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Abstract—Convolution neural network is being used in field
of autonomous driving vehicles or driver assistance systems
(ADAS), and has achieved great success. Before the convolution
neural network, traditional machine learning algorithms helped
the driver assistance systems. Currently, there is a great
exploration being done in architectures like MobileNet,
SqueezeNext & SqueezeNet. It improved the CNN architectures
and made it more suitable to implement on real-time embedded
systems. This paper proposes an efficient and a compact CNN
to ameliorate the performance of existing CNN architectures.
The intuition behind this proposed architecture is to supplant
convolution layers with a more sophisticated block module and
to develop a compact architecture with a competitive accuracy.
Further, explores the bottleneck module and squeezenext basic
block structure. The state-of-the-art squeezenext baseline
architecture is used as a foundation to recreate and propose a
high performance squeezenext architecture. The proposed
architecture is further trained on the CIFAR-10 dataset from
scratch. All the training and testing results are visualized with
live loss and accuracy graphs. Focus of this paper is to make
an adaptable and a flexible model for efficient CNN
performance which can perform better with the minimum
tradeoff between model accuracy, size, and speed. Having a
model size of 0.595MB along with accuracy of 92.60% and with
a satisfactory training and validating speed of 9 seconds, this
model can be deployed on real-time autonomous system
platform such as Bluebox 2.0 by NXP.

Index Terms—Squeeze-and-Excitation SqueezeNext
architecture(SE-SqueezeNext), Convolution Neural Networks
(CNN), Deep Neural Networks (DNN), SqueezeNext, SqueezeNet,
CIFAR-10, Pytorch.

I. INTRODUCTION

Most of the applications in real-time such as computer
vision, robotics, image recognition and classification [10],
autonomous vehicles and ADAS have been transformed with
help of Deep Neural Networks. This has been made possible
by undergoing deep research in this field over the past
decade with the availability of more training data, and for
training and validation having faster hardware. But not great
amount of work is done in aspects of model size and speed.
There is a down side to DNNs that it require more budget of
resources that refers to more computation and memory
resources. Most recentlyy, DNN attained a bewildering
benchmark of accuracy at 99% with GPipe [19]. With the
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emergence of macro architectures such as SqueezeNet,
SqueezeNext and MobileNet, DNNs can be implemented on
embedded systems [16]. SqueezeNet uses the fire module’s
squeeze and expand layer approach to design a smaller and
shallow CNN architecture but it comes at a cost of model
accuracy which is about 78%. Though, SqueezeNext
achieves better results but it still can be improved as
suggested by the author of this architecture with further
hyperparameter tuning and modifications. This paper
proposes an efficient network architecture in order to a build
very small, efficient DNN model that is the proposed
Squeeze-and-Excitation SqueezeNext architecture. Structure
of the paper is as follows. In section II, we discuss about the
foundation and existing architectures i.e., SqueezeNet and
SqueezeNext. Followed by section III describes the proposed
Squeeze-and-Excitation architecture. Section IV explains the
hardware and software used to train and test the proposed
architecture. Section V shows the experimental results
obtained after training and validating the proposed neural
network using CIFAR-10 dataset. Finally, the paper
conclusion is made in section VI that demonstrates the
wholesome overview of the paper.

II. PREVIOUS WORK
A. SqueezeNet Architecture

This section reviews the SqueezeNet architecture [3]
which achieves a better model performance than AlexNet
with 50x fewer parameters when trained on ImageNet. A
SGD optimizer is used with a small learning rate where
there is no proper scheduling of learning rate included.
When 1x1 kernels are used it lead to the model depth
reduction as a result lead to computation reduction of the
3x3 filters. Deploying this model on a real time embedded
system is easy as it has a model size less than SMB. The
parameter count is reduced greatly because of the lack of
Fully Connected(FCC) layer. Instead, the class classification
scores are calculated using softmax function and an average
pooling layer. The foundation modules for this CNN
architecture are fire modules. Due to these modules, it
achieved a very small model size with better model accuracy.
Further, SqueezeNet version 1.1 was introduced later which
further reduced the parameter count by reducing the number
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of kernels and kernel sizes. The result of this reduction is
2.4 times better than the baseline SqueezeNet v1.0 with no
affect on the accuracy of the model. Motivation from the
incredibly small macro architecture of SqueezeNet helped in
some modifications of the proposed architecture.
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Fig. 1: Fire module of SqueezeNet and bottleneck module of
SqueezeNext.

