
PL-CVIO: Point-Line Cooperative Visual-Inertial Odometry

Yanyu Zhang, Pengxiang Zhu, and Wei Ren

Abstract— Low-feature environments are one of the main
Achilles’ heels of geometric computer vision (CV) algorithms.
In most human-built scenes often with low features, lines
can be considered complements to points. In this paper, we
present a multi-robot cooperative visual-inertial navigation
system (VINS) using both point and line features. By utilizing
the covariance intersection (CI) update within the multi-state
constraint Kalman filter (MSCKF) framework, each robot
exploits not only its own point and line measurements, but
also constraints of common point and common line features
observed by its neighbors. The line features are parameterized
and updated by utilizing the Closest Point representation. The
proposed algorithm is validated extensively in both Monte-
Carlo simulations and a real-world dataset. The results show
that the point-line cooperative visual-inertial odometry (PL-
CVIO) outperforms the independent MSCKF and our previous
work CVIO in both low-feature and rich-feature environments.

I. INTRODUCTION AND RELATED WORK

Simultaneous localization and mapping (SLAM) has re-
ceived considerable attention in the past few decades and
has already been the core technology in many robotics and
computer vision applications, such as augmented/virtual real-
ity, autonomous driving, and robot navigation. In GPS-denied
environments, visual-inertial navigation systems (VINS) and
related algorithms [1]–[3] have received considerable pop-
ularity through utilizing low-cost and lightweight onboard
cameras and inertial measurement units (IMUs). However,
multiple robots have the ability to accomplish tasks more
efficiently and achieve higher accuracy than a single robot
[4]. Therefore, a key question for a multi-robot group is how
to best utilize the environment information and other robots’
information.

In human-made scenarios, lines can be considered good
complements to points, especially in low-feature environ-
ments where only a few point features can be extracted.
There are two main categories of methods for processing
points and lines in VINS: indirect (feature-based) and direct
methods. In particular, the indirect methods pre-process
image flows by extracting feature descriptors and matching
them along a sequence [1], [5]–[7]. The indirect methods
optimize the system by minimizing the geometric error. The
direct methods skip the feature extraction step and optimize
the photometric error using row pixels directly [8]–[10].
The direct methods are highly efficient but need to assume

This work was supported by National Science Foundation under Grant
CMMI-2027139.

Y. Zhang, P. Zhu, and W. Ren are with the Department of Electrical
and Computer Engineering, University of California, Riverside, CA, 92521,
USA. Email: {yzhan831, pzhu008}@ucr.edu, ren@ee.ucr.edu

(a)

(b)

Fig. 1. (a) Overview of the PL-CVIO. Here multiple robots observe point
(square) and line (line segment) features in the same environment, neighbors
communicate and share common points (green and orange squares) and
common lines (orange line segment), and PL-CVIO is performed to estimate
the global poses of each robot. (b) Point and line feature detection of three
different robots in the TUM dataset [11]. Here a green edge denotes a line
extracted from the current frame, and a blue dot surrounded by a red square
denotes a point extracted from the current frame.

brightness constancy (ignoring exposure changes), while the
exposure varies heavily in the real-world environment.

Among the previous feature-based VINS literature, the
solutions can be broadly classified into two categories: filter-
based methods [7], [12]–[17] and graph-based methods [1],
[5], [6], [18]–[20]. One of the state-of-the-art works of the
filter-based methods is the multi-state constraint Kalman
filter (MSCKF) [7], which formed a multi-constraint update
by using the measurements of the same feature. A tightly
coupled monocular graph-based VIO (VINS-Mono) and non-
linear optimization with robust initialization introduced in
[1]. Besides, there are also some VINS algorithms using
both point and line features. The point-line visual-inertial
odometry (PL-VIO) [6] is an extension of VINS-Mono,
which can optimize the re-projection errors of the point and
line features in a sliding window. PL-SLAM [19] proposed
a point-line SLAM framework based on ORB-SLAM [20].
Line features used in Plücker representation for rolling-
shutter cameras were designed in [15]. Article [16] proposed
two line triangulation algorithms. The analysis of three
different line representations (Plücker, Quaternion, Closest

ar
X

iv
:2

31
1.

05
71

7v
1

 [
cs

.R
O

]
 9

 N
ov

 2
02

3

Point) and the corresponding observabilities were provided
in [17]. However, all of the above references focus on the
single robot case.

