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Abstract—Spectrum sensing is an important process in 
cognitive radio. A number of sensing techniques that have been 
proposed suffer from high processing time, hardware cost and 
computational complexity. To address these problems, 
compressive sensing has been proposed to decrease the processing 
time and expedite the scanning process of the radio spectrum. 
Selection of a suitable sparse recovery algorithm is necessary to 
achieve this goal. A number of sparse recovery algorithms have 
been proposed. This paper surveys the sparse recovery algorithms, 
classify them into categories, and compares their performances. 
For the comparison, we used several metrics such as recovery 
error, recovery time, covariance, and phase transition diagram. 
The results show that techniques under Greedy category are 
faster, techniques of Convex and Relaxation category perform 
better in term of recovery error, and Bayesian based techniques 
are observed to have an advantageous balance of small recovery 
error and a short recovery time.  

Keywords—Compressive Sensing; Sparse Recovery; Bayesian 
Compressive Sensing; Greedy Algorithms; Convex and Relaxation 
Algorithms.  

I. INTRODUCTION  
Next generation communication systems are expected to be 

smart and fast in sensing the wideband spectrum and identifying 
the free channels to use [1-2]. Over the last decades, a number 
of sensing techniques have been proposed, including energy 
detection [3], Matched filter [4], autocorrelation [5], 
autocorrelation based Euclidean distance [6], and Bayesian 
inference method [7]. These techniques are based on a set of 
Measurements sampled at the Nyquist rate by an Analog/Digital 
Converter (ADC), which can result in a very high processing 
time, hardware cost, and computational complexity [8]. In order 
to overcome these limitations, compressive sensing has been 
proposed as a solution to decrease the processing time and speed 
up the spectrum scanning process [9].  

Compressive sensing theory asserts that certain signals can 
be recovered accurately using fewer measurements than the 
Nyquist/Shannon sampling principle use. As shown in Fig.1, 
compressive sensing involves three main processes: sparse 
representation, measurement (encoding), and sparse recovery 
(decoding) [10]. 

The first process, sparse representation, consists of 
representing the signal by a number of projections on a suitable 
basis. For instance, Wavelet Transform (WT), Fast Fourier 
Transform (FFT), and Discrete Cosine Transform (DCT) are 
three examples of sparse representation techniques. A signal 𝑥 

is said to be 𝐾-sparse if only 𝐾 elements of its entries are non-
zero. Mathematically, this can be written as ∑‖𝑥‖% ≤ 𝐾, where 
‖. ‖% is the 𝑙1-norm and 𝐾 is the sparsity level of the signal. If a 
given signal is not sparse, a simple projection of this signal on a 
suitable basis can make it sparse. 

The second process, measurement, consists of taking only a 
few measurements 𝑦	 ∈ 𝑅. from the sparse signal 𝑥 ∈ 𝑅/. 
Mathematically, this can be seen as a multiplication of the sparse 
signal 𝑥 by a matrix	𝜙 ∈ 𝑅.×/, where the matrix ϕ is the 
measurement matrix, M is the number of measurements, and N 
is the length of the sparse signal with M<<N. During this 
reduction from  𝑅/ to 𝑅., compression must preserve the 
information stored in the 𝐾-sparse signal necessary to recover 
the original signal from these few measurements. Measurement 
matrices can be classified into two categories: random and 
deterministic matrices. Random matrices present some 
drawbacks such as costly hardware implementation. 
Deterministic matrices have been proposed as an alternative to 
reduce the randomness. Examples of Deterministic matrices 
include Toeplitz, Circulant matrices [11]. 

The last process, sparse recovery, aims to recover the sparse 
signal 𝑥 from a small set of  measurements 𝑦. Generally, the 
sparse recovery problem is an underdetermined system of linear 
equations that needs to be solved using sparse prior. Because this 
system is underdetermined, the existence and uniqueness of the 
solution are guaranteed as soon as the signal is sufficiently 
sparse, and the measurement matrix satisfies the Restricted 
Isometry Property (RIP) at a certain level [12]. Over the last 
decades, several sparse recovery algorithms have been proposed 
[13-24]. These algorithms can be classified into three main 
categories: Convex and Relaxation, Greedy, and Bayesian 
category.  

