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ABSTRACT

ANALYSIS OF DISTRACTED DRIVER BEHAVIOUR USING SELF
ORGANIZING MAPS

Matthew Immanuel Samson Advisor:

University of Guelph, 2020 Dr. David A. Calvert

Driving can be a complicated process, but with sufficient practice, it becomes
surprisingly more easier. People tend to forget that even the smallest distractions
can have great consequences. Nowadays, experienced drivers are skilled enough
to perform multiple tasks like listening to music or texting while simultaneously
concentrating on driving. This thesis studies driving under different distractions and
how they affect different drivers. The behaviour of individual drivers are also studied

to make conclusions on how distractions affect drivers.

To understand a driver’s behaviour, their driving patterns are studied by constructing
Self Organizing Maps and training them on the drivers’ datasets. This results in a
structure that maps each driver under a particular distraction to their behaviour.
The map is then studied by developing labels based on the features of the datasets.
These labels serve as test cases to examine different behaviour of each driver, from

which conclusions regarding the disruptiveness of each distraction.
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Chapter 1

Introduction

Driving a car, like most things, is a complicated process but it can be learnt with
experience due to its repetitive and predictive nature. When inexperienced drivers
(and even experienced drivers in some cases) become distracted, this leads into
accidents that can end up in loss of life. But how do we determine which distrac-
tions would need the most attention and end up distracting from safely driving the
vehicle? This can be determined by analysing data on drivers who are tested under
different kinds of distractions. The goal is to understand specific differences between
distractions and between drivers which in turn will lead into making conclusions

on the way each distraction affects the behaviour of the drivers whose data is analysed.

By analysing these sequential datasets of different distracted drivers, knowledge can
be obtained about their varying driving patterns. This can be used to build models
that represent the driver’s patterns and then point out patterns that are distinct
to each driver and the associated distraction. These patterns can then be analysed
to identify various characteristics of individual drivers which are further studied to

identify distinctions between drivers under different distractions. The features of



the dataset are also studied as a way to identify differences between drivers and
distractions. The differentiating factors are based on the driver behaviour. Some
examples of this are when the brakes are applied, when speeds up, when the driver

makes left or right turns and many others.

1.1 Application of the Self Organizing Map

A Self-Organizing Map (SOM) or Kohonen Map, which is an unsupervised neural
network architecture is applied to all the experiments that are performed in this
thesis. Its unique characteristics of dimensionality reduction, simple visualization
and spatially distributed structuring are used to gauge patterns found in the dataset.
More specifically the nature of the structure formed after training the SOM are
used to identify unique driver patterns. The resulting trained model is topologically
clustered wherein similar vectors in the datasets that the model is trained on, will
be found closer to each other. This leads to the topologically clustered structure of
the SOM and the results are represented over a 2D map. Each coordinate on the
resulting map is a neuron and it contains a set of the closest matching vectors from
the input dataset. When the trained map is tested, the patterns that appear are
examined which leads to conclusions on regarding individual drivers and on drivers

under the effect of distractions.

1.2 Brief Overview on Experiments Conducted

The initial experiments cover examine how the SOM represents the respective
datasets that it is trained on. In this case, tests are conducted to uncover the trained

topological structure which are then used to examine further test cases focussing



mainly on two points:

e Analysis between drivers under each of the three distractions to understand
the similarities and dissimilarities between them and make conclusions on their

behaviour.

e Analysis between distractions on either a single driver at a time or all the
drivers in the datasets to make final conclusions on what distractions affect
what specific behaviour and if such results are repeated among a majority of

the drivers.

1.3 Basic Structure of the Thesis

Following the introduction, the literature review covers all the concepts that will
be covered in this thesis including discussions on the dataset that are used, brief
introduction on the Artificial Intelligence (AI) techniques that are used leading
into explaining the SOM with specific techniques that are applied to the training
algorithm. The next chapter covers the methodologies that are used in this research.
In this chapter, the datasets are discussed in more detail followed by a description
of how the SOM algorithm the respective datasets. The next chapter discusses all
the results collected as part of this research, how they are obtained and the reasons
for each experiment. The final chapter concludes the research by summarising the

results and conclusions obtained followed by a discussion of future research.



