
Towards Embedding Data Provenance in Files
Thye Way Phua1, Panos Patros2 , Vimal Kumar1

University of Waikato
1Department of Computer Science

2Department of Software Engineering
Hamilton, New Zealand

Email: thyewayphua@gmail.com, {panos.patros, vimal.kumar}@waikato.ac.nz

Abstract—Data provenance (keeping track of who did what,
where, when and how) boasts of various attractive use cases
for distributed systems, such as intrusion detection, forensic
analysis and secure information dependability. This potential,
however, can only be realized if provenance is accessible by
its primary stakeholders: the end-users. Existing provenance
systems are designed in a ‘all-or-nothing’ fashion, making
provenance inaccessible, difficult to extract and crucially, not
controlled by its key stakeholders. To mitigate this, we propose
that provenance be separated into system, data-specific and
file-metadata provenance. Furthermore, we expand data-specific
provenance as changes at a fine-grain level, or provenance-per-
change, that is recorded alongside its source. We show that
with the use of delta-encoding, provenance-per-change is viable,
asserting our proposed architecture to be effectively realizable.

Index Terms—Data Provenance, Embedded Data Provenance,
File System, End-to-end Data Provenance, Self-contained Prove-
nance, Delta-encoding

I. INTRODUCTION

Data provenance is commonly defined as the derivation
history of data [1], [2], [3]. It is metadata that describes
the creation and evolution of data objects. For example, the
provenance for a compiled C code may constitute of (1) Alice –
the user who ran the compilation, (2) gcc 7.5.0– the compiler
used to compile the code, (3) 03– compile arguments such
as optimisation level and (4) libacl.so.1 – libraries used.
The potential of data provenance is quickly realized and is
proposed to be used in various applications such as cloud
forensics [4], [5], tracking of data movement in cloud [6],
[7] and across the microservices cloud-native applications [8],
anomaly detection [9], intrusion detection [10], malware de-
tection [11] and more.

Current provenance systems excel in use cases that can be
fulfilled within a single system or application but struggle in
use cases that involves multiple systems, such as in cloud
computing. We attribute this limitation to the design choice
of storing provenance separate from the data it describes,
resulting in a weak link between data and its provenance [12].
When data objects move from one system to another, the
provenance also needs to be transferred, which is more difficult
than it appears to be. Provenance systems such as Progger [7]
capture and store provenance of all data objects into a single
log file. This means that provenance of all data objects is
entangled together, making extraction of provenance difficult.
This is a significant issue as provenance captured cannot be

accessed by its primary stakeholders: the end-users or data
owners. This situation is akin to owning a piece of artwork
but having its provenance fully controlled by a third-party, and
therefore, relying on their discretion to make the provenance
available. This shortcoming significantly restricts the potential
of data provenance.

In this paper, we make the following contributions:
• Highlight design issues in existing provenance systems

that prevent them from meeting contemporary use cases.
• Propose a block-based technique to embed data prove-

nance into files.
• Propose a high-level software architecture to meet these

requirements improving on the state-of-the art.
• Evaluate prototype to ensure that both functional and non-

functional requirements are met.
The following scenario is used as a motivating example

throughout this paper, with the goal of understanding the
provenance for outputs b and c respectively:

1) dd if=/dev/urandom of=a bs=4k
count=1

2) sort a -o b
3) dd if=/dev/urandom of=a bs=4k

count=1
4) sort a -o c

File A is created using dd, populated with some random bytes
from the kernel random bytes generator. The contents of File
A are sorted and written to output File B. Another stream
of random bytes are written to File A as before, and once
again the contents of File A are sorted and written to output
File C. While the provenance for File A, B and C may seem
obvious to us, how existing systems are implemented makes
provenance either inaccessible or even if accessible, incorrect.
The problem is further exacerbated on contemporary cloud
architectures that rely on ephemeral containers that do not
maintain the state of their filesystems. The following sections
further elaborate the issues in existing systems.

II. INACCESSIBLE PROVENANCE

We consider early provenance systems such as Lineage File
System [13] and PASS [12] to be single-system provenance.
This is because such systems store data provenance in either
a centralized database or log file on the host. In the event of a
data transfer between hosts, data provenance is not preserved



Fig. 1. Simplified representation of current cloud (end-to-end) provenance
architecture

Fig. 2. Extracting provenance from single log file

and the provenance chain is broken [14]. Even if the data is
returned to the source, the provenance system would not be
able to identify it and continue tracking its provenance treating
it as new. For example, say File A was created on Host X
and sent to Host Y, Host Y performed some modifications
(A’) and returned it to Host X. From the provenance system’s
perspective, A and A’ are two different entities.

