
Adapting a Container Infrastructure for
Autonomous Vehicle Development

Yujing Wang
Department of Mechanical and Mechatronics Engineering

University of Waterloo
Waterloo, ON, Canada

yj9wang@edu.uwaterloo.ca

Qinyang Bao
Department of Mechanical and Mechatronics Engineering

University of waterloo
Waterloo On, Canada

q7bao@edu.uwaterloo.ca

Abstract—In the field of Autonomous Vehicle (AV) develop-
ment, having a robust yet flexible infrastructure enables code to
be continuously integrated and deployed, which in turn accel-
erates the rapid prototyping process. The platform-agnostic and
scalable container infrastructure, often exploited by developers
in the cloud domain, presents a viable solution addressing this
need in AV development. Developers use tools such as Docker
to build containers and Kubernetes to setup container networks.
This paper presents a container infrastructure strategy for AV
development, discusses the scenarios in which this strategy is
useful and performs an analysis on container boundary overhead,
and its impact on a Mix Critical System (MCS). An experiment
was conducted to compare both operation runtime and commu-
nication delay of running a Gaussian Seidel Algorithm with I/O
in four different environments: native OS, new container, existing
container, and nested container. The comparison reveals that
running in containers indeed adds a delay to signal response time,
but behaves more deterministically and that nested container does
not stack up delays but makes the process less deterministic.
With these concerns in mind, the developers may be more
informed when setting up the container infrastructure, and take
full advantage of the new infrastructure while avoiding some
common pitfalls.

Index Terms—Autonomous Vehicle, Container, Docker, De-
terministic, realtime, Continous Integration, Kubernetes, Mixed
Critical System

I. INTRODUCTION

Agile, a new approach to software development, has been
quickly winning favors with cloud developers over the tradi-
tional waterfall model. In agile practice, software developers
write code, run it through CI/CD pipelines, integrate daily,
and deploy as soon as a new feature needs to be tested [1].
This practice gives developers chances to test newly developed
prototypes in all kinds of scenarios much more frequently. As
a result, more iterations can be performed, and more bugs
can be discovered in the meantime; thus, increasing both the
quality and speed of the software. Applying agile practice to
AV development is a bit more challenging; however, software
technologies used on an AV often come from a wide range of
temporal criticality: from low-level safety-critical mechanical
controls to embedded realtime systems to high-level perception
models, as well as mid-level networking applications. Fearing
to mess up the temporal separation in an MCS, developers are
generally hesitant to devise a unified infrastructure strategy.
Furthermore, the business practice of modularizing teams

into fine-grained functional unit also enhances the status quo
mindset where things should be done as it is. As a result,
each team must perform repetitive adaptation processes for
each vehicle during each iteration. This repetitive procedure
greatly slows down the development and testing feedback loop.

A well-designed container infrastructure removes these
overheads and allows developers to build once and run on
any platform. The accelerated build and test cycle makes con-
tinuous delivery of new features in response to ever-changing
requirements possible [1]. The idea of a container first came
from Linux namespace, which makes dedicating an exclusive
resource set for a task possible [2]. Docker later came out to
streamline the resource isolation process. Docker packages all
software dependencies and running mechanism into an isolated
environment called ”image” Each software dependency or
each step of the running mechanism is a layer in the image [3].
To update the image, Docker updates the corresponding layer
without making modifications to the rest of the image. Docker
then deploys such an image into containers independent from
other containers and the host environment. Docker daemon
supplies the needed resource from the host machine to each
container, thereby saving the developer from having to deploy
an entire OS for each application, which is necessary for a
virtual machine infrastructure, as shown in Fig. 1.

Fig. 1: Containers vs Virtual Machine Infrastructure [4]

As the number of containers increases, the need for es-
tablishing an efficient container network becomes crucial,
especially for AV, where the storage and computing power
is highly constrained. Kubernetes is an open source container
orchestration tool, that lets the developer manage a network

ar
X

iv
:1

91
1.

01
07

5v
2 

 [
cs

.S
E

] 
 1

9 
N

ov
 2

01
9



of containers [2]. Kubernetes reads declarative configurations
from YAML files, in which the developer has specified the
desired state. Knowing the current state and the desired
state, Kubernetes works its way towards the desired state
[5]. Kubernetes automates the tedious process of spawning,
updating, and healing any number of containers. Moreover, it
lets developers provision system resources for any containers.
Fig. 2 depicts the master workers architecture of Kubernetes
[6]. The master node accepts the command from the user,
stores configuration, schedules pods, and realizes actions by
sending signals to worker nodes. Worker nodes are connected
to the master through Kube-proxy. Once a signal is received
from the master node, Kubelet in each worker node executes
the action accordingly.