Chapter 2

Literature Review

The Literature Review will cover papers on Driving Simulators, their value and
the type of data collected along with the various experiments conducted with their
respective findings. It will then focus on describing Artificial Intelligence (AI)
techniques that could be applied to specific datasets, starting with brief descriptions
on numerous Machine Learning (ML) and Artificial Neural Systems (ANS), followed
by placing emphasis on Unsupervised Learning (UL) with Artificial Neural Networks
(ANNs). This will then lead into the main model used in this thesis called the

Self-Organizing Map (SOM) or the Kohonen Map.

2.1 The Driving Simulator

A driving simulator is a machine that utilizes both computer aided motion of an
object, together with dynamic simulations. The driver is placed in an artificial
environment as a substitute for most aspects of actual driving ™). While in no way is
it perfect because of its very nature of “consistent safety” being guaranteed causing

drivers to adopt a comparatively care free attitude (even unconsciously), there is a

4



lot of research that supports the idea of new drivers being trained in a simulated kind
of environment. With the growth in technology and the advantages of simulations,
today’s driving simulators help in studying vehicle design, intelligent highway design

and human driving behaviour under different conditions .

However it is important to note that the very nature of the driving simulator
causes a consequential bias in the data collected. When participants in the experi-
ments realize the safe nature of the driving simulator, they tend to be more relaxed in
driving. This can not only cause bias but if not given attention, it will lead into data

that is far off from the actual data that could be collected in a real-time scenario.

2.1.1 Driving Simulators in Psychology

Driving simulators are valuable research tools which further enable the study of the
seemingly simple yet highly complicated activity of driving. Testing out stereotypes
was found to yield interesting results, for example, elderly drivers who read documents
stating that they are bad drivers (elderly people in general which is a stereotype),
found that their driving ability changed in a way that was positively related to
following distance but negatively impacted their brake reaction timel?. Others
include testing the Terror Management Theory where self-awareness leads to anxiety,
looking for some social influence like peer influence or the self-concept of driving. In
some cases participants who heard “pro-risky” comments (like “go faster!”) drove
faster and had more accidents compared to those who heard anti-risky comments
(like “drive slowly”). Many interesting correlations were found with age, driving
experience, etc. 2. A very interesting study was done with participants exposed
to many accident scenes in movies and those who had numerous accidents in video

games. It was found that such participants seem to accelerate very quickly up to 160



km/hr and completed their race course much faster.

2.1.2 Drive Lab - Experimental Setup

The driving simulator based on which the data is collected for this thesis is located at
the laboratory named as the Drive Lab. It is set up by the Department of Psychology
at the University of Guelph. The driving simulator used in the experiments is
a model developed by Oktal which in turn constitutes technology (especially the
SCANER software) developed by pioneers from both the industrial and scientific
fields of Simulation and Virtual Reality respectively. The model consists of a base
full scale simulator connected to the body of a Pontiac G4 convertible. The body of
the vehicle is then surrounded by 300° of wrap around projector screens. Almost all
the controls that would be present in a vehicle are replicated in the simulator as well,
including the steering, pedals and automatic transmission ¥/, Numerous features
are monitored under the Symptom Assessment Scale (SAS) that aim to identify
a patient’s distress relating to their physical symptoms such as difficulty sleeping,
nausea, bowel problems, etc. A rich dataset consisting of numerous features (further
explained in the next section 2.1.3) were collected by the simulator at a temporal

resolution of 62.5 Hz.

