled using the balance of mass and energy equations
[20], i.e.

h(k + 1) = h(k) +Aqq(k) +Bqu(k)

0 = Gqq(k) +Guu(k) +Gdd(k)

0 = Fhh(k) + Φ(q(k)),

(15)

where it can be noted that the only nonlinearities are con-
tained in Φ(q(k)), which are the pressure losses in the pipes.
For the definition of matrices in (15), the control problem and
constraints, please consider the results in [20].



Remark 4: Compared to [20], the pump cost is imple-
mented as

l3(k + i) =

(
ρgε(k + i)

850

)2

×∑
p

(
(∆hp

i|k)
2 + 3(∆hp

max)
2
)
(up

i|k)
2

(16)

where up is the control flow through pump p, ∆hp the
corresponding head gain, ε(t) the pump tariff, ∆hp

max is the
maximum head the pump can assert, ρ and g are physical
constants for the density and gravity. The cost in (16) is then
correctly linearized to build the QPs. The additional term
∆hp

max is used to ensure (16) has a positive semi-definite
Hessian.

The corresponding nonlinear control problem is, compared
to the inverted pendulum, not only nonlinear in the equality
constraints, but also in the cost function and the inequality
constraints. See Figure 5 for the simulation results of the
water network, controlling the flow of the two pumps, while
keeping the water levels in the tanks at a satisfactory level.
Hereby, the demand patterns are slightly different than the
predicted demand, following the mismatch used in [20].
Furthermore, we considered a sampling period of Ts = 1[h],
a prediction horizon of N = 24 (an entire day) and the
linearization tolerance has been set to δ = 0.0001.

h1

h6

u1

u2

h2

h3

h4

h5

d1 d2

Fig. 4. Water Network Example

Fig. 5. Simulation results of the small water network

In this example, we compared the standard, nonparallel
SQP algorithm as in [3] with the PS-SQP with either 4
cores or 8 cores. Following the results in Figure 6, we

observe that minor improvements are made compared to the
BaseLine. This can be a result of having a low linearization
error between the shifted optimal solution of the previous
iteration and the current optimal solution. For this water
network problem, the nonlinear components, namely the
pipe friction coefficients and the pump cost/constraints, are
almost linear (enough to often control them considering a
fully/piece–wise linearized model [26][27]). In this case,
the respective optimal Newton step size α = 1 guarantees
fastest convergence, see [2, Thrm 3.5]. This makes shooting
in α unnecessary, and thanks to Phase 1, rarely employed
(as all trajectories are sufficiently decreasing). Therefore,
we only obtain a faster convergence if any of our guessed
trajectories achieves a cost less than the bound, while the
default trajectory (i.e., the trajectory that is initialized as
the shifted previous optimal trajectory) slightly exceeded the
bound.

Fig. 6. Number of SQP iterations required per simulation time sample

V. CONCLUSIONS

In this paper, we have proposed a parallel algorithm
to solving nonlinear model predictive control problems
using sequential quadratic programming. This algorithm
is built using a a two-phase approach that first assesses
sequential convergence over many initial trajectories in
parallel. However, if none converged, the algorithm starts
varying the Newton step-size in parallel instead. Through
this parallel shooting approach, it was expected that the
number of iterations to converge to the nonlinear solution
can be decreased. Furthermore, the algorithm can be further
expanded and accelerated by implementing it on GPUs.
We illustrated the effectiveness of the proposed PS-SQP in
some benchmark examples for nonlinear model predictive
control. The developed PS-SQP parallel solver converged
faster when significant nonlinear behaviour is excited in the
NMPC horizon.
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