One advantage of the cooperative VINS (C-VINS) is the
sharing of common features from multiple robots so as to in-
troduce more geometric constraints of the common features.
In particular, each robot in the group not only observes its
own measurements like in the previous literature, but also
collects measurements from the multi-robot group. The robot
applies an update to improve the localization performance by
utilizing the common feature constraints. There exist some
centralized multi-robot solutions [21]–[23]. They usually re-
quire expensive computation and communication. Distributed
algorithms offer some benefits in this regard. Recently, [24]
provided a distributed point-line cooperative SLAM (C-
SLAM) algorithm by adopting the M-Space representation
of different kinds of features, but the consistency of the
estimation cannot be guaranteed because of repeated usage
of the same information in the robot group. In [25], each
robot in the group processed its own available measurements,
and fused the estimation and covariance with other robots
within the communication range only at a particular time
step. DOOR-SLAM [26] introduced a fully distributed C-
SLAM algorithm that contains a pose graph optimizer model
and a data-efficient distributed SLAM frontend similar to
[27]. Article [28] proposed a fully distributed algorithm
using the maximum a posteriori (MAP). Our previous work
CVIO [29] provided a fully distributed cooperative algorithm
and can guarantee consistency by utilizing the covariance
intersection (CI) update, but the low-feature environments
were not considered.

In this paper, we propose a fully distributed multi-robot
pose estimation algorithm using both point and line features.
Each robot not only exploits its own point and line measure-
ments, but also resorts to the cooperation with neighbors (see
Fig. 1). Especially in low-feature environments, where robust
landmarks are absent, each robot’s pose can be estimated
with high accuracy by fusing independent point and line
features from itself and utilizing the CI update to exploit the
constraints imposed by commonly observed point and line
features by neighbors. The PL-CVIO algorithm is developed
in the state-of-the-art OpenVINS [30] system using the
monocular camera-IMU architecture. Monte-Carlo simula-
tions and real-world experiments are used to validate the
performance of our PL-CVIO algorithm. In both low-feature
and rich-feature environments, our algorithm is shown to
achieve more accurate localization.

II. PROBLEM FORMULATION

The goal of the cooperative point and line visual-inertial
estimator is to track the 3D pose of each robot {Ii}, for
i = 1, · · · , n in the global frame {G}. Unlike the indepen-
dent case, multiple robots can share common features with
neighbors. In this paper, we utilize both common point and
common line features to improve the localization accuracy.

A. Visual-Inertial Odometry State Vector

In order to perform the PL-CVIO, the state vector of each
robot i is defined as:

xi =
[
x⊤
Ii

x⊤
Calibi

x⊤
Ci

tdi

]⊤
, (1)

where xIi denotes the IMU state vector, xCalibi denotes the
rigid body tranformation between the IMU frame and camera
frame, xCi represents the cloned IMU states, and tdi = tCi−
tIi denotes the time-offset between robot i’s camera {Ci}
clock and IMU clock, which treats the IMU clock as the
true time [31], [32]. At any time step k, the state vector of
each IMU can be writen as:

xIi,k =
[

Ii,k
G q̄⊤ Gp⊤

Ii,k
Gv⊤

Ii,k
b⊤
gi,k

b⊤
ai,k

]⊤
, (2)

where Ii,k
G q̄ denotes the JPL unit quaternion [33] representing

the rotation from the global frame to the IMU frame at time
step k. GpIi,k and GvIi,k are the IMU position and velocity
in the global frame at time step k. bgi,k and bai,k

are the
gyroscope and accelerometer biases at time step k. Then, the
error state of the IMU is defined as:

x̃Ii,k =
[
δ
Ii,k
G θ⊤ Gp̃⊤

Ii,k
Gṽ⊤

Ii,k
b̃⊤
gi,k

b̃⊤
ai,k

]⊤
,

(3)
where the position, velocity, and bias errors utilize the
standard additive error, while the quaternion error state is
described by

q̄ = δq̄ ⊗ ˆ̄q ≃
[
1

2
δθ⊤ 1

]⊤
⊗ ˆ̄q, (4)

where (̂·) denotes the estimate, and ⊗ is the quaternion
multiplication operator.

In addition to robot i’s IMU state, the spatial calibration
between its IMU frame and camera frame will also be
estimated. In particular, the calibration state vector contains
the unit quaternion rotation from the IMU frame to the
camera frame Ci

Ii
q̄, and the translation from the IMU frame

to the camera frame CipIi as:

xCalibi =
[

Ci

Ii
q̄⊤ Cip⊤

Ii

]⊤
. (5)

Robot i maintains a sliding window with m cloned IMU
poses at time step k written as:

xCi,k
=
[
Ii,k−1

G q̄⊤ Gp⊤
Ii,k−1

...
Ii,k−m

G q̄⊤ Gp⊤
Ii,k−m

]⊤
.