2.1.3 Experiments Conducted and Results Obtained

This section discusses interesting results obtained on by using data from driving
simulators. Various driver characteristics were analysed in different environments, to
understand behavioural patterns of drivers in general. One of the features analyzed

7]

was the factor of experience in driving ). The study aims to further understand while

driving, how different object size and shape (along the course) serve as qualifiers as

6



to what is relevant to the driver and what isn’t. An experienced driver automatically
allocates levels of relevancy to the information that enters the drivers’ brain at a very
high rate as compared to performing any other activity. To do the test, participants
were divided into 2 groups of 12. The experiment was conducted by showing both
the groups a pair of images. The first image followed by the second image which
had a minor change from the first image. The goal for the 2 groups was to identify
what the change was while the process was repeated for 300 times. The results are
expressed in terms of error times and response times. Novice drivers had higher error
rates. The key factor was experience which lead to experienced drivers giving better
results on irrelevant objects. Whereas in response times experience was not the key
factor. Results showed that safety relevance played a more important role as relevant
objects were recognised faster than irrelevant objects. Age did not play a major role
in response times but gender was shown to affect the results with males having a

faster response time than females.

Another study was conducted on driver distracted data similar to the Dual Task
dataset (mentioned in section 2.1.3) where drivers are made to listen to an audio
book while driving through simple and complex courses [*. Interestingly distractions
were actually helpful in cases of dealing with boredom and fatigue. The experiment
conducted uses a dual task methodology to determine whether there was interference
between tracking and driving. It was conducted in a simulated environment where
the driver was made to be attentive to multiple objects at any given time. The
performance decreased significantly when participants were moving while simultane-
ously tracking objects. It was assessed based on the mean and standard deviation
of the distance between the lead vehicle and the participants’ vehicle. A total of

53 participants were tested and 28 were selected to do tracking alone and tracking



while driving portions of the study and the remaining 25 did only driving without
tracking. The participants reported significant decrease in tracking performance as
the number of vehicles increased. So the first group reported poorer results as the
number of objects increased. Drivers in the first group displayed shorter fields of
view as they had to keep track of many objects while conversely the other group had

chosen to give the lead vehicle a greater distance for safety reasons.

Another study tested the yet to be proven idea that driving automobiles required
multi-object tracking which shows how many objects can be detected and kept track
of while driving . The first experiment to understand this employed using a dual
task methodology to determine if there is interference in tracking and driving. The
participants had to keep track of vehicles, both in their vicinity and other specific
“tracking vehicles” either in or out of their vicinity. The impact of how drivers
maintain consistent multi-object tracking is also investigated and performance is
determined by how many vehicles are in the vicinity of the driver and can be tracked.
This experiment shows that while it is possible to perform multi-object tracking while
driving, it causes the driving performance is decrease. In another experiment, it was
found that drivers are more attentive in detecting changes by about 250 milliseconds
faster in the vehicle that they are tracking (for example any change in the vehicle
immediately in front of them) but the question investigated was whether multi-object
tracking is really beneficial to drivers. The study concluded that multi-object tracking
is in many cases advantageous to drivers however it is inconclusive whether it is
actually done in day-to-day driving. It was also found that when drivers tried to
perform both driving and tracking simultaneously, the performance of both driving
and tracking was greatly affected. It was found to reduce a drivers’ stable position

on the road, thus compromising steering and speed control. Notably this study was



one of the first to show that multi-object tracking was at least possible while driving.

Yet another study was done on understanding mind wandering while driving, as to
whether it would be caused due to longer periods of driving or by differences found
in executive working memory that was determined by the Sustained Attention to
Response Task (SART) Pl. Each participant completed a total of 3 drives each of
which were 20 minutes long in the driving simulator and were periodically asked
questions of whether they felt distracted while driving. Whenever they reported that
they were not focussing while driving, it served as an index for their mind wandering
while driving. Another rating that was considered was asking the participants how
they felt it was to focus on driving. At four points during each 20 minute drive, the
participant was asked if they were thinking about driving and they pushed either
the “Yes” or “No” buttons. They reported the difficulty of focussing on driving
increased from the 1st to the 3rd drives and there was a marginal increase in steering
variability. Another analysis was done that found that a percentage of trials was
correlated with reports of emotional state, while the most predictive correlation was
found between the mind wandering during the drives and the participants’ respective

number of hours of sleep on the night before the experiment.