Provenance can only be complete if tracked end-to-end
throughout the file’s lifetime. In distributed systems, such as
clouds, the need for end-to-end provenance tracking becomes
apparent [15], [16], [6]. Figure 1 illustrates a simplified
representation of existing cloud data-provenance work. In most
systems, a centralized data provenance store is employed to
gather provenance from multiple hosts and even application
within each hosts. Problems arise in this approach if data is
transmitted between a host outside of the cluster of systems
that is recording data provenance to the centralized data
store. Therefore, we argue that the definition of end-to-end
provenance needs to be strengthened.

A. Extracting Provenance

In current cloud systems, it is unlikely that provenance will
be shared with the end-users, as these systems are designed
for and function in an all-or-nothing manner, whereby there
is no mechanism to extract provenance logs for a particular
object of interest.

Now, assume that the broken provenance chain is not an
issue and we are able to extract provenance for some object of
interest. Using the sort example from §I, Figure 2 illustrates
the provenance captured using that example. The provenance
log shows that File A was created by dd, followed by File B
being created as a result of the sort command using input
File A. File A is then overwritten by dd, followed by the
same sort procedure, this time producing File C. The issue

here is that provenance for File B and File C captured using
existing systems will be identical even though their outputs are
different. This shows that with previous designs, extracting
provenance for a simple example such as this is difficult to
achieve. Consider a real-world scenario with large amount of
data and large number of files, along with the need to fulfill
the security or privacy requirements of data provenance [17].

III. PROPOSED DESIGN

Premise 1: Every file has provenance
Premise 2: Everything is a file
Conclusion: Everything has provenance

Our proposed concept is built upon UNIX’s philosophy of
Everything is a File (or File Descriptor). The advantage of
this approach is that a common interface can be defined and
used on a wide range of resources to achieve the same level
of consistency.

A. The Provenance Stack

We first separate provenance into independent components.
Using the provenance stack [18], we identify the following as
a minimum:
(1) System-provenance. This is what most existing provenance
systems capture. What falls within the purview of system
provenance are process management operations, such as creat-
ing a child process (fork) and executing a new process type
(execve).
(2) File provenance. These events concern only the file but
not the system or the data. Examples include changing file
ownership (chown) and changing file permissions (chmod).
(3) Data provenance. This describes exactly how our data was
created and modified throughout its lifetime. In a distributed
environment, this enables to understand “what has changed”
without having access to the artifacts that were involved in the
creation of our data.

B. Self-contained Provenance

With provenance split up, the same is needed for storage.
Previous work indicated the need of tighter relationships
between data and its provenance [19]. We propose system
provenance to remain as a centralized log file or database
within the system. File and data provenance, however, should
be part of the file, as a self-contained, single unit. Thus, there
would be no need for querying or filtering provenance for any
specific file—and thus, make provenance available to the end
users.

C. Level-of-Detail (LOD)

We borrow the concept of level-of-detail (LOD) [20] used
in 3D model representation for our proposed design. Figure 3
shows our proposed design for the sort example from §I.
Each file (A, B and C) is composed of at least one version
(∆) and its current state of data. A version is created on
every write, and each version is associated to a process that
requested the write. A process has relationships with multiple
objects, such as libraries used, executable, process arguments,
execution environment and input files.



Fig. 3. Overview of our proposed (1) separation of concern (2) self-containing
and (3) level-of-detail provenance design

We can see that File A has had two versions, and File B was
derived using the first version of File A. File C was derived
using the second version of File A, thus solving the issue
in §2.1. We propose a minimum of 4 levels of detail. The
higher the level, the better the provenance clarity; similarly,
the lower the level, the less sensitive the provenance data is.
For example, say, the object of interest is File B. If we have
access to this and only this file, we can still understand on a
high level how this data was created without any ambiguity,
which is through sort and File A. If we also have access
to File A, we can then see that File A has been modified
since B was produced, hence re-running the process will yield
different outcome. Furthermore, if we have access to the
whole-system provenance, with a high level of certainty, will
be able to re-enact the sequence of events and yield the same
outcome. Another way of thinking about this is its similarity
to Mandatory Access Control.