Fig. 2: Architecture of Kubernetes [6]

This paper will present the scenarios in which a container
infrastructure benefits AV development, examine the resource
and time overhead each container layer adds.

II. ARCHITECTURE AND APPLICABLE SCENARIOS

A. Multiple Variation for one Scenario

In an AV, complex tasks such as lane changing, parking,
and merging/yielding actions rely on a line of agents operating
on data: data are collected, analyzed, and according to which
actions are executed. Most actions are performed by local
agents; some are performed by remote agents connected to
each vehicle via the internet. By utilizing cloud computing, a
vehicle can perform much more powerful data analysis that
the limited local resource cannot support. This combination
of local and remote agents mix makes up a Cyber Physical
System (CPS) [7]. Fig. 3 shows the data processing line.

Located at the very beginning of the pipeline are the data
collectors. These are sensors such as lidars and cameras. On
top of each sensor is its respective driver. There may be
multiple sensors of the same type mounted on the vehicle,
that are highly similar but not made of the identical hardware.
Take the on-vehicle camera as an example, the front cam1
optimized for traffic observation is different from the driver
back cam adapted for rear approach checking. Having to
manage different versions and variations of camera drivers

Fig. 3: Line of Data Agents on a AV

is tedious, especially when one needs to perform A/B split
testing to see which version performs better [1]. In a container
infrastructure, the user packages each revision and versions in
Docker images, then specify ‘sensor type:variation version‘.
For example, the developer may name the front left camera
driver’s version 1.2 as: ‘camera driver:frontLeft v1.1‘. Using
Kubernetes’ replicable and self-healing deployment object,
the developer can write a helm template manifest (via built-
in Helm Templating Engine) for shelving the sensor driver
containers [7]. Then specify the correlation between physical
sensors and containers in a key-value file.

Similarly, data processing agents down the data pipeline can
be broken down in a similar structure using the aforementioned
strategy. Each agent stands alone in one container. It receives
input from upstream agents, processes it, and subsequently
sends results to downstream agents.

B. One Module used in Multiple Scenarios

The reverse is also true: A module can be packaged and
employed in different scenarios. This enables application
that handles one specific task to be repetitively deployed
on different devices when a change in environment only
affected its upstream or downstream agents. For example,
running simulation is a very common practice to train vehicles
perception module. The same perception module is coupled
with different agents in the following scenarios (Fig. 4) [8]:

1) Running the vehicle on roads
2) Running the vehicle in a lab simulated environment
3) Running perception core on a computer-simulated

model.
Although different setups are involved in different scenarios,
the same perception module is used in all scenarios. To
maintain consistency across all settings, the developers would
deploy one perception model repetitively in all scenarios.

III. RESOURCE OVERHEAD AND CONTAINER BOUNDARY

A. Resource Overhead

Overhead is a pain point when using containers. Run-
ning an application in a container inevitably consumes extra
system resources and takes longer to communicate across
the container boundary. In cloud computing, the limitation



Fig. 4: One Module Multiple Scenarios

on memory and computation resource is close to negligible:
developers can add more machines to the container network,
thereby scaling the cluster horizontally to accommodate for
increased usage. In AV development, the physical space on
the vehicle for housing machines is limited. Fog Architecture
proposes a way to utilize cloud computing’s power best and
accommodate for the limited space on a vehicle by having
vehicles upstreaming resource intensive computation logic to
edge devices [9]. Modules on these devices enable vehicles to
navigate through more complex situations such as driving in a
chaotic urban environment where pedestrians and vehicles may
cross paths at irregular intervals and random locations. The
vehicle itself, on the other hand, hosts a complete ecosystem
of data processing agents to navigate through places where
network connections are weak to non-existent, and the traffic
is more predictable, such as driving on a highway in the
countryside. The architecture of such infrastructure is similar
to ”One module used in multiple scenarios”. Each vehicle
joins the container network as a less powerful node. Each
module is deployed repetitively in each vehicle node and cloud
node. The container flavor manager manages which tag of the
image will be deployed, given the specs of the target node.
Though not the focus of this paper, containers infrastructure
allows AVs to tap into the computing power of cloud machines
and henceforth to circumvent the limitation on physical space
constraints partially.