B. SqueezeNext Architecture

This architecture matches the model performance of
AlexNet with 112x fewer parameters when trained on
ImageNet. It is also able to match VGG-19 accuracy with
31x fewer parameters than VGG-19. The foundation module
for this CNN architecture is the bottleneck module.
Squeezenext baseline architecture [4] emerged after the
advent of the squeezenet architecture. Squeezenext uses
squeezenet baseline as its foundation and consists of the
following strategies:

1) More aggressive channel reduction by introducing a
2-stage squeeze module, further reducing number of
parameters used with the 3x3;

2) 3x3 separable convolutions, and remove the additional
1x1 branch after the squeeze module to reduce the model
size;

3) An element-wise addition skip connection similar to
ResNet architecture.
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Fig. 2: Baseline architecture of SqueezeNext.

Squeezenext baseline architecture comprises of bottleneck
modules with four stage implementation, batch normalization
layers, Relu and Relu (in-place) nonlinear activations, max,
and average pool layers, Xavier uniform initialization, a
spatial resolution layer and a fully connected layer in the last
with this [6,6,8,1] four stage block configuration. In fact, a
better model accuracy and size is attained in comparison to
squeezenet baseline architecture. The squeezenext baseline

[6,6,8,1] architecture configuration shown in Fig. 2 that
illustrates the squeezenext baseline architecture implemented
on the CIFAR-10 dataset with input size 32x32 and 3 input
channels. This is the input for the first convolution, the white
block. Now, the output of the first convolution is the input
for a max pooling layer after the first convolution, not shown
in Figure 3, but shown in Figure 6. The consecutive different
colored blocks that are dark blue, blue, orange and yellow
blocks after the first convolution and max-pooling represents
the four-stage configuration implementation followed by a
green block, representing the spatial resolution layer and the
average pooling layer. Finally, followed by one black block
that is a fully connected layer. The color change in the four
stage implementation configuration blocks that are dark blue,
blue, orange and yellow blocks depict a change in the input
feature maps resolution.

III. SQUEEZE-AND-EXCITATION SQUEEZENEXT
ARCHITECTURE

The proposed Squeeze-and-Excitation SqueezeNext is a
CNN model. Motivation for this architecture is through
SqueezeNet, Mobilenet [S5] and SqueezeNext architectures.
This contains basic blocks organized in 4-stage configuration
called bottleneck modules, a squeeze-and-excitation(SE)
block [6], average pooling layer, fully connected layer and a
spatial resolution layer. Nestrov [9], decay and momentum
are implemented with SGD optimizer. We implemented
learning rate schedule which is exponentially decaying by
updating learning rate in four stages: Ist after 60 epochs,
2nd after 120 epochs, 3rd after 150 epochs and last after 180
epochs. As shown in Fig. 6, the bottleneck module contains
a basic block with 1x1 convolution, another basic block with
1x1 convolution, basic block with 3x1 convolution, basic
block with 1x3 convolution, last basic block with 1x1
convolution and finally a se block. From Fig.3, basic block
contains convolution layer followed by BN layer [8] &
ReLu-in-place. Here basic blocks line up convolutions
enclosed by bottleneck modules which are grouped and
organized in the 4-stage implementation configuration along
with a spatial layer, dropout layer [11], se block, average
pool layer and a fully connected layer are shown in Fig. 5.
To reduce the parameter count, spatial layer can be
eliminated in the small sized models of the proposed
architecture.

The descriptions of two parameters which helped in
shrinking the model are given as follows along with the
squeeze-and-excitation(SE) block. The [1,2,4,1] 4-stage
configuration of the SE-SqueezeNext architecture is
illustrated in Fig. 7. The Squeeze-and-Excitation
SqueezeNext bottleneck module containing basic blocks with
SE blocks included are illustrated in Fig. 6. Table V presents
the  SE-SqueezeNext table with [1,24,1] 4-stage
configuration, spatial resolution, dropout layer, SE block and
FC convolution. In comparison with SqueezeNext baseline
architecture, different basic block is being used by the
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Fig. 3: Basic block of SqueezeNext baseline, Basic block of
SE-SqueezeNext and SE block.

bottleneck module in this architecture which is shown in Fig.
3.