D. Versioning through delta-encoding

Storing derivation history of data is similar to what a
versioning file system does. A naive approach is to store
all versions verbatim, as implemented by the Elephant File
System [21]. This, however, generates an enormous amount
of data, prioritizing quantity (granularity) over quality (how
meaningful versions over). Provenance, however, has stricter
requirements; it requires granularity [18], as missing any
detail renders provenance incomplete and thus of limited use.
Consequently, we need a lossless versioning system.

A step-up to that would be to compress all versions:
rolling back to a particular version becomes a matter of
decompressing a version. Currently available compression al-
gorithms suffice for this. Compression, however, in the worst-
case scenario, will produce a file of equal or even larger
size for data with high entropy, which is also incidentally,
a vector for an availability attack. As a simple proof of
concept, we generated a 1GB file of random bytes using
/dev/urandom, and made a modification on a single byte
to produce a new version. Compressing both versions takes
up exactly 2GB, which is equivalent to storing both versions
verbatim. Instead of storing the complete version, we need a
method to effectively encode this 1-byte change. This is where
delta-encoding can be utilized. Delta encoding is the process
of taking two inputs, a source and a target, and computing
their differences to produce a smaller patch file to transform
source into target. We ran the same experiment as above, using
bsdiff [22] and observed that the 1-byte change is encoded
into 180 bytes of information, a significant improvement over
compression.

IV. PROTOTYPE

Our prototype was implemented as a Filesystem in
Userspace (FUSE) [23]. Our decision to use FUSE is backed
by the extensive support on most UNIX operating system, this
allows us to test our implementation against multiple systems
with little to no modification to our code. A kernel solution
such as implementing a new filesystem may provide us with
better implementation flexibility and yield better performance.
However, a FUSE approach is easier to implement and is
therefore more suitable for our proof-of-concept needs. We
developed our prototype on Ubuntu 18.04 running FUSE
version 3.9.

A. Approach considered

There are many ways in which we can embed provenance
into files. We first considered ways that can make use of
existing system design to embed provenance metadata so that
little to no modification needs to be done to the system. We
first looked at extended attributes that many Linux file system
supports. Extended attributes is a pre-allocated space in the
inode that allows users or developers to assign name:value
pairs to files and therefore there is a potential of using it as
provenance storage. However, there are two issues with this ap-
proach. First is that its name:value pair is quite constrained and
not suitable for provenance metadata. Second is that from our
experiemnts, none of the native tools or protocols in the UNIX
system preserves extended attributes during file transfer. There
are however some tools that support transferring of extended
attributes when a certain flag is used. rsync for instance
allows one to specify the -X flag (or -E flag for rsync
version 2.6 and before) to enable the transfer of extended
attributes. Similarly with the linux copy cp command, the
-a flag or -preserve=allflag is required for extended
attributes to be preserved. Secure Copy (SCP), Hypertext



Fig. 4. Architecture of files to efficiently embed provenance and data blocks

Fig. 5. Types of blocks as defined in our reference design

Transfer Protocol (HTTP), File Transfer Protocol (FTP) com-
pletely lacks the support for extended attributes. Furthermore,
this approach depends on the filesystem. Extended attributes
is not support by Windows; instead, its equivalent in Windows
is called Alternate Data Streams.

We, therefore, concluded that storing provenance directly
with the data is the most all-inclusive approach. The simplest
way of achieving this is to simply concatenate, or append data
provenance to the end of the data, like so: <data><data
provenance>. Our conclusion is validated by the existence
of Flexible Image Tansport System (FITS) [24]. FITS is a
file format that embeds metadata by prepending metadata to
the original data. It is used by astronomers to aid transport,
archival and processing of data files. This approach is simple
and can fulfil our needs to some extent. However, a file format
is not what we need, as this approach may jeopardise the
integrity of our data. For example, checksum verification will
no longer work as the data is constantly changing. Instead,
what we need is a system wide approach where provenance
can be tracked on all file objects does not change the definition
of data. Besides, the approach of prepending or appending
provenance to data requires shifting and rewriting all data
beyond N+1 bytes, where an operation is performed at byte
N, making it extremely inefficient and slow.