Several papers and surveys related to compressive sensing 
and its application in the context of cognitive radio have been 
published. For instance, [25] describes a comparison between 
greedy algorithms. In [26], the authors provided a survey of 
greedy recovery algorithms. Another survey on compressive 
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sensing and its application was published in [27]. All the 
aforementioned papers focus either on one of sparse recovery 
category or on one concept of compressive sensing. The authors 
in [28] provided a survey on the compressive sensing for 
cognitive radio. This survey covers all compressive sensing 
processes: sparse representation, measurement, and sparse 
recovery algorithms. To the best of our knowledge, a 
performance comparison between sparse recovery algorithms 
from all categories has not been published before. Thus, there is 
a need for detailed review papers that compare and analyze the 
current sparse recovery algorithms from all categories using 
different performance metrics. Therefore, in this paper, we 
propose a classification of these sparse recovery algorithms 
according to the approach that each one belongs and compare 
their performances. 

The remainder of this article is organized as follows. We first 
categorize the existing sparse recovery algorithms, then we 
review a few techniques under each category. The mathematical 
background of each algorithm is provided. Performance 
comparison between these algorithms is then investigated, after 
which concluding remarks are given. 

II. CLASSIFICATION OF SPARSE RECOVERY ALGORITHMS 
As shown in Fig. 2, sparse recovery algorithms can be 

classified into three main categories: Convex and Relaxation, 
Greedy, and Bayesian category. Techniques under the Convex 
and Relaxation category solve the sparse signal recovery 
problem through convex relaxation algorithms. Examples of 
these techniques include Basis Pursuit [13], Gradient Projection 
for Sparse Reconstruction (GPSR) [14], and Gradient Descent 
[15].  Greedy algorithms under the second category recover the 
sparse signal through an iterative process. Examples of these 
algorithms include Matching Pursuit (MP), Orthogonal 
Matching Pursuit (OMP) [16], Compressive Sampling Matching 
Pursuit (CoSAMP) [17], A*Orthogonal Matching Pursuit 
(A*OMP) [18], Stagewise Orthogonal Matching Pursuit 
(StOMP) [19], Generalized Orthogonal Matching Pursuit 
(GOMP) [20], and Iterative Hard Thresholding (IHT) [21].  The 
third category, Bayesian framework, solves the sparse recovery 
problem by taking into account a prior knowledge of the sparse 
signal distribution. Bayesian techniques can be classified into 
two types: MAP Estimation and Hierarchical Bayesian 
framework. MAP Estimation Framework underlines a 
distribution of the sparse signal 𝑥 and reconstructs it based on a 
few measurements. The Hierarchical Bayesian framework 
introduces one or more variables which control the sparse signal 
𝑥. For instance, Bayesian via Laplace Prior [22], Bayesian via 
Relevance Vector Machine [23], and Bayesian framework via 
Belief Propagation [24] are three examples of the hierarchical 
Bayesian techniques. 

III. METHODOLOGY 
As mentioned in the previous section, recovery algorithms 

can be classified into three categories: Convex and Relaxation, 
Greedy, and Bayesian category. From each category, we have 
implemented two algorithms. From the Convex and Relaxation 
category, we have implemented Basic Pursuit and Gradient 
Descent algorithms. From the Greedy category, we have 
implemented Orthogonal Matching Pursuit and Iterative Hard 
Thresholding algorithms. From the Bayesian category, we have 

implemented Laplacian prior and Relevance Vector Machine 
prior algorithms. 