Many studies were conducted based on accidents, more particularly on vehicle
collision type of accidents. Most reasons for vehicle collisions was found to be be-
cause of tailgating which was in turn difficult to remediate due to the fact that drivers
were poor at estimating distance between vehicles known as the headway. This led to
a study done focussing on understanding how headway is maintained by novice and

[6]

experienced drivers ®!. The first goal was to directly compare novice and experienced

drivers. Investigation was done into whether to follow experienced drivers as to what



they perceived to be a minimum safe headway or to follow the “2 second rule” inter-
vention. As expected a main effect of driver experience in driver headway was found
where experienced drivers revealed that they tended to overestimate where they stop.
The second goal was to develop an automated reward based approach to encourage
longer headways in order to address tailgating. Current systems of adaptive cruise
control and collision avoidance initiate the braking system when vehicles are too
close to each other. This automated systems do not solve the problem that initiates
tailgating but can also diminish the drivers’ capacity to thwart potential collisions.
The study proposes to convey headway distance to the drivers using an in-vehicle
display. The system provides the driver with an objective measure of headway in
real time together with a long term representation of performance. Comparison with
previous techniques showed that the in-vehicle display recorded better and more
consistent headway. It was concluded that the introduced system would be used as
a tool for early driver training or to help preserve situation awareness when using

driver assistance systems.

2.2 Artificial Intelligence Techniques Applied

Artificial Intelligence (Al) is a deeply diverse field encompassing numerous disciplines
with the goal of making computers to perform tasks that are only humanly possible.
The sections that follow will discuss the common literature in Machine Learning
(ML) and Artificial Neural Systems (ANS). This will then lead into the ANS model
that would be applied to the driver dataset — the Self-Organizing Map (SOM) and
its characteristic features. Then we look into further literature behind the way
the dataset is organized, the way in which the model is trained, how the models’

memory works in understanding the data and finally other models that employ

10



similar mechanisms.

2.2.1 Machine Learning

Most Al algorithms and models are trained, having their foundation in the numerous
ways that humans learn from each other and our environment ). Most methods of
learning are divided into 3 types on the basis of how the model or agent perceives

the environment and the constraints placed on them. They are:

1. Supervised Learning: Learning with the help of a teacher is what is known
as supervised learning [®l. In this case there is a “Teacher” that gives the model
an answer to a question and the model is tasked with understanding how that
answer is obtained. The idea is that given enough such “questions and answers”,
the model would attain enough understanding to make generalised decisions in
that particular field. The “Teacher” can be considered in conceptual terms as
one having knowledge on the environment and this knowledge is represented
as a set of input — output examples. The questions will be in the form of
an input vector of data and the answer will be the desired output given by
the teacher. The idea is that the model would make a prediction with the
input vector, compare the prediction with the desired output and then send
the error (difference between them) back to the model in such a way that the
model is able to understand and realize the correct answer (the desired output)
by making respective changes to its parameters. Commonly used algorithms
include Support Vector Machines, Linear Regression, Decision Trees and Neural
Networks.

Supervised learning is generally used into two types of problems:

11



e Classification problems: In classification the input set is divided into
multiple classes (usually in discrete fashion) from which the model is made
to predict the right class (output) for the right input. Some examples of
applications are Spam Detection, Optical Character Recognition (OCR)
and any other problems that require knowledge of distinguishing between

classes.

e Regression problems: In regression the input set is divided into multi-
ple classes (can be both discrete and continuous) in which the model makes
a prediction of a quantity that is continuous and not restricted to a set of
class labels. Some examples of applications include making predictions on
cost values such as house prices, making predictions with respect to time
series datasets and basically any problem requiring predictions on specific

values as opposed to grouping input data into classes.