B. A Block Approach

Instead, we propose a block-level approach to achieve this
goal without the need for shifting. Our approach operates at
units of blocks. Each block is of a fixed size (BLK_SIZE)
and can be specified accordingly. A file is made up of multiple
blocks, spanning multiple rows, as illustrated in Figure 4. A
row contains a total of (BLK_SIZE * 8) + 1 number of

blocks, which means the number of bytes in a row is (number
of blocks * BLK_SIZE). Each row begins with a bitmap
block, to keep track of used and unused blocks. When a row
is fully occupied, a new row is initialized. Each block in the
new row is lazily allocated, i.e. a block is only allocated when
it is required. Blocks are never deallocated, but will be freed
instead, by marking them as free in the bitmap. If all blocks
in a row are freed, only then will these blocks be deallocated.

Each block is of a type, meaning a block is restricted to
contain only one type of data. An arbitrary number of block
types can be defined accordingly. In our reference design,
we utilize four types of blocks, which we have identified as
bitmap block, data block, versions block and events block, as
illustrated in Figure 5. The bitmap block keeps track of used
and unused blocks, and the data block holds the current state
of the data. Versions and Events block are data provenance,
as we have split them into two classes:

• Versions – a chain of data modifications that has been
performed on the data in the form of deltas. Captures
how a piece of data was modified (evolved) since the
creation up to its present state.

• Events (or file-metadata provenance) – operations that
have been performed on the file containing the data. For
example, change of file ownership (chown), change of
file permissions (chmod), etc

Each type of block is maintained as a linked-list where
each block contains a pointer to the next block, with the last
block pointing to null, as illustrated in Figure 6. Each type
of block may have its own structure. In this reference design,
the version and events block are regular blocks with 8 bytes
reserved at the end of the block to store its next pointer. Data
blocks are similar, but with another 8 bytes reserved at the
beginning of the block to store the number of available bytes
left in the block, this allow insertion or deletion of bytes in a
data block without the need of rewriting all subsequent blocks
(further elaborated in the next section).

When a new file is initialized, one block of each block type
is initialized. These blocks will never be freed and they may
have a header to describe subsequent blocks. The headers for
the 3 types of blocks are defined as in Table I.

V. EVALUATION

We evaluate our proposed system to understand the system
performance impact on having provenance embedded into
files (non-functional requirement), as well as demonstrating
the use cases that our proposed concept enables (functional
requirements).

A. System Performance Evaluation

All performance benchmarks were performed on a machine
running Intel i7-8850H @ 2.60 GHz, 32.0 GiB of DDR4 RAM
and a 500 GB NVMe drive. The machine ran a fresh install
of Ubuntu 18.04.5 LTS [25] and running ext4 [26] filesystem.
We ran the benchmarks on 3 different setups. First, baremetal–
this is the base performance of our freshly install system.
Next, vanilla FUSE–we ran the same benchmark on a FUSE



Fig. 6. Example of an augmented file-structure that efficiently includes data and provenance information

filesystem that does nothing to measure the overheads imposed
by FUSE, as FUSE by itself imposes quite a significant
overhead [27]. Finally, we run benchmark on our prototype,
we call this setup FUSE + Provenance.

1) Systemcall overhead: We first measure the overheads
placed on each file related systemcalls–open, read, write,
close and create. The experiment uses 4KiB size files,
and the time measured is from when the systemcall is invoked
to the time the systemcall returns. The objective of this
benchmark is to evaluate how exactly our approach affects
each step in any file related operation. We observe that the
overheads are quite significant compared to its baremetal
performance. However, most of the overhead observed are
incured by FUSE. For example, the overhead added by FUSE
to read the a is 2500%, while our prototype only created
an additional 10.94% of overhead. We observe that in our
prototype, write and create incur the most overhead. This
makes sense because we are writing blocks and the overhead
comes from (1) computing deltas, (2) allocating blocks and
(3) writing to blocks not in a linear fashion. Nevertheless, the
absolute overheads are not significant enough to impact system
responsiveness.

2) File I/O performance: We are also interested in file
I/O performance, specifically linear read/write and random
read/write performance. This benchmark would allow us to
observe a more realistic overhead in software applications
and thus user experience. We ran benchmarks using filesystem
benchmarking tool iozone using a file size of 100 MiB. Similar
to the previous benchmark, we observe significant overheads
just from FUSE itself. Our proposed system performs signifi-
cantly well in both linear and random reads. In fact, it performs
better than the vanilla FUSE filesystem. We speculate that this
is due to our filesystem making request in blocks that utilizes
the kernel cache more efficiently. Linear write performance
in our system only incurred a 4.43% overhead, which is
impressive. However, random writes sees a 3.3x overhead.