B. Overhead Analysis and Realtime Scheduling Analysis

Even more limited than the resource is the response time
in a time-critical system. A signal traversing in container
networks needs first to exit its originating container and enter
its destination container, crossing at least two layers of delay
per container involved. The more containers involved, the
more layers that the signal needs to cross, and the higher
the delay stacks. The accumulation of delay worsens when
there are containers nested inside of other containers or when
signals are traversing through multiple intermediate contain-
ers. Compounding layers of boundary communication gives
a significant delay in the signal relay process. The delay

adds more considerable uncertainty in communication time,
making the realtime system less deterministic. [10] performed
a runtime analysis on the temporal criticality of each con-
tainer’s operation runtime in 4 different environments: ubuntu
vanilla-native, vanilla-docker, RT-native, and RT-docker. The
result showed that runtime in Docker is approximately the
same as running natively. Real-time enabled Linux kernel
performs more deterministically than the vanilla kernel, which
nevertheless, is overall faster in both empty and loaded context.
[10] did not study the effect of crossing the container itself,
which we intend to investigate in the following experiment to
understand how container network should be orchestrated to
provide the lowest average delay and lowest uncertainty in the
signal relay process.

C. Experimental Setup

To study the communication delay across the container
boundary, we decided to perform an experiment to see how
container boundary affects communication time. Four scenar-
ios are tested and juxtaposed:

1) Running on a native machine
2) Running by spawning new containers
3) Running in an existing container
4) running in a five-folds nested container
In this experiment, we use an algorithm that perform iter-

ative Gaussian Seidel Approximation on a strictly diagonally
dominant matrix [11]. For any Matrix operation in the form

Ax = b, (1)

where x is an unknown n×1 vector, A is a known n×n strictly
diagonal matrix, and b is a known n×1 vector. Decomposing
Matrix A into lower triangular matrix L∗ and strictly upper
part U such that (L∗) + U = A, we get

(L∗)x = U − bx (2)

Isolating for one x and using forward subsitution,

xk+1 = (L∗)−1(b− Uxk). (3)

This gives us an iterative algorithm to obtain the next guess
of each element xk+1

i from xki its previous guess, x0i a base
case ”initial guess” using formula

xk+1
i =

1

aii
(bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j ), i = 1, 2, ...n.

(4)
This operation performs an iterative solution to calculate
result. This effectively converts ordinary matrix solution with
uncertain runtime to O(n) runtime during each iteration and
storing O(n) variables in memory space. Knowing the size of
the matrix, we have a constant runtime and constant memory,
which are convenient for measurement purpose. Using an
initial guess of [0,0,0,0,0], the program performs a total of
100 calls per experimental scenario and display the generated
logs when finished. For each call, it reads the ”initial guess”
and signal sent time as input, records the signal relay time,



performs 2500 iterations of the algorithm, writes results as
logs to a local persistent storage, and then sends output back,
which is used as the initial guess in the next call. The value
used for matrix A and vector b, and the calculated solution
for x are

A =


4 1 2 1 1
3 5 1 1 1
1 1 3 1 1
1 1 1 5 1
1 1 1 1 9

 , b =


4
7
3
9
2

 , x =


39/106
46/53
11/106
329/212
−21/212

 .
(5)

Only output that falls within a 99.95% confidence interval
in a 5th degree of freedom T-test will be used in the overhead
analysis. The t value is determined using (6), where x̄ is
the answer being sampled, µ the mean is the ground truth
calculated in II, n is the sample size, and σ̂ is standard
deviation of sample results [12].

t =
x̄− µ
σ̂
√
n

(6)

Note that since each call performs 2500 iterations, it is
very unlikely to have the result not fall within the 99.95%
confidence level and that since the result of the previous stage
is feed into the next step, the accuracy is likely to increase
over time.

