RMNv2: Reduced Mobilenet V2 for CIFARIO

Maneesh Ayi
Department of ECE
Purdue School of Engineering and Tech.
Indianapolis, USA
maayi@iu.edu

Abstract—In this paper, we developed a new architecture
called Reduced Mobilenet V2 (RMNv2) for CIFAR10 dataset.
The baseline architecture of our network is Mobilenet V2.
RMNV2 is architecturally modified version of Mobilenet V2.
The proposed model has a total number of parameters of 1.06M
which is 52.2% lesser than the baseline model. The overall
accuracy of RMNv?2 for CIFAR10 dataset is 92.4% whichis 1.9%
lesser than the baseline model. The architectural modifications
involve heterogeneous kernel-based convolutions, mish
activation, etc. Also, we include a data augmentationtechnique
called AutoAugment that contributes to increasing accuracy of
our model. This architectural modification makes the model
suitable for resource-constrained devices like embedded
devices, mobile devices deployment for real-time applications
like autonomous vehicles, object recognition, etc.

Index Terms—MobilenetV2 architecture, Convolution Neural
Networks (CNN), Deep Neural Networks (DNN), CIFAR-10,
Pytorch.

I. INTRODUCTION

Convolution neural networks (CNN) come into the picture in
the field of Computer Vision with the introduction of AlexNet
[6]. It proves to be a trendsetter in Computer vision platform by
winning the Imagenet challenge: ILSVRC 2012 [7]. Then over
the period of time, there have been many new architectures that
are much bigger and complicatedintroduced to achieve higher
accuracy. One of that kind is VGG net [11].[15][16] also follow
the same trend with increased accuracies. However,
implementing these networks in resource-constrained
environments like embedded devicesis very difficult. Due to
insufficient memory, limited computational capacity real-time
implementation of bigger networks is not possible in these
devices. So, there is a needto develop smaller networks that
require less computation, less memory while maintaining
competitive accuracy. This paper aims to infroduce a new
CNN architecture that gives out better accuracy with low
model size.

Section-2 describes prior works in building small models.
Section-3 describes the developed network RMNv2
architecture and Section-4 talks about the experiments carried
out and results of that experiment. Finally, Section-5 concludes
the paper.

II. PRIOR WORK

There has been active research going from the past several
years in designing small models. This includes either

Mohamed El-Sharkawy
Department of ECE
Purdue School of Engineering and Tech.
Indianapolis, USA
melshark@iupui.edu

TABLE I Mobilenet V2 Baseline

Input operator t = n| s
2247 x 3 Conv2D | - 32 1] 2
112¢ x 32 | Bottleneck | 1 16 111
112¢ x 16 | Bottleneck | 6 24 21 2
56 x 24 | Bottleneck | 6 | 32 | 3| 2
28 X 32 Bottleneck | 6 64 412
14¢ x 64 Bottleneck | 6 96 3|1
14= x Y6 | Bottleneck | 6 | 160 | 3 | 2
7¢ x 160 Bottleneck | 6 | 320 1)1
7¢ x 320 Conv2D | - | 1280 [1 | 1
7¢ x 1280 | AvgPool | _ - 1] -
1 x 1280 | Conv2D | - k .

compressing a large neural network or designing small
networks directly. There are certain techniques to compress a
trained network like quantization[8], hashing[9], pruning,
vector quantization, and Huffman Encoding[10]. Another
method called distillation [12] which uses large network to
teach small network. And also there are several techniques
[13][14] that are used to compress the pre-trained neural
network. Another approach is to design small networks directly
for training. SqueezeNet[17] and SqueezeNext[18]are some
of the examples of this approach. Most of these small networks
mainly focus on small size but they do not focus on speed.
Mobilenets[1] are introduced which are designed using
depthwise separable convolutions and pointwise convolutions.
They focus on both speed and accuracy. Our network is
designed from Mobilenet V2[2].These networks try to reduce
the number of computations required making it suitable for
deploying in mobile and embedded devices.