(6)

B. Dynamic System Model

For each robot i, the measurement of the IMU linear
acceleration Iiam and the angular velocity Iiωm are modeled
as:

Iiam = Iia+ Ii
GRGg + bai

+ nai
, (7)

Iiωm = Iiω + bgi + ngi , (8)

where Iia and Iiω are the true angular velocity and linear
acceleration. nai and ngi represent the continuous-time
Gaussian noises that contaminate the IMU measurements.

Gg denotes the gravity expressed in the global frame. Then,
the dynamic system of each IMU can be modeled as [33]:

Ii
G
˙̄q(t) =

1

2
Ω
(
Iiω(t)

)
Ii
G q̄(t), ḃgi(t) = nwgi

(t),

Gv̇Ii(t) =
Gai(t), ḃai

(t) = nwai
(t), GṗIi(t) =

GvIi(t)
(9)

where Gai is the body acceleration in the global frame. GvIi ,
GpIi are the velocity and position of the IMU in the global
frame. nwgi

and nwai
denote the zero-mean Gaussian noises

driving the IMU biases. ω = [ωx ωy ωz]
⊤ is the rotational

velocity in the IMU frame and

Ω(ω) =

[
−⌊ω×⌋ ω
−ωT 0

]
, ⌊ω×⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

After linearization, the continuous-time IMU error-state can
be written as:

˙̃xi(t) ≃ Fi(t)x̃i(t) +Gi(t)ni(t), (10)

where Fi(t) is the 15× 15 continuous-time IMU error-state
Jacobian matrix, Gi(t) is the 15×12 noise Jacobian matrix,
and ni(t) =

[
n⊤
gi n⊤

wgi n⊤
ai

n⊤
wai

]⊤
is the system noise with

the covariance matrix Qi.
In order to propagate the covariance matrix from discrete-

time tk to tk+1, the state transition matrix Φi (tk+1, tk) is
computed by solving the differential equation:

Φ̇i (tk+1, tk) = FiΦi (tk+1, tk) , (11)

with the initial condition Φi (tk, tk) = I15. Thus, the
discrete-time noise covariance can be expressed as:

Qi,k =

∫ tk+1

tk

Φi(tk+1, τ)Gi(τ)QiG
⊤
i (τ)Φi(tk+1, τ)

⊤dτ,

(12)
and the propagated covariance can be written as:

Pi,k+1|k = Φi (tk+1, tk)Pi,k|kΦi (tk+1, tk)
⊤
+Qi,k.

(13)

C. Point and Line Measurement Models

In low-feature environments, lines are good complements
to points. Hence we consider both point and line measure-
ments in this paper. The point measurements of robot i can
be described by:

Cizp = Π
(
Cixp

)
+wpi

, Π
(
[x y z]

⊤
)
=
[x
z

y

z

]⊤
,

(14)
where Cixp is the 3D position of the point in the camera
frame, and wpi denotes the corresponding measurement
noise. Based on the relative transformation and time offset
definition in (1), the relationship between point feature in
the global frame Gxp and in the camera frame Cixp can be
expressed as:

Cixp = Ci

Ii
RIi

GR (t̄i)
(
Gxp − GpIi (t̄i)

)
+ CipIi , (15)

where t̄i = ti − tdi is the exact camera time of the relative
transformation between the global frame and the IMU frame.

For a 3D line, we adopt the Closest Point representation
[16], which represents the 3D line by multiplying a unit
quaternion and the corresponding distance scalar from the
origin to this line. Given the 3D positions of two points pf1

and pf2 on a line, the Plücker coordinate can be expressed
by [34]: [

nl

vl

]
=

[
⌊pf1×⌋pf2

pf2 − pf1

]
, (16)

where nl denotes the normal direction of the line-plane and
vl is the line direction. Then, the Closest Point line can be
expressed as:

Gxl = dlq̄l =
[
q⊤
l ql

]⊤
, (17)

where the distance scalar can be computed as dl =
∥nl∥ / ∥vl∥. The unit quaternion q̄l can be transformed from
R (q̄l) = [ne ve ⌊ne×⌋ve], where ne and ve are the unit
3D vectors of nl and vl.

Moreover, for each robot i, we adopt the simple projective
line measurement model [35] to describe the 2D line distance
from two line endpoints, xsi = [usi vsi 1]

⊤ and xei =
[uei vei 1]

⊤ to the 2D line segment:

Cizl =

[
x⊤
si

li√
l21+l22

x⊤
ei

li√
l21+l22

]⊤
, (18)

where li = [l1 l2 l3]
⊤ denotes the 2D line representation.