A. Squeeze-and-Excitation block

The structure of the SE block is depicted in Fig. 4. For
any given transformation F; mapping the input X to the
feature maps U where U € RIXWXC "eo a convolution,
we can construct a corresponding SE block to perform
feature recalibration. A squeeze operation is done through
which the features U are first passed, then by aggregating
feature maps across their spatial dimensions HxW a channel
descriptor is produced. This descriptor primarily generates an
embedding of the global distribution of channel-wise feature
responses which allows all its layers to use the information
from the global receptive field of the network. After the
aggregation is performed, a simple self-gating mechanism
where a collection of per-channel modulation weights are
produced by taking the embedding as an input. This is the
excitation operation. The above obtained weights are used to
produce the output of the SE block by applying to the
feature maps. This can be loaded into subsequent layers of
the network.

Fig. 4: Structure of SE block

B. Dropout layer

This layer is used to improvise the overfitting problem
existing in CNNs or neural networks. This is a regularization
method for approximation and dropping some random
weight from large set of weights in a CNN or neural
network. A DNN or a deep CNN trained on a small dataset
(lack of data) can result in overfitting problem which results
in poor performance and increase generalization problem or
errors due to the problem of over fitting. This is a simple
approach to reduce overfitting in a CNN and improve the
performance of DNN/CNN.

C. Resolution Multiplier

To reduce the cost of computation of a neural network,
this multiplier is used. Resolution multiplier ultimately
reduces the internal representation of each layer and is
applied to input image. Generally, value of the input
resolution is set absolutely. Reduced DNN models/
architectures are generated if the value is less than 1. The
cost of computation is reduced by the square of this
parameter. In this paper, we used the values of 6, 7, 8, 10,
11, 12, 14, 16, 21 & 23.

D. Width Multiplier

To design smaller and less computationally expensive
models, width multiplier is used. At each layer, this also
helps for making a unvarying thin CNN. Default or general
values for width multiplier are 0.25, 0.5, 0.75 and 1. It is the
key element for decreasing the cost of computation and
parameter count. Mathematically, it is quadratically reduces
it by two times the power of width multiplier.

Basic Block
- Basic Block 1 sl Stage 1 Average Pool st FC Comvolution |
o STSEATRGSY 4 |
Batch Normalization in Stage 2 SEBlock |
place & i 1
Stage e "
ReLu in place [_‘3_| ¥ =l Output
SE Block [ 5Bged fes| BasicBiock2 |

Input

Fig. 5: Illustration of Basic Block (left) and Squeeze-and-Excite
SqueezeNext architecture.
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IV. HARDWARE AND SOFTWARE REQUIREMENTS

e Aorus Geforce RTX 2080Ti GPU.

o Nvidia Geforce GTX 1080Ti GPU.

o Python version 3.6.7.

o Spyder version 3.6.

o Pytorch version 1.0.

o Livelossplot (Loss and accuracy visualization).
o Netscope (SqueezeNext baseline visualization).
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Fig. 7: 4-stage [1,2,4,1] configuration of the Squeeze-and-Excitation
SqueezeNext architecture.

V.R ESULTS
A. Squeeze-and-Excitation SqueezeNext Results

Efficient CNN architectures are generated due to the
modifications in the proposed architecture, which is tangible
as SE-SqueezeNext having a model sizes ranging from
0.595MB to 6.59MB as shown in Table III. When compared
to baseline Squeezenext’s model size i.e., 9.531MB, the
proposed SE-Squeezenext architecture has a reduced model
size of 0.595MB. Few major factors leading to this reduction
of model size are various resolution and width multipliers.
From the observations, dropout layer performance is finer
than BN layer. The detailed description of squeeze and
excitation operators in SE block are as follows:

1) Squeeze Operator:: The significance of using global
average pooling over global max pooling as our squeeze
operator is examined. Average pooling [21] achieves better
performance than max pooling, even though both are
effective. The basis of squeeze operation is justified by
selecting average pooling. However, we note that the
performance of SE blocks is fairly robust to the choice of
specific aggregation operator.