A. Convex and Relaxation category 
1) Basis Pursuit 
 
Basis Pursuit algorithm finds the sparse vector x with the 

smallest 𝑙1-norm that satisfies the equation 𝜙𝑥 = 𝑦 by using 
convex optimization, where 𝑦	 ∈ 𝑅. are the observations, 𝜙.3/ 
is the measurement matrix, and 𝑥 ∈ 𝑅/ is the unknown sparse 
signal with M<<N [23]. This problem can be formulated as: 

 
𝑚𝑖𝑛‖𝑥‖%			𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜		𝜙𝑥 = 𝑦   (1) 

 
Where ‖𝑥‖% = ∑ |𝑥@|/

@A%  is the 𝑙1-norm and 𝑚𝑖𝑛‖𝑥‖%  represent 
the minimum l1-norm of 𝑥.  
Basis Pursuit is closely connected with linear programming. 
Therefore, the equation (1) becomes:  
 

𝑚𝑖𝑛 𝑐B𝑥 		𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝐴𝑥 = 𝑏	; 𝑥 ≥ 0   (2) 
 
Where cB𝑥 is the objective function , 𝑥 ≥ 0 is a set of bounds, 
𝐴 = (𝜙,−𝜙) , 𝑏 = 𝑦, and 𝑐 = (1,1). 
 
The dual program of the linear program (2) can be written as: 
 

maxbB𝑦 			subject	to	AB𝑦 + 𝑧 = c	; 𝑥 ≥ 0	  (3) 
 

Where z is called the dual variable and bB is the transpose of b. 
A fundamental theorem of linear programming states that (𝑥; 𝑦; 
𝑧) is a solution of  the linear program (2) if the primal 
infeasibility  ‖𝑏 − 𝐴𝑥‖Y, the dual infeasibility ‖𝑐 − 𝑧 − AB𝑦‖Y,  
and the duality gap 	cB𝑥 − bB𝑦 are all equal to zeros. 

 
 

 
Fig. 2. Classification of sparse recovery algorithms 

 
Fig. 2. Classification of sparse recovery algorithms 

 
 

Sp
ar

se
 R

ec
ov

er
y 

A
lg

or
ith

m
s

Convex and 
Relaxation

Basis Pursuit

Gradient Descent

GPSR 

Greedy

MP/OMP/COSA
MP/StOMP

A*OMP

IHT

Bayesian

MAP Estimation MCMC

Hierarchical 
Bayesian

Relevance Vector 
Machine

Laplace Prior

Belief 
Propagation



3 
 

2) Gradient Descent 
 

Gradient Descent is an iterative algorithm that finds the 
sparse solution for the problem (1) where the measurement 
matrix ϕ satisfies the Restricted Isometric Property (RIP) with  
an isometric constant δY\ < 1/3. This algorithm calculates 
iteratively a sparse signal 𝑥 ∈ 𝑅/ from few measurements 𝑦 ∈
𝑅. using:   

                           𝑥 = H\(𝑥 +
%
a
ϕbr) (4) 

Where γ = δY\ +1/3 , ϕb	is the transpose of  the measurement 
matrix ϕ, r is the residue whose expression is given by 	r = y −
ϕ𝑥, and  H\ is an operator that  keeps only the largest magnitude 
coordinates and sets all other values to zero.   

Gradient Descent algorithm starts by initializing the residue	𝑟 
to y,  𝑥	to zero, and the weight γ  to  4/3. Then it updates	𝑥	for 
the first iteration using the Eq. 3 and iterates until reaching 
stopping criteria. More details about this algorithm can be 
found in [15]. 

B. Greedy category 
1) Orthogonal Matching Pursuit  

 
Orthogonal Matching Pursuit is an iterative Greedy 

algorithm that computes the best nonlinear approximation of 
sparse solution for the problem (1). At each iteration, it locates 
the column k from the measurement matrix ϕ with the largest 
correlation with the residue 	r = y − ϕ𝑥 by taking the higher 
absolute value of the inner product calculated between each 
column and the residue using the following formula: 

 
                         𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥jkl𝜙B𝑟jlm (5) 

 
Where 𝜙B is the transpose of the measurement matrix ϕ. 

