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Abstract

An important problem in computer vision is the determination of weights for multiple objective
function optimization. This problem arises naturally in many reconstruction problems, where one
wishes to reconstruct a function belonging to a constrained class of signals based upon noisy observed
data. A common approach is to combine the objective functions into a single total cost function.
The problem then is to determine appropriate weights for the objective functions. In this paper
we propose techniques for automatically determining the weights, and discuss their properties. The
Min{Max Principle, which avoids the problems of extremely low or high weights, is introduced.
Expressions are derived relating the optimal weights, objective function values, and total cost.

1 Introduction

An important problem in computer vision is the determination of weights for multiple objective
function optimization. This problem arises naturally in many reconstruction problems, where one
wishes to reconstruct a function belonging to a constrained class of signals based upon noisy observed
data. There is usually a tradeo� between reconstructing a function that is true to the data, and one
that is true to the constraints. Instances of this tradeo� can be found in shape from shading [3],
optical 
ow [4], surface interpolation [2], edge detection [7], visible surface reconstruction [9], and
brightness-based stereo matching [1]. The recently popularized regularization method for solving
ill-posed problems [6, 8] always requires the tradeo� of con
icting requirements.

The basic framework de�nes a cost or error functional which re
ects the \badness" of a proposed
solution to the reconstruction problem. Mathematical techniques, such as the calculus of variations,
are used to �nd the best solution to the reconstruction problem. The contribution of each constraint
to the cost funtional is weighted, and the weights may be adjusted to achieve a desired tradeo�.

In some cases, a priori knowledge may be used to determine a \best" set of weights. Typically, one
must know some property of the observed data, such as the signal-to-noise ratio, before proceeding.
This is not always possible. It would be better to have a method for determining weights that did not
depend on a priori knowledge. In this paper we propose techniques for automatically determining
weights, and discuss properties of these techniques.

Let us assume that there are several objectives to be achieved, and let there be a non-negative
objective function for each objective which measures distance from that objective. We would like to
combine the objective functions into a single cost function. In the following sections we will examine
ways to construct the desired single objective function.
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2 The Min{Max Principle

First consider a simple problem. This problem will address the tradeo�s involved in a two-objective
optimization problem, where a cost function is to be minimized over a single variable. Our goal is
to shed some insight into the more complex general problem, where the cost function incorporates
arbitrarily many objectives to be minimized over a multiple-variable �eld.

2.1 Linear Weight Constraint

Let y1(z) and y2(z) be non-negative functions of a single state variable z. It may be assumed,
without loss of generality, that y1(z) = 0 and y2(z) = 0 for some (not necessarily the same) z.
These are the two objective functions. Let the overall cost function be a linear combination of the
objectives, de�ned by

e(�; z) = �y1(z) + (1� �)y2(z); 0 � � � 1:

For a given value of �, there will exist a value of z which minimizes e(�; z). Let that minimum value
be

e�(�) = min
z

e(�; z) = e(�; z�(�)):

Given �, one generally tries to �nd z�(�), the value with the minimum total cost. We can plot e�(�)
as a function of �, as shown in �gure 1. Since there exists some z such that y1(z) = 0, and the yi's
are non-negative, e�(1) = min y1(z) = 0. Likewise, e�(0) = 0.

-
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Figure 1: Total cost e�(�) vs. �. e�(�) is convex with e
�(0) = e

�(1) = 0.
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The total cost function must be convex, irrespective of the convexity of each objective function.
Let e�1 = e�(�1) and e�2 = e�(�2). Then for any � between 0 and 1, e�(��1 + (1 � �)�2) �
�e�1 + (1� �)e�2. The proof follows:

e�(��1 + (1� �)�2) = min
z

e(��1 + (1� �)�2; z)

= min
z

�
�(�1y1(z) + (1� �1)y2(z))

+ (1� �)(�2y1(z) + (1� �2)y2(z))
�

� �min
z

�
�1y1(z) + (1� �1)y2(z)

�
+ (1� �)min

z

�
�2y1(z) + (1� �2)y2(z)

�
= �e�1 + (1� �)e�2

Note that the proof does not depend on the convexity of either yi.
The main di�culty in choosing � is that if it is either too low or too high, one of the objective

functions will be inadequately represented in the total cost, and the total cost will be too low. One
way to ensure that the total cost will not be too low is to pick the maximum cost solution. That
is, �nd �� such that e� = e�(��) is maximized. This may seem at �rst to be far from optimal, but
if one recalls that e has already been minimized over z, it will be seen that the maximization over
� does make sense, while avoiding the problems of � excessively low or high. This is the Min{Max

Principle.

Note that if there exists a value of � not equal to zero or one for which the total cost is zero,
then the optimal cost found using the Min{Max Principle will also be zero. This follows from the
convexity of e�(�).

Let us see what the extremization of the total cost implies. If �� is the weight which maximizes
e�(�), then denote the value of the corresponding state variable by z� = z�(��). Since e�(�) is
maximized at ��, conclude that

0 =
d

d�
e�(�)

����
�=��

=
d

d�
e(�; z�(�))

����
�=��

=
@

@�
e(�; z�)

����
�=��

+
@

@z
e(��; z)

d

d�
z�(�)

����
�=��;z=z�

But the last term, @
@z

e(��; z), equals zero, because z minimizes e. Therefore,

0 =
@

@�
e(�; z�)

����
�=��

= y1(z
�)� y2(z

�):

Each objective function assumes the same cost value, although the weights � and 1 � � are not
necessarily identical, and the weighted contribution of each objective function will not in general be
identical.