2) Excitation Operator:: The option for non-linearity in
the excitation mechanism is assessed here. Two further
options: LeakyReLU and Tanh are considered, and
experiment with replacing the sigmoid with these alterantive
non-linearities. By interchanging the sigmoid with Tanh
slightly worsens the performance, where LeakyRelu is
emphatically worse and causes the performance of
SE-SqueezeNext to drop below the baseline of SqueezeNext.
This propounds that for the SE block to be efficient, careful
selection of excitation operator is important.

Useful modifications to produce small DNNs and
deployable on real time embedded devices are resolution and
width multipliers. Therefore, SE-SqueezeNext-10-0.5 is 16X
compact than SqueezeNext-23-1x-v1. This architecture is
made more efficient, flexible and compact by implementing
in-place operations such as Relu-in-place and eliminating the
extra max pooling layers using a SE block, width and
resolution multipliers. Without using the transfer learning

method, each model is validated on CIFAR-10 from the
scratch. Deployment on a real-time system having memory
constraints is the major advantage of this architecture. The
accuracy of this architecture is enhanced by dropout layer.
The format for SE-SqueezeNext in all the tables illustrates
SE-SqueezeNext with resolution multiplier along with width
multiplier.

From the results presented in Table I, it is observed that SE-
SqueezeNext with dropout layer along with appropriate use
of multipliers and a large difference is made by bottleneck
module. Different dropout layer probabilities results of SE-
SqueezeNext are presented in Table IV. Different accuracies
for various models are shown in Table V.

TABLE [I: Results comparison with SqueezeNet &
SqueezeNext
[ Name of Model [ Accuracy% | Size of model(MB) [ Speed of model ds) |
| SqueezeNet-v1.0 | 79.59 | 3.01 | 4 |
[ SqueezeNet-v1.1 [ 77.55 [ 2.96 [ 4 |
[ SqueezeNext-23-1x-vl | 87.15 [ 2.57 [ 19 |
[ SqueezeNext-23-1x-v5 [ 87.95 | 2.57 [ 19 |
[ SqueezeNext-23-2x-vI | 90.51 I 9.53 I 22 |
[ SqueezeNext-23-2x-v5 | 90.50 [ 9.53 [ 28 |
[ SE-SqueezeNext-10-1.0x-vI | 90.48 [ 1.81 [ 13 |
[ SE-SqueezeNext-10-2.0xvI | _ 92.60 6.59 \ 2 \

*All results are 3 average runs with SGD, LR is 0.1

TABLE II: Squeeze-and-Excitation SqueezeNext Results withdifferent
resolution multipliers

Name of Model [ Accuracy% | Size of Model(MB) | Speed of ) |
| SE-SqueezeNext-06-1x-vI | 1111 [ 87.84 | 1.22 | 9 |
[ SE-SqueezeNext-10-1x-vI | 1241 [ 90.48 [ 1.81 [ 13 |
[ SE-SqueezeNext-1Z-Ix-vI | 1261 | 9050 | 216 \ 5 \
[ SE-SqueezeNext-14-1x-vI | 1281 [ 89.93 [ 2.52 [ 16 |
[ SE-SqueezeNext-22-1x-vI [ 12161 | 80.69 [ 3.94 [ 25 |
[ SE-SqueezeNext-23-Ix-vI | 22161 | SL4T | 397 \ %6 \

*Results obtained are 3 average runs with LR, SGD as 0.1

TABLE II: Different width multipliers results of Squeeze-
and-Excitation SqueezeNext

[ Name of Model [ Width | Accuracy% | Size of Model(MB) | Speed of Model(seconds) |
| SE-SqueezeNext-10-0.5x-v1 | 0.5x | 86.71 | | 10 |
[ SE-SqueezeNext-10-0.6x-vI [ 0.6x | 88.18 [ 0.760 [ 11 |
[ SE-SqueezeNext-10-0.7x-v1 [ 0.7x | 89.39 [ 0.968 [ 12 |
[ SE-SqueezeNext-10-0.8x-v1 | 0.8x | 90.33 [ 121 [ 12 |
[ SE-SqueezeNext-10-0.9x-vI | 0.9x | 89.79 [ 1.48 [ 13 |
[ SE-SqueezeNext-10-1.0x-vI [ 1.0x | 90.48 [ 1.81 [ 13 |
[ SE-SqueezeNext-10-1.2x-v1 | 1.2x | 91.04 [ 248 [ 15 |
[ SE-SqueezeNext-10-1.5x-vl | 1.5x | 92.07 [ 3.81 [ 16 |
[ SE-SqueezeNext-10-1.7x-v1 | 17x | 92.10 [ 4.78 [ 18 |
[ SE-SqueezeNext-10-2.0x-v1 | 2.0x | 92.60 [ 6.59 [ 21 |