Then, the selected column 𝑘 is appended to the set 	𝑆 = 𝑆 ∪ {𝑘}. 
OMP then estimates the target variable by solving least-squares 
problem restricted to the columns in S and set all other 
components of  𝑥 to zero by using the following formula: 

 
(𝑥r@)	/s = (𝜙/t)u. 𝑦; (𝑥r@)	/sv = 0                (6) 

 
Where S is the set of selected columns,  𝑆w  denotes complement 
of the set S, ϕu denotes the pseudo-inverse of the matrix ϕ , 
and (𝜙/s)u = (𝜙/sB 𝜙/s)x%𝜙/sB  is the pseudo-inverse of the 
matrix 𝜙 restricted to the set S. 
 
The algorithm updates the residue  𝑟 = 𝑦 − 𝜙𝑥r	and iterates by 
selecting a new column to be added to the set until the stopping 
criteria are met [16].  
 

2) Iterative Hard Thresholding 
 

Iterative Hard Thresholding algorithm is yet another Greedy 
algorithm. It finds the sparse signal 𝑥 subject to the system of 

linear equation 𝑦 = 𝜙𝑥 where  𝑦 ∈ 𝑅. is an M-dimensional 
vector of measurements,  𝑥 ∈ 𝑅/ is the unknown signal to be 
recovered and 𝜙 ∈ 𝑅.×/ is the measurement matrix. It updates 
iteratively 𝑥 using: 

 
𝑥[z{%] = 𝐻s(𝑥[z] + 𝜙B(𝑦 − 𝜙𝑥[z]))  (7) 

 
Where Hs is a hard Thresholding operator that sets all the 
largest elements of 𝑥 in term of magnitude to zero, 𝑥[z] 
represent the value of 𝑥 at the iteration n, and 𝜙B is the 
transpose of the measurement matrix 𝜙. 
 

Iterative Hard Thresholding algorithm starts by an 
initialization of the 𝑥[~] = 0, then at the iteration 𝑛 + 1, it 
calculates the 𝑥[z{%] by calculating 𝑧z = 𝑥z + 𝜙B(𝑦 − 𝜙𝑥z), 
applying the operator Hs on 𝑧z and iterating until reaching a 
stopping condition [21]. 

 

C. Bayesian category 
1) Fast Laplace 

 
Bayesian compressive sensing requires a definition of a 

joint distribution of the hierarchical model 𝑝(𝑥, 𝛾, 𝛽, 𝑦). This 
joint distribution defined as follows in [22]: 

 
𝑝(𝑥, 𝛾, 𝛽, 𝑦) = 𝑝(𝑦/𝑥, 𝛽)	. 𝑝(𝑥/𝛾).	𝑝(𝛾).	𝑝(𝛽)  (10) 

 
Where 𝛽 = ��

Y
 is the inverse of noise variance, 𝛾	𝑎𝑛𝑑	𝛽 are 

hyperparameters, and the vector of observations 𝑦 is a Gaussian 
distribution with zero mean and variance equal to 𝛽x%: 
 

𝑝(𝑦/𝑥, 𝛽) = 𝑁(𝑦/𝜙𝑥, 𝛽x%)   (11) 
 
With a gamma prior placed on 𝛽 as follows: 

 
𝑝(𝛽/𝑎�, 𝑏�) = Γ(𝛽/𝑎�, 𝑏�) (12) 

 
The signal model is equivalent to using a Laplace prior on the 
coefficients 𝑥: 
 

𝑝(𝑥|𝛾) = �𝛾 2� �
/
exp�−𝛾 2� ‖𝑥‖%� (13) 
 

The Bayesian inference is given by: 
 

 𝑝(𝑥, 𝛾, 𝛽, 𝜆/𝑦) = 𝑝(𝑥/𝑦, 𝛾, 𝛽, 𝜆)𝑝(𝛾, 𝛽, 𝜆/𝑦)  (14) 
 