III. RMNV2 ARCHITECTURE

The proposed RMNV2 architecture is a CNN architecture
inspired by Mobilenet V2, Heterogenous kernel-based
convolution and mish activation function. Table-1 shows the
baseline Mobilenet V2 architecture. In this section, we describe
the detailed architecture of the proposed model.

A. Disabling downsampling layers

We have disabled some downsampling layers in our
architecture. Its because the original Mobilenet V2 architecture
is proposed for Imagenet dataset with an input image size of
224 X 224 X 3. In order to make it compatible

This is the author's manuscript of the article published in final edited form as:

Ayi, M., & El-Sharkawy, M. (2020). RMNv2: Reduced Mobilenet V2 for CIFAR10. 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC), 0287-0292. https://doi.org/10.1109/CCWC47524.2020.9031131

https://doi.org/10.1109/CCWC47524.2020.9031131

TABLE II: Strides changed from 2 to 1
C

Input operator t n|s
224° x 3 Conv2D - 32 111
112 x 32 | Bottleneck | 1 16 1 1
112¢ x 16 | Bottleneck | 6 24 211
56 x 24 | Bottleneck | 6 32 301
28< x 32 | Bottleneck | 6 64 41|12
14 x 64 | Bottleneck | 6 96 301
14 x 96 Bottleneck | 6 160 312
7¢ x 160 | Bottleneck | 6 | 320 [1 | 1
7¢ x 320 Conv2D - 1280 | 1 1
7° x 1280 AvgPool - N 1| -
1< x 1280 Conv2D - k -

to CIFAR10 dataset we have disabled some downsample layers
by simply replacing strides 2 with stride 1. Table-2 shows us
the disabled downsampled Mobilenet V2 architecture. The
values highlighted in yellow color are the changes done with
respect to base architecture.

B. Replacing Bottlenecks with HetConv Blocks:

Bottlenecks play a crucial role in Mobilenet V2. It helps
in preventing from non-linearity destroying a lot of useful
information. We can see the bottlenecks used in Mobilenet

V2 in the following figure,

(b) Separable

Sepaaratre Conyatition Sk

(d) Bottleneck with ex-
pansion layer

(a) Regular

Regular Convolution

(c) Separable with linear
bottleneck

Fig. 1: Bottlenecks used in Mobilenet V2

These bottlenecks shown uses a homogeneous kernel of size
3 3. In our experiment we replace this homogeneous kernel
with Heterogeneous Kernel[3] of different sizes. The main idea
of replacing this bottleneck with hetconv block is explained
below,

Let us assume an input feature map of size Ai Aix Ci where
Aj is input feature map spatial height and width. Let C; is the
number of input channels. Also consider output feature map of
size Ao Ao Co Wheredo is output feature map spatial height
and width. Co is the number of output channels. An output
feature map is obtained by multiplying Co filters with sizek k
Ci where K isykernel Size. For depthwise and pointwise
convolutions applied in Mobilenet V2, the total computational
cost will be,

cost = Ai X Ai X Ci X k X k + Ci X Co X Ao X Ao (1)

There is a need to optimise parameter ’k’. Mobilenet V2 uses
homogeneous kernel of size 3 3. In heterogeneous kernel, we
use variable kernel sizes to reduce the number of parameters
without much compromise in accuracy. In
HetConv, we set a variable P which controls the number of
different types of kernels. For part P, a fraction of 1 + p willbe
of kernel k X k size and remaining (1 — (1 = p)) will be of 1
X 1 kernel size. So, the computational cost for kernel k X k
at Layer L is,

cost1 = (Ai X Ai X Ci XCo Xk xk)=p 2
The Computational cost for 1 X 1 kernel will be,
cost2 = (Ao X Ao X Co) X (Ci — (Ci = p)) 3)
Total cost will be,
cost = cost1 + cost2 @

The total reduction when compared to standard convolution
Ruetconv = (1 = p)+ ((1 — (1 = p)) = k?) (5)

In the above equation, if we put p=1 it becomes a

standard convolution filter The architectural representation of
our network is shown in figure-2. In the architecture, we can

Conv 2D

’

Avg Pool

Fig. 2: RMNv2 Architecture

see that we have replaced bottleneck layers with hetconv
blocks. The mathematical explanation for this replacement is
shown above. We haven’t replaced the bottleneck layers where
we require downsampling in the network.