2.2 Non-linear Weight Constraint

In this section we consider a variation on the previous solution technique in which the total cost
function is not a linear combination of the weights. Instead, let the weights of the objectives, when
squared, sum to a constant. The constant can be set to 1 without loss of generality. That is,

e(�; z) = �y1(z) +
p
1� �2y2(z); 0 � � � 1:

As before, the optimal value of z given � is z�(�), where e�(�) = minz e(�; z) = e(�; z�(�)). A plot
of e�(�) would look much the same as in the linear combination case, �gure 1. It can be shown that
e�(�) is convex.
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The Min{Max Principle requires that �� be found which maximizes the total cost, avoiding the
problems of � excessively low or high. As before, e� = max� e

�(�) = e�(��). Using the chain rule
for di�erentation we obtain:

0 =
@

@�
e(�; z�)

����
�=��

= y1(z
�)� �p

1� �2
y2(z

�):

After rearrangement,
1

�
y1(z

�) =
1p

1� �2
y2(z

�):

Each objective function, when divided by its weight, is equal. The weights � and
p
1� �2 will not

in general be equal, therefore, the objective functions will not be equal. Also, the objective function
with the greatest value will have the largest weight, so that its contribution to the total cost function
is further increased. This contrasts with the linear weight case discussed above.

3 General Case

In this section we consider the generalization to any number of objective functions and any dimen-
sionality state space. Replace the scalar variable z by a vector �eld z(x) de�ned over domain x. We
use a vector �eld for z because there may be more than one quantity of interest. For example, in
optical 
ow z would be the horizontal and vertical components of optical 
ow. In stereo z would
be the horizontal and vertical disparities. If the image model has other parameters, they may be
incorporated into z.

The two objective functions are replaced by n objective functionals

y(z) =

Z
L(z(x)) dx;

where L is a set of possibly non-linear operators on the vector �eld z. The weights are given by
vector ���, so that e(���; z) = ���Ty(z). The least cost solution for a given set of weights is z�(���),
yielding a total cost of e�(���) = minz e(���; z) = e(���; z�(���)). The cost functional is convex in ���. The
proof follows:

Let e�(���1) = e�1 and e�(���2) = e�2. e�(���) is convex if, for any � between 0 and 1, e�(����1 + (1�
�)���2) � �e�1 + (1� �)e�2.

e�(����1 + (1� �)���2) = min
z

e(����1 + (1� �)���2; z)

= min
z

(����1 + (1� �)���2)
Ty(z)

� min
z

����T1 y(z) + min
z

(1� �)���T
2 y(z)

= �e�1 + (1� �)e�2

The Min{Max Principle requires that we �nd ��� to maximize e�(���); the maximum is obtained at
����.

Note that if there exists a zero-cost solution with all positive weights, it will be found by the
Min{Max proceduire. This follows from the convexity of e�(���). Thus, in cases where there is an
obvious optimal solution, the proposed method will discover it. This property is independent of any
constraint on the weights, apart from the positivity assumption.

Usually, a constraint is needed for the weight vector ���. Otherwise, as ��� increases without limit, so
does the cost e�(���). Two methods of constraining ��� have been considered earlier. When generalized,
these correspond to

111T��� = 1 and j���j = 1;

where 111T = (1; 1; : : :) is a vector of 1's. In both cases we require that ��� � 0, that is, every component
of ��� must be non-negative. The �rst constraint forces the weights to lie on the hyperplane which is
tangent to 111 (and which passes through point 111= j111j). The second constraint forces the weights to
lie on the unit sphere.
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3.1 Linear Weight Constraint

We now investigate the behavior of the solution to the �rst problem. The weights are constrained
to lie on the hyperplane 111T��� = 1. Use the method of Lagrange multipliers, adjoining the total cost
functional e = ���Ty to the constraint to form

L = ���Ty + l(111T���� 1);

where l is the Lagrange multiplier. To extremize e, it must be true that

@L

@���
= yT + l111T = 000T

and
@L

@l
= 111T���� 1 = 0:

where 000T = (0; 0; : : :). This shows that y = �l111 = 111e�=n, which is constant for all components
of y. Therefore, all objective functionals achieve the same value when the total cost functional is
minimized.

3.2 Non-linear Weight Constraint

When the weights are constrained to lie on the unit sphere, the method of Lagrange multipliers
gives

L = ���Ty + l(���T���� 1):

Setting the partials to zero, we have

@L

@���
= yT + 2l���T = 000T

and
@L

@l
= ���T���� 1 = 0:

Therefore,
e� = ���Ty = �2l

and
y = e����:

The objective functionals are parallel to the weights, and every objective functional value, when
divided by the corresponding weight, is equal.

4 Conclusions

In this paper we have proposed methods for determining the weights in multiple-objective optimiza-
tion problems. The Min{Max Principle, which avoids the problems of extremely low or high weights,
was introduced. Expressions were derived relating the optimal weights, objective functional values,
and total cost.

The optimal weights are not described in closed form; they must be found by a search technique.
The Fibonacci search technique [5] is a good choice because the total cost is a unimodal function.
For each set of weights considered, the entire problem of determining the state z(���) must be solved.
This may be computationally intensive. However, if z is determined iteratively for each value of ���,
then the state z(���k) may be used as the initial guess for the next set of weights ���k+1. This should
greatly reduce the computation required.
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