Since 𝑝(𝑥/𝑦, 𝛾, 𝛽, 𝜆) ∝ 𝑝(𝑥, 𝑦, 𝛾, 𝛽, 𝜆), then the distribution 
𝑝(𝑥/𝑦, 𝛾, 𝛽, 𝜆) is a multivariate Gaussian distribution 
 𝑁(𝑥/𝜇, ∑) with the parameters: 
 
𝜇 = ∑𝛽𝜙B𝑦 ,    ∑ = [𝛽𝜙B𝜙 +∧]x%,  and ∧= 𝑑𝑖𝑎𝑔(1/𝛾@) 

 
𝑝(𝛾, 𝛽, 𝜆/𝑦) = [𝑝(𝛾, 𝛽, 𝜆, 𝑦)/𝑝(𝑦)	]	∝ 𝑝(𝛾, 𝛽, 𝜆, 𝑦) is used to 
estimate the hyperparameters. We estimate these 
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hyperparameters by maximizing the joint distribution 
𝑝(𝛾, 𝛽, 𝜆, 𝑦)	or its logarithm	𝑙:  
𝑙=Log(𝑝(𝛾, 𝛽, 𝜆, 𝑦))= −%

Y
𝑙𝑜𝑔|𝐶| − %

Y
𝑦B𝐶x%𝑦 + 𝑁𝑙𝑜𝑔(𝜆) −

%
Y
∑𝛾@ +

�
Y
log ��

Y
� − log ���

Y
�� + ��

Y
− 1� log(𝜆) − �

Y
𝜆 +

�𝑎� − 1� log(𝛽) − 𝑏�𝛽  (15) 
   
The updates of other parameters can be found by solving  
 ��
��
= 0 and ��

��
= 0. The results are given by  

𝜆 =
/x%{��
∑ ��

�� {��
   (16) 

 

   𝛽 =
�
�{ 

¡

〈‖£¤¥¦‖�〉
� {¨¡

    (17) 

 
We can also estimate 𝜗 by maximizing (15) with respect to 𝜗, 
which results in solving the equation: 
 

log(𝜗) + 1 − 𝜓 ��
Y
� + log(𝜆) − 𝜆 = 0 (18) 

 
Babacan et al. [6] proposed to update only a single element 𝛾@ 
instead of updating the whole vector 𝛾. This proposition isn’t 
just decreasing the computational requirements, but also is 
promoting the sparsity. Thus, the logarithm of the joint 
distribution can be written as: 
 

𝑙 = 𝑙(𝛾) = −%
Y
«𝑙𝑜𝑔|𝐶x@| −

%
Y
𝑦B𝐶x@x%𝑦 +

�
Y
∑ 𝛾@j¬@ ­ +

%
Y
«𝑙𝑜𝑔 %

%{®�¯�
+ °��®�

%{®�Y�
+ 𝜆𝛾@­=	𝑙(𝛾x@) + ℎ(𝛾@)  
 

Where ℎ(𝛾@) =
%
Y
«𝑙𝑜𝑔 %

%{®�¯�
+ °��®�

%{®�Y�
+ 𝜆𝛾@­ with  𝑞@ and  𝑠@ are 

defined as: 
𝑠@ = 𝜙B

@𝐶x@
x%𝜙@         (19)  

 
  𝑞@ = 𝜙B

@𝐶x@
x%𝑦 (20) 

 
��
�®�

= �³
�®�

= 0 is satisfied at:  

𝛾@ =

⎩
⎪
⎨

⎪
⎧−𝑠@(𝑠@ + 2) + 𝑠@¸(𝑠@ + 𝜆)Y − 4𝜆(𝑠@ − 𝑞@Y + 𝜆)

2𝑠@Y𝜆
, 𝑖𝑓𝑞@Y − 𝑠@ > 𝜆

0																																																					, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
This algorithm starts by initializing all  𝛾@  and 𝜆 to zero, then  

tests if 𝑞@Y − 𝑠@ > 𝜆  and 𝛾@ = 0. If so, then 𝛾@ is added to the 
model. Otherwise, If 𝑞@Y − 𝑠@ > 𝜆  and 𝛾@ > 0, then the 
algorithm re-estimates	𝛾@; otherwise, if 𝑞@Y − 𝑠@ < 𝜆, then the 
algorithm prunes I from the model by setting 𝛾@ to zero. Finally, 
the algorithm updates ∑, 𝑞@, 𝑠@, 	𝑎𝑛𝑑	𝜆 by using the  Eq. 16, and  
𝜗 using the Eq. 18. 