In ”running on native machine” and ”running by spawn-
ing new containers”, the function is exposed through
” main .py”. When ”python gausse.py” is executed, an
instance is initiated on the local machine or inside a new
container. As soon as the results are returned, the instance
is terminated, and its allocated memory space released. Com-
paring running code on the native machine against running
code by spawning a new container each time help us study
the overhead of instantiating a new container. In ”running
in an existing container” and ”running in five-fold nested
container in container”, the function is wrapped in Flask, a
python web framework that allows communication via HTTP
calls. The application is only initiated once at the start, so
we can measure the time for signals to traverse through the
communication layer and compare how nesting containers
affect the signal relay time. To keep the environment as
consistent as possible, we performed all four scenarios on
one machine with the following specification (note specs not
related to this experiment are not listed):

• CPU: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
• Memory: 16 GiB Memory DDR3 at 1600MHz
• Storage: 2 TB HDD TOSHIBA DT01ACA200
• File System: ext4
• OS: Ubuntu 18.04.3 LTS
• Container: Docker v19.3
• Code base: Python v3.4

When the experiment is finished, the average and standard
deviation of operation time and communication delay will

be determined using (7) and (8), where n is the number of
elements, µ is average and σ is standard deviation:

µ =
1

n

n∑
i=1

xi (7)

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (8)

IV. RESULTS AND FINDING

The logs and calculated data is hosted on GitHub reposi-
tory kamagawa/containers infrastructure [13], the average and
standard deviation of operation and communication time are
documented in Table I. From an accuracy perspective, all
entries meet the accuracy requirement, thanks to strict diago-
nality of the matrix that guarantees convergence within 2500
iterations. Fig. 5a shows that executing the algorithm on the
native OS is much faster than any other option, then followed
by running in new containers, nested containers, and existing
containers. The standard deviation of running in an existing
container is the lowest by a large margin, making it the most
deterministic option. Having been provisioned its resource
bundle, processes running inside Docker enjoy isolation from
system noises that affect native processes. However, when
placing containers inside containers five-folds, the docker
daemon’s scheduler can no longer provision the containers
directly, thus giving rise to the standard deviation of container
communication delay. Operation runtime in a five-folds nested
container is approximately the same as running in a one-layer
container.

Fig. 5b shows that the communication delay of the native
process is the lowest by a large margin. There is no delay
between the signal sent and received. Running code by spawn-
ing a new container is the longest and the least deterministic
option since the process of creating a new container and
provisioning it resource takes a long time. Sending signals
across container boundary to existing containers and nested
containers in containers consumes a roughly equal amount of
time. However, sending signals to 1 layer of container is much
more deterministic than five layers of nested containers.

Whether it’s operation time or communication time, a
five-fold nested container doesn’t take a longer time than
a regular container. This finding is a little bit surprising,
as one would expect crossing five layers of the container
boundary would take five times as long as crossing one layer
of container boundary. This phenomenon could be attributed
to the architecture of container creation in Docker, as shown
in Fig. 6. When creating a new container inside an existing
container, Docker Damon creates a sibling container that is
linked to the current container, rather than directly spawning
the new container inside the current one [14]. However,
sibling containers’ resource sets are provision from the current
container’s resource set. The weak resource isolation among
sibling containers makes nested containers behave less deter-
ministic than standard ones.



TABLE I: Table Type Styles

Measurement Time Native New Container Existing Container 5x Nested Containers
Operation t̄ 0.009868 0.022465 0.033195 0.030283465
Duration σ̂ 0.000867726 0.001595 1.62101E-05 0.003111

Communication t̄ 4.01E-07 2.440119 0.001893 0.001209655
Duration σ̂ 1.51E-07 0.45777 7.87E-07 0.000561769
Accuracy - 100% 100% 100% 100%

(a) (b)

Fig. 5: Runtime Average and Standard Deviation Comparison Graph of (a) Operation and (b) Layering

Fig. 6: Containers vs Virtual Machine Infrastructure [4]

Understanding the runtime behavior of containers in dif-
ferent situations is crucial to setting up a robust and flexible
container infrastructure for Autonomous Vehicle development.
For such a safety-critical system, being able to know when a
task will fire, and finish is more important than finishing it
as quickly as possible. When one needs to nest a container,
they must ask themselves, is this task time-critical, and is it
ok for it to share the resource with its current containers? To
achieve a higher level of temporal precision, industry partners
often use a realtime enabled kernel (rt-kernel) and implement
their Network Time Protocol server as part of their container
networks.