C. Mish activation function

Non Linearity is an important concept in a neural network
which is introduced through an activation function. Some of the
widely used activation functions are ReLU (Rectified Linear
Units), TanH (tan Hyperbolic), Swish activationfunction, etc.
In our network, we used another activation function called
Mish activation function[4]. It is defined as,

f(x) = x X (tanh(1 + eY)) 6)

where tanh(1 +) is a softplus activation. The graph of the
mish activation function is shown below,

—— Mish

————— 3 A , :
Fig. 3: Mish Activation Function

D. AutoAugmentation

For modern image classifiers, data augmentation plays a
crucial role in altering the performance of a classifier. So,
effective data augmentation techniques are required to boost up
the accuracy. AutoAugmentation[S] is one of the
implementations which automatically searches for improved
data augmentation policies. In a policy. there are many sub-
policies designed. Sub policy consists of two functions, one
function is an image processing function like rotate, translate,
etc. and other is probability or magnitude of that image
processing function applied. This advancement in data
augmentation bolstered our proposed network by increasing its
accuracy.

IV. HARDWARE AND SOFTWARE USED

- Intel i7-8700 processor with 32 GB RAM.

- Nvidia Geforce GTX 1080Ti GPU.

- Python version 3.6.7.

- Spyder version 3.6.

- Pytorch version 1.0.

- Livelossplot (Loss and accuracy visualization).

TABLE III: Comparison of Various Results between Baseline
and Proposed Network

Comparnsion of Various Results
Model Model Accuracy | #parameters | Model Size(in MB)
Baseline 94.3% 2 2378M 9.1
RMNV2 (Ours) | 92.4% 1.0691M 43

V. RESULTS

We have trained our network using PyTorch framework
using Nvidia Geforce GTX 1080Ti GPU. The network is
trained with Stochastic Gradient descent (SGD) optimizer with
a variable learning rate of 0.1, 0.01, 0.001 keeping a total
number of epochs up to 200. For training the network, we have
used a batch size of 128 and for test epoch we useda batch
size of 64. The baseline Mobilenet V2 after disabling the
downsampling layers gives us the following results shown in
Figure,

Fig. 4: Baseline Results

we have used the same optimiser, learning rates and batch
sizes that are used to train baseline network. The accuracy and
loss curves of our network (RMNvV2) are shown in Figure-6.
For our network we assigned the number of groups, p value

to 4 diagrammatically it is shown as,
|

Fig. 5: Heterogeneous Kemel for P=4

log loss

. 1 o B ospontonamam—
\ "

i //’

21N =2 K —
1 ’\\ osd ¥

4“::\ J]

Fig. 6: RMNv2 Results

These curves are plotted using LiveLossPlot Visualization
library. Table-3 compares various results like model accuracy,
number of parameters, model size, etc.

Table-4 shows us the time taken by each model to complete
one epoch as well as the whole training for 200 epochs.

TABLE 1V: Comparison of Time between Baseline and
Proposed Network

Comparision of Time
Model For one epoch(in min) | For Complete training(in hr)
Baseline 1.9097 6.7
RMNV2 (Ours) | 0.7621 2.7

In the appendix section, we have shown model summary for
both baseline and RMNV2. In that table, we can clearly see how
many parameters produced by each layer as well as the output
shape produced by the input tensor multiplying with different
filters.

VI. CONCLUSION

The results show that our network Reduced Mobilenet V2
(RMNV2) requires fewer computations, lesser time than the
original model with not much decrease in accuracy, 1.9%. It
is clearly shown that replacing bottlenecks with HetConv layer
helped us in decreasing the model size by 52.2%. In order to
boost up the accuracy, we replaced ReLU®6 activation with
Mish activation and we also used effective data augmentation
technique like Autoaugmentation whichhelped us in increasing
accuracy to 92.4%. Altogether it forms up a new architecture
called Reduced Mobilenet V2 (RMNV2). The optimised model
size with competing accuracy makes the RMNv2 model
suitable for deploying in resource-constrained devices like
Embedded devices, Mobile devices, etc. For future work, one
can try further model reduction techniques like model pruning,
quantization and huffman encoding etc. And also we can try to
improve the accuracy by implementing better augmentation
techniques, transfer learning and better architectural changes
like changing convolutions etc. We can also check the real-time
inference of RMNV2 in embedded devices to demonstrate its
performance in real-world applications.