 

 

2) Relevance Vector Machine 
 

Another probabilistic approach used to estimate the 
components of 𝑥 is Relevance Vector Machines (RVM) [23]. 
This algorithm uses a hierarchical prior to estimate a full 
posterior on 𝑥  and on the variance 𝜎Y, which defines a zero-
mean Gaussian prior on each element of 𝑥. Instead of using the 
inverse of noise variance, RVM models the prior on 𝑥	using the 
precision of a Gaussian density function 𝛼@ 

𝑝(𝑥 𝛼⁄ ) = ∏ 𝒩(𝑥@ ∕ 0, 𝛼@x%)/
@A% 	 (21) 

 
Where 𝒩(𝑥@/0,𝛼@x%) denotes the Gaussian distribution with a 
mean equal to zero and a variance 𝛼@x%. 
In addition, a Gamma prior is considered over 𝛼 as: 
 

𝑝(𝛼 𝑎, 𝑏⁄ ) = ∏ Γ(𝛼@ ∕ 𝑎, 𝑏)/
@A%  (22) 
 

Where Γ(𝛼@ ∕ 𝑎, 𝑏) denotes a gamma distribution. 
Similarly, a Gamma prior is considered over 𝛼~ = 1/𝜎Y:    
 

𝑝(𝛼~ 𝑐, 𝑑⁄ ) = ∏ Γ(𝛼~ ∕ 𝑐, 𝑑)/
@A%   (23) 

 
The logarithm of the marginal likelihood can be expressed 
analytically as: 
 
ℒ(𝛼, 𝛼~) = log�𝑝(𝑦 𝛼⁄ , 𝛼~)�

= logÄ𝑝(𝑦 𝑥⁄ , 𝛼~) �𝑝(𝑥 𝛼⁄ , 𝛼~)�𝑑𝑥

= −
1
2
[𝐾𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝐶| + 𝑦B𝐶x%𝑦] 

 
Where 𝐶 = 𝜎Y𝐼 + 𝜙 ∧x% 𝜙B ; ∧= 𝑑𝑖𝑎𝑔(1/𝛾@). 
Thus, the problem of recovering a sparse signal from few 
measurements in the context of Relevance Vector Machine 
becomes the search for the hyperparameters 𝛼 and 𝛼~. These 
hyperparameters are estimated using the EM algorithm: 
 

𝛼@zÇÈ =
𝛾@ 𝜇@�  (24) 
 

Where 𝜇@ = 1 − 𝛼@Σ@@ , Σ@@ is the 𝑖Ê³ diagonal element from Σ, 
and		𝑖 ∈ {1,2,3,…,N}. 

1
𝛼~zÇÈ� = ‖ËxÌÍ‖��

Îx∑ ®��
 (25) 

 

IV. RESULTS 
In this work, we consider a sparse signal of length 𝑁 = 1024 

that contains 𝐾 spikes randomly chosen. The measurement 
matrix used is a Toeplitz matrix whose size 𝛭 ×𝛮, where M is 
the number of measurements and N is the length of the sparse 
signal. Toeplitz matrix reduces the randomness and memory 
usage and it allows also fast acquisition and recovery. The sparse 
signal is considered noisy. The generation of  the Gaussian noise 
is done via a random number generator with a standard deviation 
𝜎Ñ = 0.005. For each sparsity level 𝐾 or a number of 
measurements 𝛭, we consider a Monte Carlo draws by 
repeating the same experiment 100 times for the same value of 
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𝐾 or 𝛭. In order to compare the performance of sparse recovery 
algorithms, we used four metrics: recovery error, recovery time, 
covariance, and phase transition diagram.  