Offset Size Description
Data block header

0x00 __ie32 Lower 32-bits of data size in bytes
0x04 __ie32 Upper 32-bits of data size in bytes
0x08 __ie32 Lower 32-bits of pointer to last data block
0x0c __ie32 Upper 32-bits of pointer to last data block

Version block header
0x00 __ie32 Number of versions
0x04 __ie32 Cummulative checksum
0x08 __ie32 Lower 32-bits of remaining bytes available in last block
0x0C __ie32 Upper 32-bits of remaining bytes available in last block

0x10 __ie32 Lower 32-bits of pointer to last version
(to allow quick insertion into the last allocated version block)

0x14 __ie32 Upper 32-bits of pointer to last version
(to allow quick insertion into the last allocated version block)

Event block header
0x00 __ie32 Number of events
0x04 __ie32 Cummulative checksum
0x08 __ie32 Lower 32-bits of remaining bytes available in last block
0x0C __ie32 Upper 32-bits of remaining bytes available in last block

0x10 __ie32 Lower 32-bits of pointer to last version
(to allow quick insertion into the last allocated event block)

0x14 __ie32 Upper 32-bits of pointer to last version
(to allow quick insertion into the last allocated event block)

TABLE I
BLOCK HEADER FORMAT

systemcall baremetal FUSE overhead FUSE +
Provenance overhead

systemcall latency in miliseconds, smaller is better
create 8.45 37.73 346.51% 94.81 151.29%
open 2.72 18.36 575.00% 23.11 25.87%
read 0.45 11.70 2500.00% 12.98 10.94%
write 17.12 22.32 30.37% 95.60 328.32%
close 0.32 0.47 46.88% 0.47 0.00%
Total 29.06 90.58 211.70% 226.97 150.57%

TABLE II
SYSTEMCALL LATENCY MEASURED IN MILLISECONDS

baremetal FUSE overhead FUSE +
Provenance overhead

I/O time taken for 100MiB file, lower is better
linear read 131.25 155.68 18.61% 156.21 0.34%
linear write 86.05 112.56 30.81% 117.55 4.43%
random read 499.63 512.18 2.51% 477.57 -6.76%
random write 198.86 612.11 207.81% 2612.21 326.75%

TABLE III
FILE I/O PERFORMANCE OVER A 100 MIB FILE



B. Example Use Case: SLA Violation Detection

We set up a test environment comprising of multiple Docker
containers and two volumes. We prepared two scenarios of
SLA violation that we hope our system could detect. First,
we would like to detect when data is being moved from one
volume to another. In this case, we assume that the volumes
are located in a different country. We performed the transfer
from one volume to another, and our system has successfully
showed on each piece of data file that the file has been
transferred from one volume to another. This is an important
piece of information in detecting SLA violation concerning
data sovereignty [28]. The end-user, without the need of an
auditor, is able to see and prove that their data has indeed
been transferred from one location to another. Using the same
scenario, the end-user can also ensue that SLA claims has
been met. For example, a cloud provider may guarantee that
data is being backup every day. The end-user can verify the
provenance on their data file to ensure that backups were
actually made.

In additon to the above, the following use cases are not
possible to be satisfied using existing provenance system but
we expect that they can be accomplished with our proposed
architecture:

1) Alice knows what has changed without the need to know
what exactly has contributed to the change.

2) If a change were malicious or by mistake, Alice would
be able to revert the change, without relying on any
inputs.

3) Alice can enforce separate access controls on the prove-
nance, such that none or only a subset of provenance
can be viewed.

4) The cloud provider can make provenance available im-
mediately to the end-user, without the need for querying
or filtering, or risks of breaching of other tenant’s
privacy.

5) In the event of a dispute, or an audit, Alice and/or Bob
can present their provenance to validate or invalidate a
cloud providers provenance.

6) In the event of a security breach, having access to the
system provenance log files will not compromise any
past or current tenants data privacy.

7) In the event of a malicious cyber attack, the whole
system can be safely and provably reverted to an earlier
state.