The line measurement can be projected from the 3D line in
the camera frame as in [17]: l1

l2
l3

 =

 fvi 0 0 0 0 0
0 fui

0 0 0 0
−fvicui −fuicvi fuifvi 0 0 0

CiL,

(19)

where fui
, fvi , cui

, cvi are the camera intrinsic parameters,
and CiL =

[
Cidl

Cin⊤
e

Civ⊤
e

]⊤
is the Plücker coordinate

representation of the 3D line in the camera frame. The line
transformation from the global frame to the camera frame
can be written as:

CiL =

[Ci

Ii
R ⌊CiPIi×⌋Ci

Ii
R

03
Ci

Ii
R

]
IiL

and

IiL =

[
Ii
GR (t̄i) −Ii

GR (t̄i) ⌊GPIi (t̄i)×⌋
03

Ii
GR (t̄i)

]
GL, (20)

where IiL and GL are the Plücker line representations in the
IMU frame and the global frame, respectively.

D. Independent Point and Line Feature Update

To perform the independent point or line feature update,
a standard MSCKF update [7] will be applied to each
robot. In particular, we collect all of the point and line
measurements over the current sliding window. By stacking
the measurements of one point or line, we can triangulate
the point feature or line feature utilizing the estimate of the
IMU poses. To simplify the notation, let x̃f denotes either a

point feature or a line feature, and the measurement residual
of robot i can be linearized as:

ri = h
(
x̃i,

Gx̃f

)
+wi ≃ Hi,xx̃i +Hi,f

Gx̃f +wi, (21)

where ri is the residual of a point or line measurement.
Hi,x and Hi,f denote the Jacobians w.r.t. the state vector
and the feature, respectively. wi denotes the noise vector
corresponding to the point or line feature.

After that, we perform the left nullspace projection by
applying the QR decompositon to Hi,f in (21) as:[

r1i
r2i

]
=

[
H1

i,x

H2
i,x

]
x̃i +

[
H1

i,f

0

]
Gx̃f +

[
w1

i

w2
i

]
. (22)

In this expression, r2i is only related to the state vector x̃i.
Hence robot i will perform an EKF update using r2i , while
r1i will be dropped.

E. Common Point and Line Feature Update

Note that neighboring robots might observe a common
point or line feature. Hence, we will further exploit both point
and line feature constraints among neighbors to improve the
localization accuracy. The robots can communicate with their
neighbors to share information.

Robot i and its neighbors will apply the linearization (21)
and the left nullspace projection (22) to the common feature,
denoted as Gx̃f . As in Sec II-D, robot i will use r2i for
an EKF update. However, instead of dropping r1i , robot i
will exploit shared information from its neighbors. It will
construct a new residual system that depends on the common
point or line feature Gx̃f by stacking the top parts in (22)
associated with itself and its neighbors as in [29]:

r1i
r1i1
...
r1ij

 = diag

H1
i,x

H1
i1,x
...

H1
ij ,x

x̃i

x̃i1
...

x̃ij

+

H1

i,f

H1
i1,f
...

H1
ij ,f

Gx̃f +

w1

i

w1
i1
...

w1
ij

 , (23)

where diag denotes the block-diagonal matrix, and i1 . . . ij
denote the neighbors of robot i. Then, we utilize the left
nullspace projection to the stacked common point or line
feature Jacobian matrix in (23) and obtain a new residual
system that is independent of the common feature as:

r′i =
[
H′

i,x H′
i1,x

· · · H′
ij ,x

]

x̃i

x̃i1
...

x̃ij

+w′
i. (24)

In order to guarantee the consistency of estimation, we
adopt the CI-EKF algorithm in [29], where the weights of

the CI are ωi > 0, ωil > 0, and ωi +

j∑
l=1

ωil = 1. The

Kalman gain of robot i is given by:

Ki =
Pi,k+1|kH

′⊤
i,x

ωi

(∑
r∈Ni

1

ωr
H′

r,xPr,k+1|kH
′⊤
r,x +Ri

)−1

,

(25)

where Ni denotes the set of robot i’s neighboring robots that
the current common feature can be tracked, and Ri denote
the covariance matrix associated with w′

i. Then, the state
correction of robot i can be written as:

∆xi,k = Kir
′
i. (26)

The state covariance matrix of robot i is updated using the
CI as:

Pi,k+1|k+1 =
1

ωi

(
I−KiH

′
i,x

)
Pi,k+1|k. (27)

III. SIMULATIONS AND EXPERIMENTS

In this section, we utilize Monte-Carlo simulations and
real-world datasets to verify that common line features can
improve localization accuracy in cooperative cases, and line
features can also improve the accuracy in independent cases.
We compare our PL-CVIO algorithm with the previous
works in Table I under two different environments, where
low-feature scenes contain a few features and rich-feature
scenes contain enough features. As shown in Table. I, P-
VIO denotes the independent MSCKF algorithm [7], PL-
VIO denotes the independent point-line MSCKF algorithm
[16], P-CVIO denotes our previous work CVIO [29], IPL-
CP-CVIO denotes the algorithm which not only utilizes
independent point-line features from each robot but also
collects the common point features from the neighbors, and
PL-CVIO uses both independent and common point-line
features as in this paper.