Recovery error is a metric to evaluate the error between the 
original sparse signal and the recovered one. In order to calculate 
the recovery error, we used the following formula: 

Err = ‖3Ôx3Õ	‖Ö
‖3Ô‖Ö

 (26) 
 

Where 𝑥× is the original sparse signal and 𝑥Ø is the recovered 
sparse signal. 

Recovery time is a metric that measures the time needed by 
each algorithm to find the solution of the sparse recovery 
problem.  

 Covariance is a metric that reflects the correlation between 
the sensing matrix and the sparse signal. The covariance of 
(𝑥×,𝑥Ø) is given by: 

𝐶𝑜𝑣(𝑥×, 𝑥Ø) = Ε([𝑥× − Ε(𝑥×)][𝑥Ø − Ε(𝑥Ø)]) (27) 

Where	Ε	is the expectation,  𝑥× is the original sparse signal, 
and 𝑥Ø is the recovered sparse signal 

Phase transition diagram is a way to determine if a given 
recovery algorithm can provide good recovery capabilities. It 
can also be seen as a representation of the success of the sparse 
recovery algorithm in terms of the probability of success plotted 
in a phase space of the pair (ρ, δ), where δ=M/N corresponds to 
the number of samples acquired and ρ=K/M is a ratio of the 
sparsity level of the signal and the number of samples acquired. 
For instance, Restricted Isometric Property gives a relationship 
between the number of measurements, sparsity level, and size of 
the signal. In order to present these conditions in a clear way, the 
phase transition diagram can translate these requirements on the 
signal sparsity level, the size of the signal, and the number of 
measurements on a plot that separates the phase of success from 
the failure of recovery of the sparse signal. The explicit 
expression of the curve ρ (δ; Q) is given by Donoho et al. [29]. 
They consider the face numbers properties of the projected 
cross-polytope in order to define the formula of 𝜌(𝛿; 𝑄). This 
formula is given by: 

𝜌(𝛿; Q)= (2𝑙𝑜𝑔	(1/	𝛿))x% as 𝛿 → 0  (28) 

Where  δ=M/N, M is the number of measurements, and N is 
the length of the signal.  

In order to measure the asymptotic phase at a point (𝛿, 𝜌), 
we chose a sequence of (𝑁,𝑀, 𝐾) such that δ=M/N  and 𝜌 =
𝐾/𝑀. For each, we generate a Toeplitz matrix A of size 𝑀 ×𝑁 
and a random 𝐾-sparse signal 𝑥, attempted to recover 𝑥 from 
𝑦 = 𝜙𝑥 using the six algorithms. In each experiment, we 
performed Monte Carlo draws to documented the ratio successes 
to trials as: 

𝜋	â =
⋕ 𝑠𝑢𝑐𝑒𝑠𝑠𝑒𝑠
⋕ 𝑡𝑟𝑖𝑎𝑙𝑠  

Fig. 3 shows the recovery error of the six algorithms with 
respect to the number of measurements with a fixed sparsity 
level of the signal. When the number of measurement is very 
low, Basis Pursuit shows better performance than all other 
techniques. However, when the number of measurements is 

higher than 130, Bayesian techniques and Orthogonal Matching 
Pursuit show better performance in term of recovery error which 
decreases to reach the 0% when the number of measurements is 
larger than 170.   

Fig. 4 shows how the recovery error of these algorithms 
behaves when the sparsity of a sparse signal of length 1024 is 
changing, with a fixed number of measurements M=200. 
According to Fig. 4, as the sparsity of the signal increases, the 
recovery error of all algorithms increases. Fig. 4 also compares 
the recovery error of the six sparse recovery algorithms. As can 
be seen from this figure that Bayesian techniques Orthogonal 
Matching Pursuit and Basis Pursuit at low sparsity level (k<50) 
consistently achieve 0% of recovery error. As the sparsity 
increases, the recovery error of these algorithms increases, but 
they still show better performance compared to Gradient 
Descent and Iterative Hard Thresholding techniques.  