REFERENCES

[1] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural
networks for mobile vision applications.” arXiv preprint
arXiv:1704.04861 (2017).

[2] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
Liang-Chieh Chen. “MobileNetV2: Inverted Residuals and Linear
Bottlenecks.” arXiv preprint arXiv:1801.04381v4 (2019)

[3] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, Vinay P. Namboodiri.
”HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs”
arXiv preprint arXiv:1903.04120v2 (2019)

[4] Diganta Misra, "Mish: A Self Regularized Non-Monotonic Neural
Activation Function” arXiv preprint arxiv:1908.08681 (2019)

[5] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc
V. Le Google Brain, ”AutoAugment: Learning Augmentation Strategies
from Data” arXiv preprint arXiv:1805.09501v3 (2019)

[6] A.Krizhevsky, I. Sutskever, and G. E. Hinton, ” Imagenet classification
with deep convolutional neural networks” In Advances in neural
information processing systems, pages 10971105, 2012.

[71 O.Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual
recognition challenge, International Journal of Computer Vision, 2015

[8] J Wu, C Leng, Y Wang, Q Hu, and J Cheng “Quantized convolutional
neural networks for mobile devices”. arXiv preprint arXiv:1512.06473,
2015.

[9] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen.
”Compressing neural networks with the hashing trick”. CoRR,
abs/1504.04788, 2015

[10] S. Han, H. Mao, and W. J. Dally.”Deep compression: Compressing deep
neural network with pruning, trained quantization and huffiman coding”.
CoRR, abs/1510.00149, 2, 2015.

[11] Karen Simonyan, Andrew Zisserman. ”VERY DEEP
CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE
RECOGNITION” arXiv preprint arXiv:1409.1556v6 (2015)

[12] G. Hinton, O. Vinyals, and J. Dean. "Distilling the knowledge in a neural
network”. arXiv preprint arXiv:1503.02531, 2015.

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman. ”Speeding up convolutional
neural networks with low rank expansions.” arXiv preprint
arXiv:1405.3866, 2014.

[14] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky.
”Speeding-up convolutional neural networks using fine-tuned cp-
decomposition.” arXiv preprint arXiv:1412.6553, 2014.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. "Rethinking
the inception architecture for computer vision.” arXiv preprint
arXiv:1512.00567, 2015.

[16] C. Szegedy, S. loffe, and V. Vanhoucke. Inception-v4, inception-resnet
and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261, 2016

[17] F.N.landola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and 1mb model size. arXiv preprint arXiv:1602.07360, 2016.

[18] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer SqueezeNext: Hardware-Aware
Neural Network Design arXiv preprint arXiv:1803.10615v2