TABLE I
Descriptions of various algorithms to be compared in the simulations and

experiments.

Algorithm Independent Features Common Features

P-VIO [7] Points ✗

PL-VIO [16] Points w/ Lines ✗

P-CVIO [29] Points Points

IPL-CP-CVIO Points w/ Lines Points

PL-CVIO Points w/ Lines Points w/ Lines

A. Monte-Carlo Simulations

For our Monte-Carlo simulations, we utilize a group of
three robots. Robot 0 in the group follows the real trajectory
of a dataset, and the trajectories of robot 1 and robot 2 are
created by adding position and orientation offsets to the real
one. After that, the 3D features and the corresponding 2D
measurements are generated if the number of the point or line

TABLE II
The RMSE of the orientation / position (degrees / meters) of three robots using three different algorithms in different EuRoC datasets. R denotes the

rich-feature environments with enough point-line features, and L denotes the low-feature cases. The average denotes mean of all three rooms per algorithm
per robot per environment (rich-feature/low-feature). R0, R1, and R2 represent three robots following three different trajectories in each environment.

V1 01 R V1 02 R V1 03 R Average V1 01 L V1 02 L V1 03 L Average

R0 P-VIO 0.481 / 0.260 0.621 / 0.064 0.874 / 0.061 0.659 / 0.128 1.277 / 0.483 0.717 / 0.177 1.184 / 0.684 1.060 / 0.448

R0 P-CVIO 0.091 / 0.056 0.157 / 0.022 0.118 / 0.027 0.122 / 0.035 0.524 / 0.148 0.449 / 0.080 0.743 / 0.299 0.572 / 0.176

R0 PL-CVIO 0.090 / 0.047 0.147 / 0.021 0.101 / 0.025 0.113 / 0.031 0.159 / 0.078 0.167 / 0.064 0.182 / 0.099 0.169 / 0.080

R1 P-VIO 1.166 / 0.205 0.167 / 0.049 0.419 / 0.049 0.584 / 0.101 0.888 / 0.152 0.785 / 0.170 0.775 / 0.150 0.816 / 0.157

R1 P-CVIO 0.104 / 0.060 0.183 / 0.026 0.127 / 0.026 0.138 / 0.037 0.584 / 0.137 0.613 / 0.130 0.733 / 0.075 0.643 / 0.144

R1 PL-CVIO 0.089 / 0.052 0.176 / 0.021 0.096 / 0.026 0.120 / 0.033 0.213 / 0.092 0.231 / 0.078 0.249 / 0.074 0.231 / 0.081

R2 P-VIO 0.960 / 0.132 0.230 / 0.078 0.325 / 0.062 0.505 / 0.091 1.589 / 0.596 1.493 / 0.195 0.676 / 0.202 1.253 / 0.331

R2 P-CVIO 0.099 / 0.056 0.170 / 0.023 0.123 / 0.025 0.131 / 0.035 0.603 / 0.161 0.690 / 0.179 0.538 / 0.165 0.610 / 0.168

R2 PL-CVIO 0.095 / 0.056 0.167 / 0.022 0.109 / 0.021 0.127 / 0.033 0.150 / 0.096 0.167 / 0.081 0.182 / 0.073 0.166 / 0.083

Fig. 2. Boxplot of the statistics of the Monte-Carlo simulation under the
rich-feature Udel gore environment by extracing 150 points per frame, and
50 lines if the line update is used.

measurements is below the threshold in the current frame.
Then, the constraints of the same feature from one robot
and the constraints of the common features from neighbors
are collected and utilized to update the current state.