Fig. 5 shows that the behavior of the Bayesian techniques is 
opposite to those of Iterative Hard Thresholding and Basis 
Pursuit techniques. As the number of measurements increases, 
the recovery time of Bayesian techniques decreases. However, 
the recovery time for Basis Pursuit and Iterative Hard 
Thresholding techniques increases as the number of 
measurements increases.  

 
Fig. 4. Recovery error of sparse recovery algorithms with respect to sparsity 

 
 

 
Fig. 3. Recovery error of sparse recovery algorithms with respect to the 
number of measurements 
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Fig. 6 shows that Orthogonal Matching Pursuit and Gradient 
Descent techniques are faster than all other techniques for all the 
number of measurements and for all sparsity levels. As shown 
in this figure, for very low level of sparsity (k<20), Bayesian 
techniques are faster than all techniques except Orthogonal 
Matching Pursuit. However, when sparsity is higher than 50, the 
behavior of the recovery time of Bayesian technique via Laplace 
Prior increase significantly to become higher than those of the 
other techniques. However, Bayesian via Relevance Vector 
Machine technique recovers the signal with an average time 
below 0.1 sec. 

Fig. 7 shows that as the number of measurements increases, 
the covariance increases reaching 100% when the number of 
measurements is very high for Bayesian, Basis Pursuit, and 
Orthogonal Matching Pursuit techniques. On the other hand, 
Iterative hard Thresholding and Gradient Pursuit show lower 
correlation. 

Fig. 8 shows that the covariance is around 100% when 
sparsity is between 0 and 40 for Bayesian techniques, Basis 
Pursuit and Orthogonal Matching Pursuit techniques. The 
covariance decreases as the sparsity level of the signal increases. 

This figure also shows that the Basis Pursuit technique has better 
performance followed by Bayesian and greedy techniques. 

Fig. 9 shows the phase transition diagram of the six sparse 
recovery algorithms. As can be seen, Basis Pursuit shows best 
performance followed by Bayesian and greedy techniques. 

 
Fig. 8. Covariance of sparse recovery algorithms with respect to the 
sparsity 

 
 

 

 
Fig. 7. Covariance of sparse recovery algorithms with respect to the number 
of measurements 

 
 
 

 
 
 
 

 
Fig. 9. Phase Transition diagrams of sparse recovery algorithms 

 
Fig. 5. Recovery time of sparse recovery algorithms with respect to the 
number of measurements 

 

 
Fig. 6. Recovery time of sparse recovery algorithms with respect to sparsity 
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Table 1 summarizes the performances of the implemented 
sparse recovery algorithms. As one can see from this table, 
Orthogonal Matching Pursuit and Bayesian via relevance vector 
machine perform better than all other sparse recovery 
algorithms.  

TABLE I.  PERFORMANCE COMPARISON OF SPARSE RECOVERY 
ALGORITHMS  

 

V. CONCLUSION 
In this paper, we performed a comparison between six sparse 

recovery algorithms from Convex and Relaxation, Greedy and 
Bayesian category. The results show that the techniques under 
Greedy category are faster than the other techniques. However, 
techniques under Convex and Relaxation category perform 
better in term of finding the solution to the sparse recovery 
problem with small errors. Techniques under Bayesian category 
are a balance between small recovery error and short recovery 
time. Future work includes the application of the compressive 
sensing to scanning a wideband spectrum to develop a model for 
fast data acquisition. This model will be implemented using 
Universal Software Radio Peripheral (USRP) device and GNU 
radio Software. 
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Sparse Recovery algorithms 
Evaluation metrics 

Recovery 
Error  

Recovery 
time Covariance 

Basis Pursuit [13] Small Slow High 
Gradient  Descent [15]  High Fast Small 
Orthogonal Matching Pursuit [16] Small Fast High 
Iterative Hard Thresholding [21] High Slow Small 
Bayesian via Fast Laplace [23] Small Slow High 
Bayesian via Relevance Vector 
Machine [24] 

Small Fast High 