TABLE 1V: Different dropout layer probabilities results of
Squeeze-and-Excitation SqueezeNext

[ Name of Model [ dropout (p) | Accuracy% | Size of Model(MB) | Speed of Model(seconds) |
| SE-SqueezeNext-10-1x-vI | 0.1 | 91.06 | 2.16 | 15 |
[ SE-SqueezeNext-10-Tx-vI | 0.2 [ 90.33 [ 2.16 [ 15 |
[ SE-SqueezeNext-10-1x-vl | 0.3 [ 90.46 [ 2.16 [ 14 |
[ SE-SqueezeNext-10-Tx-vI | 0.4 [ 90.06 [ 2.16 [ 14 |
[ SE-SqueezeNext-10-1x-vI | 0.5 [ 90.22 [ 2.16 [ 13 |
[ SE-SqueezeNext-10-1x-vl | 0.6 [ 90.53 [ 2.16 [ 13 |
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Fig. 8: Accuracy plots comparison with baseline architectures

VI. CONCLUSION

It is evident from the results that there is a tradeoff
between model’s size, accuracy and speed for different
resolution and width multipliers. We can also observe that
there is no change in the accuracy of model upon reducing
the depth of model. Selection of hyperparmeters such as
width and resolution multipliers are the primary factors in
loss minimization, obtaining a good size and an accurate
model. From the results, the performance of SGD optimizer
along with nestrov, decay and momentum are observed to be
better than other terms. Proposed architecture was trained
and validated on CIFAR-10 with a better model size of
0.595 MB which is 6x better than SqueezeNet Baseline &
16x better than SqueezeNext baseline. A best model speed of
9 sec which is 10 sec better than SqueezeNext baseline and
at the same time similar to SqueezeNet baseline. As an
extension to this work, for increasing the performance of this
architecture transfer learning and data augmentation [12],
[22] can be used.
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TABLE V: Squeeze-and-Excitation SqueezeNext architecture [1,2,4,1] four stage configuration