The low-feature and rich-feature environments are divided
by extracting different numbers of point features. In the
rich-feature environments, the number of point features is
150 and the number of line features is 50 in each frame.
We reduce the number of point features to 50 for the low-
feature cases. For both of these two environments, we utilize
the First-Estimation Jacobian (FEJ) and online camera-IMU
calibration [30]. After running 30 Monte-Carlo loops, the
statistics of the relative orientation error (ROE) and the
relative position error (RPE) under the rich-feature or low-
feature Udel gore dataset are shown in Fig. 2 and Fig. 3,
respectively. We can see that our PL-CVIO algorithm outper-

Fig. 3. Boxplot of the statistics of the Monte-Carlo simulation under low-
feature Udel gore environment by extracing 50 points per frame, and 50
lines if the line update is used.

forms all other algorithms in both environments. Especially
in the low-feature case, we can find out that the common
line can reduce the ROE and RPE obviously (blue and
red bar) as in Fig. 3. Moreover, an interesting discovery is
that PL-VIO outperforms P-CVIO if a limited number of
points are observed in each frame. In this case, the number
of common point features is also limited, and hence the
cooperative method P-CVIO that relies on only common
point features has limited resources to resort to. In contrast,
the methods PL-VIO and PL-CVIO that further exploit line
features exhibit better performance while PL-CVIO achieves
the best performance as it exploits not only point and line
features but also cooperation with neighbors.

Additionally, we simulate our PL-CVIO algorithm in all of
the EuRoC V1 datasets [36] and compare it with P-VIO and
P-CVIO in both low-feature and rich-feature environments.

Fig. 4. Boxplot of the result of Robot 0 (Room 1) in the TUM Visual-
Inertial Dataset by extracing 200 points per frame, and 50 lines if the line
update is used.

The RMSE of the orientation and position of each robot
and the mean RMSE of each algorithm in each environment
are recorded in Table II. The RMSE results show that our
PL-CVIO algorithm outperforms P-CVIO and P-VIO in all
simulated scenarios. Especially in low-feature environments,
the PL-CVIO improves the RMSE of orientation and position
dramatically.

B. Experiments

For the real-world experiments, the position and orienta-
tion of each robot are initialized corresponding to the ground
truth. The point features are extracted from each frame using
FAST [37], and are tracked crossing frames or matched
with the point observations from other robot utilizing ORB
[38] with an 8-point RANSAC algorithm. At the same time,
line segments are extracted by leveraging the LSD [39]
and tracked by LBD [40]. Besides, we add some outlier
elimination strategies to remove the line segment where (1)
the LBD distance is larger than 50; (2) the length of the line
segment is smaller than 50 pixels; (3) the distance between
the origin and this line is smaller than 0.1 or larger than 100;
(4) the line disparity is too small to avoid singularity when
applying the SVD [41] to triangulate this line.

We evaluate our PL-CVIO algorithm in the TUM Visual-
Inertial Dataset Rooms 1, 3, and 5 [11], where the IMU
frequency is 200 Hz and the camera frequency is 20Hz. We
load all three datasets of the same room and run all five
algorithms with three robots separately. Besides, we extract
a different number of point features to imitate low-feature
and rich-feature environments. As a result, we show the
experimental results of our PL-CVIO algorithm compared
with the other four algorithms in respectively rich-feature
environments as in Fig. 4 and low-feature environments as
in Fig. 5. We also show the RMSE of the orientation and
position of each robot by utilizing different algorithms in
the TUM dataset as in Table III. From the ROE/RPE and

Fig. 5. Boxplot of the result of Robot 0 (Room 1) in the TUM Visual-
Inertial Dataset by extracing 50 points per frame, and 50 lines if the line
update is used.

TABLE III
The RMSE of the orientation / position (degrees / meters) of three robots
under the low-feature environments by using five different algorithms in

the TUM Visual-Inertial dataset.

Algorithm Robot 0 Robot 1 Robot 2

P-VIO 7.473 / 0.442 4.357 / 0.313 5.468 / 0.372

PL-VIO 2.367 / 0.295 1.798 / 0.254 1.872 / 0.240

P-CVIO 2.301 / 0.377 3.824 / 0.267 2.616 / 0.263

IPL-CP-CVIO 1.905 / 0.098 1.722 / 0.115 1.542 / 0.095

PL-CVIO 1.349 / 0.061 1.665 / 0.086 1.379 / 0.067

the RMSE results, it is clear that line features can improve
the accuracy of P-VIO and the common point-line features
can improve the performance of the P-CVIO. Besides, the
lines improve the performance obviously in the low-feature
scenes by comparing the P-VIO and PL-VIO, as well as
P-CVIO and IPL-CP-CVIO in Table. III. Additionally, our
PL-CVIO outperforms all four algorithms in all experiment
cases.

IV. CONCLUSIONS

In this paper, we have proposed a fully distributed point-
line cooperative visual-inertial navigation system. We com-
pared the performance of the proposed algorithm with four
other algorithms under rich-feature or low-feature envi-
ronments in both Monte-Carlo simulations and real-world
datasets. All of the results indicated that our PL-CVIO
outperformed the independent MSCKF and CVIO. Also,
we verified that the line feature can improve the accuracy
of localization in independent cases, and the common line
features can perform better in cooperative cases.