C. Verdict, Limitations and Future Work

On average, while the overhead seems significant, the
absolute number is rather small. The next question that we
ask is that is this an acceptable level of overhead. We
ran benchmarks to compare with other well received FUSE
filesystems such as Veracrypt [29] (a filesystem that encrypts
files on-the-fly). We found that our prototype has near identical
performance. Taking into consideration that this prototype
was built on top of FUSE, a lot of performance bottleneck
comes from the extensive amount of context switching due

to the fact that the filesystem is running in userspace. If
we implement this prototype in the kernel, the elimination
of context switching itself will see a significant performance
boost. Apart from that we will gain implementation flexibility
and thus enabling us to better optimise the process. For
example by implementing a cache [30] or scheduling requests
to be sent out efficiently [31].

We recognise a few shortcomings in our current prototype.
We recognise that by embedding provenance into the file itself
raises the question of ‘What would happen when a file is
deleted?’. Ideally, provenance data should not be deleted when
the file is deleted simply because one can hide their wrongdo-
ings by deleting the file. For example, a malicious insider at a
cloud provider can make a copy of a customer’s confidential
data and delete it to destroy any evidence. In our prototype,
when a file is deleted, we simply copy the file’s provenance
and the deletion action to syslog. The purpose of this is to
simply record the deletion action. However, in future work,
we envision the concept of ‘file-system level’ provenance,
and its responsibility is for capturing and recording history
of what has happened on the file-system, and thus maintains
and identifies file deletion operations.

Another potential limitation is that some programs may
not behave as we expected. The text editor vi (or Vim) is
one example. We observed that provenance data is deleted
each time a file is saved. We verified this behaviour with
strace and we learnt that a new file is created each time
a file is written (saved). While not visible to the user, vi
creates a backup file, copies the original contents and save the
modified file as a new file, hence the preceding provenance
data is deleted. This limitation, however, is not unique to our
proposed approach and is also present in existing provenance
systems [7]. However, this issue can be addressed if our afore-
mentioned recommendation for file-system level provenance is
realised.

VI. CONCLUSION

We identified limitations in existing provenance system that
limit the use cases for data provenance that require tracking
across multiple systems. We advocate two things: (1) the need
for versioning to ensure true preservation of derivation history
of data objects, and (2) embedding data provenance into files
to provide true end-to-end provenance tracking. The evaluation
of our prototype shows that while it incurs some overheads,
it does not affect the usability of the system, while adds
guarantees to achieving end-to-end provenance tracking.

ACKNOWLEDGMENT

This research is supported by STRATUS (Security Tech-
nologies Returning Accountability, Trust and User-Centric
Services in the Cloud), a project funded by New Zealand’s
Ministry of Business, Innovation and Employment (MBIE).

REFERENCES

[1] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM Sigmod Record, vol. 34, no. 3, pp. 31–36, 2005.



[2] O. Q. Zhang, R. K. Ko, M. Kirchberg, C. H. Suen, P. Jagadpramana,
and B. S. Lee, “How to track your data: Rule-based data provenance
tracing algorithms,” in 2012 IEEE 11th International Conference on
Trust, Security and Privacy in Computing and Communications. IEEE,
2012, pp. 1429–1437.

[3] M. Imran, H. Hlavacs, F. A. Khan, S. Jabeen, F. G. Khan, S. Shah, and
M. Alharbi, “Aggregated provenance and its implications in clouds,”
Future Generation Computer Systems, vol. 81, pp. 348–358, 2018.

[4] S. Haque and T. Atkison, “A forensic enabled data provenance model for
public cloud,” Journal of Digital Forensics, Security and Law, vol. 13,
no. 3, p. 7, 2018.

[5] P. M. Trenwith and H. S. Venter, “A digital forensic model for providing
better data provenance in the cloud,” in 2014 Information Security for
South Africa. IEEE, 2014, pp. 1–6.

[6] C. H. Suen, R. K. Ko, Y. S. Tan, P. Jagadpramana, and B. S. Lee,
“S2logger: End-to-end data tracking mechanism for cloud data prove-
nance,” in 2013 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications. IEEE, 2013, pp. 594–
602.

[7] R. K. Ko and M. A. Will, “Progger: An efficient, tamper-evident kernel-
space logger for cloud data provenance tracking,” in 2014 IEEE 7th
International Conference on Cloud Computing. IEEE, 2014, pp. 881–
889.