Layer Name Input Size Padding Stride Filter size Output size Repeat Parameters
Wi x Hi x Ci Pw x Ph Kw x Kh WO x HO x CO
[ Convolution 1 [ 32x32x3 [ 0x0 [ 1 [ 3x3 [ 30x30x64 [ 1 [ 1792 |
[ Convolution 2 [ 30x30x64 [ 0x0 [ 1 [ Ix1 [ 30x30x16 [ 1 [ 1040 |
[ Convolution 3 [ 30x30x16 [ 0x0 [ 1 [ 1x1 [ 30x30x8 [ 1 [ 136 |
[ Convolution 4 [ 30x30x8 [ Ox1 [ 1 [ 1x3 [ 30x30x16 [ 1 [ 400 |
[ Convolution 5 [ 30x30x16 [ 1x0 [ 1 [ 3x1 [ 30x30x16 [ 1 [ 784 |
[ Convolution 6 [ 30x30x16 [ 0x0 [ 1 [ Ix1 [ 30x30x32 [ 1 [ 544 |
[ SE Layer 27 [ 30x30x32 [ - [ - [ - [ 30x30x32 [ 1 [ - |
[ Convolution 32 [ 30x30x32 [ 0x0 [ 2 [ Ix1 [ 30x30x32 [ 1 [ 1056 |
[ Convolution 33 [ 15x15x32 [ 0x0 [ 1 [ Ix1 [ 15x15x16 [ 1 [ 528 |
[ Convolution 34 [ 15x15x16 [ Ox1 [ 1 [ 1x3 [ 15x15x32 [ 1 [ 1568 |
[ Convolution 35 [ 15x15x32 [ 1x0 [ 1 [ 3x1 [ 15x15x32 [ 1 [ 3104 |
[ Convolution 36 [ 15x15x32 [ 0x0 [ 1 [ Ix1 [ 15x15x64 [ 1 [ 2112 |
[ Convolution 37 [ 15x15x64 [ 0x0 [1 [ Ixl [ 15x15x32 [1 [ 2080 |
[ Convolution 38 [ 15x15x32 [ 0x0 [1 [ Ixl [ 15x15x16 [1 [ 528 |
[ Convolution 39 [ 15x15x16 [ 1x0 [1 [ 31 [ 15x15x32 [1 [ 1568 |
[ Convolution 40 [ 15x15x32 [0l [1 [ 1x3 [ 15x15x32 [1 [ 3104 |
[ Convolution 41 [ 15x15x32 [ 0x0 [1 [Ixl [ 15x15x64 [1 [2112 |
‘ SE Layer 52 ‘ 15x15x64 ‘ - ‘ - ‘ - ‘ 15x15x64 ‘ 1 ‘ - ‘
‘ Convolution 62 ‘ 15x15x64 ‘ 0x0 ‘ 2 ‘ 1x1 ‘ 15x15x64 ‘ 1 ‘ 4160 ‘
‘ Convolution 63 ‘ 8x8x64 ‘ 0x0 ‘ 1 ‘ 1x1 ‘ 8x8x32 ‘ 1 ‘ 2080 ‘
‘ Convolution 64 ‘ 8x8x32 ‘ 1x0 ‘ 1 ‘ 3x1 ‘ 8x8x64 ‘ 1 ‘ 6208 ‘
‘ Convolution 65 ‘ 8x8x64 ‘ 0x1 ‘ 1 ‘ 1x3 ‘ 8x8x64 ‘ 1 ‘ 12352 ‘
‘ Convolution 66 ‘ 8x8x64 ‘ 0x0 ‘ 1 ‘ 1x1 ‘ 8x8x128 ‘ 1 ‘ 8320 ‘
[ Convolution 67 [ 8x8x128 [ 0x0 [1 [ Ixl [ Sx8x64 [7 [57792 |
[ Convolution 68 | 8x8x64 [ 0x0 [ 1 [ Ix1 [ 8x8x32 [ 7 [ 14560 |
[ Convolution 69 [ 8x8x32 [ 1x0 [1 [ 3 [ Sx8x64 [7 [ 43456 |
[ Convolution 70 | 8x8x64 [ Ox1 [ 1 [ 1x3 | 8x8x64 [ 7 | 86464 |
[ Convolution 71 [ 8x8x64 [ 0x0 [1 [ Ixl [ 8x8x128 [7 [ 58240 |
[ SE Layer 75 [ 8x8x64 [- [- [- [ Sx8x64 [1 [- |
[ Convolution 102 [ 8x8x128 [ 0x0 [2 [1xl [ 8x8x128 [1 [ 16512 |
[ Convolution 103 [ 4x4x128 [ 0x0 [1 [ Ixl [ 4xdx64 [1 [ 8256 |
[ Convolution 104 [ axdx64 [0l [1 [ 1x3 [ 4x4x128 [1 [ 24704 |
[ Convolution 105 [ 4x4x128 [ 1x0 [1 [ 3 [ 4x4x128 [1 [ 49280 |
[ Convolution 106 [ 4x4x256 [ 0x0 [1 [ Ixl [ 4x4x256 [1 [ 65792 |
[ Convolution 107 [ 4x4x256 [ 0x0 1 [ Ixl [ 4x4x128 [1 [ 32806 |
[ SE Layer 123 [ 8x8x256 [ - - [ - [ 8x8x256 [1 [ - |
[ Dropout (p=0.6) [ 4x4x256 [ - - [ - [ 4x4x256 [1 [ - |
[ Average Pool [ 4x4x256 [ - - [ - [ 4x4x256 [1 [ - |
[ Fully Connected Convolution [ 1x1x128 [ 0x0 [1 [ Ix1 [ 1x1x10 [1 [ 1290 |

* Wi, Hi, Ci refer to input width.

, height and number of channels, Pw, Ph refer to padding width and height, Kw, Kh refer
to filter or kernel width and height, WO, HO, CO refer to output width, output height and output number of channels