REFERENCES

[1] Qin, T., Li, P. and Shen, S., 2018. Vins-mono: A robust and versa-
tile monocular visual-inertial state estimator. IEEE Transactions on
Robotics, 34(4), pp.1004-1020.

[2] Li, M. and Mourikis, A.I., 2013. High-precision, consistent EKF-
based visual-inertial odometry. The International Journal of Robotics
Research, 32(6), pp.690-711.

[3] Wu, K., Ahmed, A.M., Georgiou, G.A. and Roumeliotis, S.I., 2015,
July. A Square Root Inverse Filter for Efficient Vision-aided Inertial
Navigation on Mobile Devices. In Robotics: Science and Systems (Vol.
2).

[4] Huang, G.P., Trawny, N., Mourikis, A.I. and Roumeliotis, S.I., 2009,
January. On the consistency of multi-robot cooperative localization. In
Robotics: Science and Systems (pp. 65-72).

[5] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R. and Furgale,
P., 2015. Keyframe-based visual–inertial odometry using nonlinear
optimization. The International Journal of Robotics Research, 34(3),
pp.314-334.

[6] He, Y., Zhao, J., Guo, Y., He, W. and Yuan, K., 2018. Pl-vio:
Tightly-coupled monocular visual–inertial odometry using point and
line features. Sensors, 18(4), p.1159.

[7] Mourikis, A.I. and Roumeliotis, S.I., 2007, April. A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation. In ICRA
(Vol. 2, p. 6).

[8] Engel, J., Schöps, T. and Cremers, D., 2014, September. LSD-SLAM:
Large-scale direct monocular SLAM. In European conference on
computer vision (pp. 834-849). Springer, Cham.

[9] Zhou, L., Wang, S. and Kaess, M., 2021. DPLVO: Direct Point-Line
Monocular Visual Odometry. IEEE Robotics and Automation Letters,
6(4), pp.7113-7120.

[10] Engel, J., Koltun, V. and Cremers, D., 2017. Direct sparse odometry.
IEEE transactions on pattern analysis and machine intelligence, 40(3),
pp.611-625.

[11] Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D.,
2012, October. A benchmark for the evaluation of RGB-D SLAM
systems. In 2012 IEEE/RSJ international conference on intelligent
robots and systems (pp. 573-580). IEEE.

[12] Bloesch, M., Omari, S., Hutter, M. and Siegwart, R., 2015, September.
Robust visual inertial odometry using a direct EKF-based approach.
In 2015 IEEE/RSJ international conference on intelligent robots and
systems (IROS) (pp. 298-304). IEEE.

[13] Forster, C., Pizzoli, M. and Scaramuzza, D., 2014, May. SVO: Fast
semi-direct monocular visual odometry. In 2014 IEEE international
conference on robotics and automation (ICRA) (pp. 15-22). IEEE.

[14] Paul, M.K., Wu, K., Hesch, J.A., Nerurkar, E.D. and Roumeliotis,
S.I., 2017, May. A comparative analysis of tightly-coupled monocular,
binocular, and stereo VINS. In 2017 IEEE International Conference
on Robotics and Automation (ICRA) (pp. 165-172). IEEE.

[15] Yu, H. and Mourikis, A.I., 2015, September. Vision-aided inertial
navigation with line features and a rolling-shutter camera. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 892-899). IEEE.

[16] Yang, Y., Geneva, P., Eckenhoff, K. and Huang, G., 2019, Novem-
ber. Visual-inertial odometry with point and line features. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 2447-2454). IEEE.

[17] Yang, Y. and Huang, G., 2019, May. Aided inertial navigation:
Unified feature representations and observability analysis. In 2019
International Conference on Robotics and Automation (ICRA) (pp.
3528-3534). IEEE.

[18] Campos, C., Elvira, R., Rodrı́guez, J.J.G., Montiel, J.M. and Tardós,
J.D., 2021. Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions on Robotics,
37(6), pp.1874-1890.

[19] Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A. and Moreno-
Noguer, F., 2017, May. PL-SLAM: Real-time monocular visual SLAM
with points and lines. In 2017 IEEE international conference on
robotics and automation (ICRA) (pp. 4503-4508). IEEE.

[20] Mur-Artal, R., Montiel, J.M.M. and Tardos, J.D., 2015. ORB-SLAM:
a versatile and accurate monocular SLAM system. IEEE transactions
on robotics, 31(5), pp.1147-1163.

[21] Luna, R. and Bekris, K.E., 2011, September. Efficient and complete
centralized multi-robot path planning. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 3268-3275). IEEE.