[8] V. Podolskiy, M. Patrou, P. Patros, M. Gerndt, and K. B. Kent, “The
weakest link: revealing and modeling the architectural patterns of
microservice applications,” 2020.

[9] C. Liao and A. Squicciarini, “Towards provenance-based anomaly detec-
tion in mapreduce,” in 2015 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE, 2015, pp. 647–656.

[10] X. Han, T. Pasquier, and M. Seltzer, “Provenance-based intrusion
detection: opportunities and challenges,” in 10th {USENIX} Workshop
on the Theory and Practice of Provenance (TaPP 2018), 2018.

[11] C. J.-W. Chew, V. Kumar, P. Patros, and R. Malik, “ESCAPADE:
Encryption-type-ransomware: System call based pattern detection,” in
International Conference on Network and System Security. Springer,
2020, pp. 388–407.

[12] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in Usenix annual technical con-
ference, general track, 2006, pp. 43–56.

[13] C. Sar and P. Cao, “Lineage file system,” Online at
http://crypto.stanford.edu/cao/lineage.html, pp. 411–414, 2005.

[14] R. Hasan, R. Sion, and M. Winslett, “Introducing secure provenance:
problems and challenges,” in Proceedings of the 2007 ACM workshop
on Storage security and survivability, 2007, pp. 13–18.

[15] P. D. McDaniel, K. R. Butler, S. E. McLaughlin, R. Sion, E. Zadok,
and M. Winslett, “Towards a secure and efficient system for end-to-end
provenance.” in TaPP, 2010.

[16] K.-K. Muniswamy-Reddy, U. J. Braun, D. A. Holland, P. Macko,
D. Maclean, D. W. Margo, M. I. Seltzer, and R. Smogor, “Layering
in provenance systems,” in Proceedings of the 2009 USENIX Annual
Technical Conference (USENIX’09). USENIX Association, 2009.

[17] J. Cheney and R. Perera, “An analytical survey of provenance sanitiza-
tion,” in International Provenance and Annotation Workshop. Springer,
2014, pp. 113–126.

[18] R. K. Ko and T. W. Phua, “The full provenance stack: Five layers for
complete and meaningful provenance,” in International Conference on
Security, Privacy and Anonymity in Computation, Communication and
Storage. Springer, 2017, pp. 180–193.

[19] S. Sultana and E. Bertino, “A file provenance system,” in Proceedings of
the third ACM conference on Data and application security and privacy,
2013, pp. 153–156.

[20] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and
R. Huebner, Level of detail for 3D graphics. Morgan Kaufmann, 2003.

[21] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C. Veitch, “Elephant:
The file system that never forgets,” in Proceedings of the Seventh
Workshop on Hot Topics in Operating Systems. IEEE, 1999, pp. 2–7.

[22] “Binary diff/patch utility.” [Online]. Available: http://www.daemonology.
net/bsdiff

[23] C. Henk and M. Szeredi, “Fuse: Filesystem in userspace,” Online at
http://sourceforge. net/projects/fuse, vol. 92, 2012.

[24] D. C. Wells and E. W. Greisen, “Fits-a flexible image transport system,”
in Image Processing in Astronomy, 1979, p. 445.

[25] Canonical. [Online]. Available: https://releases.ubuntu.com/18.04/

[26] “Ext4 (and ext2/ext3) wiki.” [Online]. Available: https://ext4.wiki.
kernel.org/index.php/Main_Page

[27] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To {FUSE} or not to
{FUSE}: Performance of user-space file systems,” in 15th {USENIX}
Conference on File and Storage Technologies ({FAST} 17), 2017, pp.
59–72.

[28] Z. N. Peterson, M. Gondree, and R. Beverly, “A position paper on data
sovereignty: The importance of geolocating data in the cloud,” 2011.

[29] “Free open source disk encryption with strong security for the paranoid.”
[Online]. Available: https://www.veracrypt.fr/code/VeraCrypt/

[30] P. Patros, D. Dilli, K. B. Kent, and M. Dawson, “Dynamically compiled
artifact sharing for clouds,” in 2017 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2017, pp. 290–300.

[31] P. Patros, K. B. Kent, and M. Dawson, “SLO request modeling,
reordering and scaling,” in Proceedings of the 27th Annual International
Conference on Computer Science and Software Engineering, 2017, pp.
180–191.