APPENDIX A

MODEL SUMMARIES
Layer output Shape Param #
Conv2d-1 [-1, 32, 32, 32] 864
BatchNorm2d-2 [-1, 32, 32, 32] 64
Conv2d-3 [-1, 32, 32, 32] 1,024
BatchNorm2d-4 [-1, 32, 32, 32] 64
Conv2d-5 [-1, 32, 32, 32] 288
BatchNorm2d-6 [-1, 32, 32, 32] 64
Conv2d-7 [-1, 16, 32, 32] 512
BatchNorm2d-8 [-1, 16, 32, 32] 32
BaseBlock-9 [-1, 16, 32, 32] 0
Conv2d-10 [-1, 96, 32, 32] 1,536
BatchNorm2d-11 | [-1, 96, 32, 32] 192
Conv2d-12 [-1, 96, 32, 32] 864
BatchNorm2d-13 | [-1, 96, 32, 32] 192
Conv2d-14 [-1, 24, 32, 32] 2,304
BatchNorm2d-15 | [-1, 24, 32, 32] 48
BaseBlock-16 [-1, 24, 32, 32] 0
Conv2d-17 [-1, 144, 32, 32] | 3,456
BatchNorm2d-18 | [-1, 144, 32, 32] | 288
Conv2d-19 [-1, 144, 32, 32] | 1,296
BatchNorm2d-20 | [-1, 144, 32, 32] | 288
Conv2d-21 [-1, 24, 32, 32] 3,456
BatchNorm2d-22 | [-1, 24, 32, 32] 48
BaseBlock-23 [-1, 24, 32, 32] 0
Conv2d-24 [-1, 144, 32, 32] | 3,456
BatchNorm2d-25 | [-1, 144, 32, 32] | 288
Conv2d-26 [-1, 144, 32, 32] | 1,296
BatchNorm2d-27 | [-1, 144, 32, 32] | 288
Conv2d-28 [-1, 32, 32, 32] 4,608
BatchNorm2d-29 | [-1, 32, 32, 32] 64
BaseBlock-30 [-1, 32, 32, 32] 0
Conv2d-31 [-1, 192, 32, 32] | 6,144
BatchNorm2d-32 | [-1, 192, 32, 32] | 384
Conv2d-33 [-1, 192, 32, 32] | 1,728
BatchNorm2d-34 | [-1, 192, 32, 32] | 384
Conv2d-35 [-1, 32, 32, 32] 6,144
BatchNorm2d-36 | [-1, 32, 32, 32] 64
BaseBlock-37 [-1, 32, 32, 32] 0
Conv2d-38 [-1, 192, 32, 32] | 6,144
BatchNorm2d-39 | [-1, 192, 32, 32] | 384
Conv2d-40 [-1, 192, 32, 32] | 1,728
BatchNorm2d-41 | [-1, 192, 32, 32] | 384
Conv2d-42 [-1, 32, 32, 32] 6,144
BatchNorm2d-43 | [-1, 32, 32, 32] 64
BaseBlock-44 [-1, 32, 32, 32] 0
Conv2d-45 [-1, 192, 32, 32] | 6,144
BatchNorm2d-46 | [-1, 192, 32, 32] | 384
Conv2d-47 [-1, 192, 16, 16] | 1,728