V. CONCLUSION AND FUTURE WORK

This paper presented a container infrastructure for au-
tonomous vehicle development, the scenarios in which it out-
performs native development such as ”Multiple Variation for
one Scenario” and ”One Module used in Multiple Scenarios”.
We presented an option to extend the container network with
the Fog network to tap into the power of cloud computing
such that more powerful computation can be performed on
cloud and less powerful computation perform locally. Then
study the runtime overhead when running in container network
compared to the native machine and discovered that signals
crossing into and out of containers experience a considerable
delay compared to native but behaves much more determinis-
tically. Nested containers do not add extra overhead because
architecturally, they are linked as ”sibling containers” rather
than being put inside one another. However, their provisioned
resources are shared, making nested containers less determin-
istic than a single layer container. Understanding the operation
runtime and communication delay is essential when designing
a container network of a mixed critical system. To fulfill a
higher degree of temporal precision, companies often use rt-
kernel and implement their customized time control logic.

During the experiment, we face many obstacles that could
potentially be an inspiration for future work. One is streamlin-
ing the process of image creation such that when a non-critical



line is changed in the code, it doesn’t rebuild the entire layer.
Building on top of the container architecture, we will study
a pragmatic approach for utilizing Kubernetes to orchestrate
a robust network to run simulations and allows for CI/CD of
new features in AV development.

REFERENCES

[1] M. Soni, ”End to End Automation on Cloud with Build Pipeline:
The Case for DevOps in Insurance Industry, Continuous Integration,
Continuous Testing, and Continuous Delivery,” 2015 IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), Ban-
galore, 2015, pp. 85-89. doi:10.1109/CCEM.2015.29

[2] D. Bernstein, ”Containers and Cloud: From LXC to Docker to Kuber-
netes,” in IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, Sept. 2014.
doi: 10.1109/MCC.2014.51

[3] About images, containers, and storage
drivers, docker.io, 2019, [online], Available:
https://docs.docker.com/v17.09/engine/userguide/storagedriver/
imagesandcontainers/

[4] J.Fong, ”Are Containers Replacing Virtual Machines?”, docker.io, 2019,
[online], Available: www.docker.com/blog/containers-replacing-virtual-
machines/

[5] Declarative Management of Kubernetes Objects Using
Configuration Files, Kubernetes.io, 2019, [online], Available:
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-
config/

[6] A. Gerrard, ”What Is Kubernetes? An Introduction to the Wildly Popular
Container Orchestration Platform”, blog.newrelic.com, 2019, [online],
Available: https://blog.newrelic.com/engineering/what-is-kubernetes/

[7] W. Wolf, ”Cyber-Physical Systems”. Computer, Vol. 42, No. 3, 88-89.
2009. doi:10.1109/MC.2009.81

[8] A. Kemeny, F. Panerai, ”Evaluating perception in driving simulation
experiments”, Trends Cogn. Sci., vol. 7, no. 1, pp. 31-37, Jan. 2003.
doi:10.1016/S1364-6613(02)00011-6

[9] K. Katsaros, M. Dianati, A Conceptual 5G Vehicular Network-
ing Architecture, Cham, Switzerland:Springer, pp. 595-623, 2017,
doi:10.1007/978-3-319-34208-5 22.

[10] P. Masek, M. Thulin, H. Andrade, C. Berger and O. Benderius, ”System-
atic evaluation of sandboxed software deployment for realtime software
on the example of a self-driving heavy vehicle,” 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC),
Rio de Janeiro, 2016, pp. 2398-2403. doi: 10.1109/ITSC.2016.7795942

[11] C. Gauss, ”Werke”, Gttingen: Kniglichen Gesellschaft der Wis-
senschaften, 1903, pp. 9

[12] STUDENT, ”Probable Error of a Correlation Coefficient”,
Biometrika, Vol. 6, Issue 2-3, September 1908, Pages 302310,
doi: 10.1093/biomet/6.2-3.302

[13] Y. Wang, ”Container Infrastructure”, GitHub, Oct. 2019, [online],
doi:10.5281/zenodo.3524680

[14] A. Colangelo, ”Sibling Docker Container”, Medium, Jul. 2019,
Available: https://medium.com/@andreacolangelo/sibling-docker-
container-2e664858f87a


	I Introduction
	II Architecture and Applicable Scenarios
	II-A Multiple Variation for one Scenario
	II-B One Module used in Multiple Scenarios

	III Resource Overhead and Container Boundary
	III-A Resource Overhead
	III-B Overhead Analysis and Realtime Scheduling Analysis
	III-C Experimental Setup

	IV Results and Finding
	V Conclusion and Future Work
	References