[22] Liu, C. and Kroll, A., 2012, April. A centralized multi-robot task
allocation for industrial plant inspection by using a* and genetic
algorithms. In International Conference on Artificial Intelligence and
Soft Computing (pp. 466-474). Springer, Berlin, Heidelberg.

[23] Kang, H., Kim, H. and Kwon, Y.M., 2019, December. RECEN:
resilient MANET based centralized multi robot system using mobile
agent system. In 2019 IEEE symposium series on computational
intelligence (SSCI) (pp. 1952-1958). IEEE.

[24] Benedettelli, D., Garulli, A. and Giannitrapani, A., 2012. Cooperative
SLAM using M-Space representation of linear features. Robotics and
Autonomous Systems, 60(10), pp.1267-1278.

[25] Karam, N., Chausse, F., Aufrere, R. and Chapuis, R., 2006, October.
Localization of a group of communicating vehicles by state exchange.
In 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems (pp. 519-524). IEEE.

[26] Lajoie, P.Y., Ramtoula, B., Chang, Y., Carlone, L. and Beltrame,
G., 2020. DOOR-SLAM: Distributed, online, and outlier resilient
SLAM for robotic teams. IEEE Robotics and Automation Letters, 5(2),
pp.1656-1663.

[27] Cieslewski, T., Choudhary, S. and Scaramuzza, D., 2018, May. Data-
efficient decentralized visual SLAM. In 2018 IEEE international
conference on robotics and automation (ICRA) (pp. 2466-2473). IEEE.

[28] Nerurkar, E.D., Roumeliotis, S.I. and Martinelli, A., 2009, May. Dis-
tributed maximum a posteriori estimation for multi-robot cooperative
localization. In 2009 IEEE International Conference on Robotics and
Automation (pp. 1402-1409). IEEE.

[29] Zhu, P., Yang, Y., Ren, W. and Huang, G., 2021, May. Cooperative
visual-inertial odometry. In 2021 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 13135-13141). IEEE.

[30] Geneva, P., Eckenhoff, K., Lee, W., Yang, Y. and Huang, G., 2020,
May. Openvins: A research platform for visual-inertial estimation.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 4666-4672). IEEE.

[31] Li, M. and Mourikis, A.I., 2014. Online temporal calibration for cam-
era–IMU systems: Theory and algorithms. The International Journal
of Robotics Research, 33(7), pp.947-964.

[32] Qin, T. and Shen, S., 2018, October. Online temporal calibration for
monocular visual-inertial systems. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp. 3662-
3669). IEEE.

[33] Trawny, N. and Roumeliotis, S.I., 2005. Indirect Kalman filter for 3D
attitude estimation. University of Minnesota, Dept. of Comp. Sci. &
Eng., Tech. Rep, 2, p.2005.

[34] Zuo, X., Xie, X., Liu, Y. and Huang, G., 2017, September. Robust
visual SLAM with point and line features. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (pp.
1775-1782). IEEE.

[35] Bartoli, A. and Sturm, P., 2005. Structure-from-motion using lines:
Representation, triangulation, and bundle adjustment. Computer vision
and image understanding, 100(3), pp.416-441.

[36] Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S.,
Achtelik, M.W. and Siegwart, R., 2016. The EuRoC micro aerial
vehicle datasets. The International Journal of Robotics Research,
35(10), pp.1157-1163.

[37] Rosten, E., Porter, R. and Drummond, T., 2008. Faster and better: A
machine learning approach to corner detection. IEEE transactions on
pattern analysis and machine intelligence, 32(1), pp.105-119.

[38] Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., 2011, Novem-
ber. ORB: An efficient alternative to SIFT or SURF. In 2011 Interna-
tional conference on computer vision (pp. 2564-2571). Ieee.

[39] Von Gioi, R.G., Jakubowicz, J., Morel, J.M. and Randall, G., 2008.
LSD: A fast line segment detector with a false detection control.
IEEE transactions on pattern analysis and machine intelligence, 32(4),
pp.722-732.

[40] Zhang, L. and Koch, R., 2013. An efficient and robust line segment
matching approach based on LBD descriptor and pairwise geometric
consistency. Journal of Visual Communication and Image Represen-
tation, 24(7), pp.794-805.

[41] Bradski, G., 2000. The openCV library. Dr. Dobb’s Journal: Software
Tools for the Professional Programmer, 25(11), pp.120-123.

	INTRODUCTION AND RELATED WORK
	PROBLEM FORMULATION
	Visual-Inertial Odometry State Vector
	Dynamic System Model
	Point and Line Measurement Models
	Independent Point and Line Feature Update
	Common Point and Line Feature Update

	SIMULATIONS AND EXPERIMENTS
	Monte-Carlo Simulations
	Experiments

	CONCLUSIONS
	References