Layer output shape Param #
BatchNorm2d-48 | [-1, 192, 16, 16] | 384
Conv2d-49 [-1, 64, 16, 16] 12,288
BatchNorm2d-50 | [-1, 64, 16, 16] 128
BaseBlock-51 [-1, 64, 16, 16] 0
Conv2d-52 [-1, 384, 16, 16] | 24,576
BatchNorm2d-53 | [-1, 384, 16, 16] | 768
Conv2d-54 [-1, 384, 16, 16] | 3,456
BatchNorm2d-55 | [-1, 384, 16, 16] | 768
Conv2d-56 [-1, 64, 16, 16] 24,576
BatchNorm2d-57 | [-1, 64, 16, 16] 128
BaseBlock-58 [-1, 64, 16, 16] 0
Conv2d-59 [-1, 384, 16, 16] | 24,576
BatchNorm2d-60 | [-1, 384, 16, 16] | 768
Conv2d-61 [-1, 384, 16, 16] | 3,456
BatchNorm2d-62 | [-1, 384, 16, 16] | 768
Conv2d-63 [-1, 64, 16, 16] 24,576
BatchNorm2d-64 | [-1, 64, 16, 16] 128
BaseBlock-65 [-1, 64, 16, 16] 0
Conv2d-66 [-1, 384, 16, 16] | 24,576
BatchNorm2d-67 | [-1, 384, 16, 16] | 768
Conv2d-68 [-1, 384, 16, 16] | 3,456
BatchNorm2d-69 | [-1, 384, 16, 16] | 768
Conv2d-70 [-1, 64, 16, 16] 24,576
BatchNorm2d-71 | [-1, 64, 16, 16] 128
BaseBlock-72 [-1, 64, 16, 16] 0
Conv2d-73 [-1, 384, 16, 16] | 24,576
BatchNorm2d-74 | [-1, 384, 16, 16] | 768
Conv2d-75 [-1, 384, 16, 16] | 3,456
BatchNorm2d-76 | [-1, 384, 16, 16] | 768
Conv2d-77 [-1, 96, 16, 16] 36,864
BatchNorm2d-78 | [-1, 96, 16, 16] 192
BaseBlock-79 [-1, 96, 16, 16] 0
Conv2d-80 [-1, 576, 16, 16] | 55,296
BatchNorm2d-81 | [-1, 576, 16, 16] | 1,152
Conv2d-82 [-1, 576, 16, 16] | 5,184
BatchNorm2d-83 | [-1, 576, 16, 16] | 1,152
Conv2d-84 [-1, 96, 16, 16] 55,296
BatchNorm2d-85 | [-1, 96, 16, 16] 192
BaseBlock-86 [-1, 96, 16, 16] 0
Conv2d-87 [-1, 576, 16, 16] | 55,296
BatchNorm2d-88 | [-1, 576, 16, 16] | 1,152
Conv2d-89 [-1, 576, 16, 16] | 5,184
BatchNorm2d-90 | [-1, 576, 16, 16] | 1,152
Conv2d-91 [-1, 96, 16, 16] 55,296
BatchNorm2d-92 | [-1, 96, 16, 16] 192
BaseBlock-93 [-1, 96, 16, 16] 0
Conv2d-94 [-1, 576, 16, 16] | 55,296
BatchNorm2d-95 | [-1, 576, 16, 16] | 1,152
Conv2d-96 [-1, 576, 8, 8] 5,184
BatchNorm2d-97 | [-1, 576, 8, 8] 1,152

Layer output shape Param #
Conv2d-98 [-1, 160, 8, 8] 92,160
BatchNorm2d-99 [-1, 160, 8, 8] 320
BaseBlock-100 [-1, 160, 8, 8] 0
Conv2d-101 [-1, 960, 8, 8] 153,600
BatchNorm2d-102 | [-1, 960, 8, 8] 1,920
Conv2d-103 [-1, 960, 8, 8] 8,640
BatchNorm2d-104 | [-1, 960, 8, 8] 1,920
Conv2d-105 [-1, 160, 8, 8] 153,600
BatchNorm2d-106 | [-1, 160, 8, 8] 320
BaseBlock-107 [-1, 160, 8, 8] 0
Conv2d-108 [-1, 960, 8, 8] 153,600
BatchNorm2d-109 | [-1, 960, 8, 8] 1,920
Conv2d-110 [-1, 960, 8, 8] 8,640
BatchNorm2d-111 | [-1, 960, 8, 8] 1,920
Conv2d-112 [-1, 160, 8, 8] 153,600
BatchNorm2d-113 | [-1, 160, 8, 8] 320
BaseBlock-114 [-1, 160, 8, 8] 0
Conv2d-115 [-1, 960, 8, 8] 153,600
BatchNorm2d-116 | [-1, 960, 8, 8] 1,920
Conv2d-117 [-1, 960, 8, 8] 8,640
BatchNorm2d-118 | [-1, 960, 8, 8] 1,920
Conv2d-119 [-1, 320, 8, 8] 307,200
BatchNorm2d-120 | [-1, 320, 8, 8] 640
BaseBlock-121 [-1, 320, 8, 8] 0
Conv2d-122 [-1, 1280, 8, 8] | 409,600
BatchNorm2d-123 | [-1, 1280, 8, 8] | 2,560
Linear-124 [-1, 10] 12,810
TABLE V: Summary of Baseline
Layer output Shape Param #
Conv2d-1 [-1, 32, 32, 32] | 864
BatchNorm2d-2 | [-1, 32, 32, 32] | 64
Conv2d-3 [-1, 32, 32, 32] | 1,024
BatchNorm2d-4 | [-1, 32, 32, 32] | 64
Conv2d-5 [-1, 32, 32, 32] | 288
BatchNorm2d-6 | [-1, 32, 32, 32] | 64
Conv2d-7 [-1, 16, 32, 32] | 512
BatchNorm2d-8 | [-1, 16, 32, 32] | 32
BaseBlock-9 [-1, 16, 32,32] | O
Conv2d-10 [-1, 24, 32, 32] | 864
Conv2d-11 [-1, 24, 32, 32] | 384
HetConv-12 [-1,24,32,32] | O
Conv2d-13 [-1, 24, 32, 32] | 1,296
Conv2d-14 [-1, 24, 32, 32] | 576
HetConv-15 [-1,24,32,32] | O
Conv2d-16 [-1, 32, 32,32] | 1,728
Conv2d-17 [-1, 32, 32, 32] | 768
HetConv-18 [-1,32,32,32] | O
Conv2d-19 [-1, 32, 32, 32] | 2,304
Conv2d-20 [-1, 32, 32, 32] | 1,024
HetConv-21 [-1,32,32,32] | O
Conv2d-22 [-1, 32, 32, 32] | 2,304

Layer output shape Param #
Conv2d-23 [-1, 32, 32, 32] 1,024
HetConv-24 [-1, 32, 32, 32] 0
Conv2d-25 [-1, 192, 32, 32] | 6,144
BatchNorm2d-26 | [-1, 192, 32, 32] | 384
Conv2d-27 [-1, 192, 16, 16] | 1,728
BatchNorm2d-28 | [-1, 192, 16, 16] | 384
Conv2d-29 [-1, 64, 16, 16] 12,288
BatchNorm2d-30 | [-1, 64, 16, 16] 128
BaseBlock-31 [-1, 64, 16, 16] 0
Conv2d-32 [-1, 64, 16, 16] 9,216
Conv2d-33 [-1, 64, 16, 16] 4,096
HetConv-34 [-1, 64, 16, 16] 0
Conv2d-35 [-1, 64, 16, 16] 9,216
Conv2d-36 [-1, 64, 16, 16] 4,096
HetConv-37 [-1, 64, 16, 16] 0
Conv2d-38 [-1, 64, 16, 16] 9,216
Conv2d-39 [-1, 64, 16, 16] 4,096
HetConv-40 [-1, 64, 16, 16] 0
Conv2d-41 [-1, 96, 16, 16] 13,824
Conv2d-42 [-1, 96, 16, 16] 6,144
HetConv-43 [-1, 96, 16, 16] 0
Conv2d-44 [-1, 96, 16, 16] 20,736
Conv2d-45 [-1, 96, 16, 16] 9,216
HetConv-46 [-1, 96, 16, 16] 0
Conv2d-47 [-1, 96, 16, 16] 20,736
Conv2d-48 [-1, 96, 16, 16] 9,216
HetConv-49 [-1, 96, 16, 16] 0
Conv2d-50 [-1, 576, 16, 16] | 55,296
BatchNorm2d-51 | [-1, 576, 16, 16] | 1,152
Conv2d-52 [-1, 576, 8, 8] 5,184
BatchNorm2d-53 | [-1, 576, 8, 8] 1,152
Conv2d-54 [-1, 160, 8, 8] 92,160
BatchNorm2d-55 | [-1, 160, 8, 8] 320
BaseBlock-56 [-1, 160, 8, 8] 0
Conv2d-57 [-1, 160, 8, 8] 57,600
Conv2d-58 [-1, 160, 8, 8] 25,600
HetConv-59 [-1, 160, 8, 8] 0
Conv2d-60 [-1, 160, 8, 8] 57,600
Conv2d-61 [-1, 160, 8, 8] 25,600
HetConv-62 [-1, 160, 8, 8] 0
Conv2d-63 [-1, 320, 8, 8] 115,200
Conv2d-64 [-1, 320, 8, 8] 51,200
HetConv-65 [-1, 320, 8, 8] 0
Conv2d-66 [-1, 1280, 8, 8] 409,600
BatchNorm2d-67 | [-1, 1280, 8, 8] 2,560
Linear-68 [-1, 10] 12,810
TABLE VI: Summary of RMNv2