2. Unsupervised Learning: Learning without the help of a teacher is what is
known as unsupervised learning [*). In the absence of a “Teacher”, there is no
desired answer (output) that is available for any question. Rather such models
focus on understanding the underlying nature by grouping them in numerous
ways. Instead of making predictions based on the questions, they are grouped
together in such a way that common questions are more close to each other that
uncommon questions. It is a kind of self-organized Hebbian Learning ! which
helps locate patterns in the data without previously defined labels. Common
unsupervised algorithms include clustering — hierarchical clustering, k-means,
even neural networks such as Self-Organizing Maps (SOMs), Auto encoders,

etc. and other latent variable models like Principal Component Analysis (PCA)
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and Singular Value Decomposition (SVD). Further details will be provided in
sections 2.2.3 and 2.2.4 as this is one of main components of this thesis.

Two general methods in Unsupervised Learning are:

e Clustering and Dimensionality Reduction: The goal of clustering is
to group together similar inputs and is used to deal with data containing

101 The distance measure usually used to

a large number of dimensions
compare objects to determine their group is the Euclidean distance. How-
ever two objects may be similar despite differences in position, orientation

and scale. Some common applications of clustering are Medical Imaging,

Market Research, Social Network Analysis and Software Evolution.

e Principal Components: This is a more statistical procedure that aims
to convert a set of correlated variables into a set of linearly uncorrelated
principal components. It is even a standard technique used to perform
dimensional reduction %, It relies on the concept of eigenvalue decomposi-
tion that can be seen as fitting a p-dimensional ellipsoid to the data where
each axis of the ellipsoid is a principal component. Common applications

include Quantitative Finance and Neuroscience.

3. Reinforcement Learning: In both supervised and unsupervised learning,
the model is not permitted to look at its environment. This restriction is lifted
with reinforcement learning. While there is still no “Teacher” to provide the
right answer, the input-output mapping is performed by continuous interaction
with the environment in order to minimize a scalar index of performance 1. In
place of a teacher, the system is built around a “Critic” that works on a primary

reinforcement signal called the heuristic reinforcement signal where both of
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which are scalar values. The goal is to reduce a function on the expectation
on the total cost of actions taken over a sequence of steps instead of the
immediate cost. In many cases, it turns out that actions taken earlier found
better results. Such actions should be learned by the system and then taken
and feed back to the environment. The environment is usually represented as
a Markov decision process (MDP) and many such reinforcement techniques
utilize dynamic programming to be solved. It has attained remarkable results

in the fields of AI in gaming, robotics and evolution programming.

2.2.2 Brief Intro to Artificial Neural Networks

In the 1940’s with the McCulloch-Pitts 23l model which was the first mathematical
model that used the all-or-none output mechanism implemented by a step threshold
function. None of these models had the ability to learn. In 1949, Donald Hebb’s
studies ) on neurons led him to formulate a learning rule that states that the
efficacy of a synapse increases if there is presynaptic activity followed closely with
a postsynaptic activity called the Hebbian learning. In 1957, Rosenblatt applied
learning rules to the McCulloch-Pitts to develop the “Perceptron” which was shown
to learn to separate between two classes [°l. This forms the basis for today’s general
neural network called the “Multi-Layer Perceptron” (MLP). However at the time,
criticism by Minsky & Papert together with the Credit Assignment Problem (CAP)
encountered in training the MLP caused the research in neural networks to diminish
greatly. Interest in neural networks resurged with the Back-Propagation algorithm
that was developed individually by Rumelhart & Hinton ' and LeCun ¥ towards
the end of the 1980s, which while not being the perfect solution, widely addresses
the CAP.
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An Artificial Neural Network (ANN) is a massively parallel distributed proces-
sor made up of simple processing units called neurons that have a natural capability
to manipulate and store experiential knowledge and making it available for use. It
resembles the brain in such a way that knowledge is obtained from the environment
by a learning process and memory is stored and represented in the form synaptic

weights, which are basically the connections between the neurons .

A basic ANN model consists of computational units called neurons which are arranged
layer-wise. The first layer accepts the input vector and contains as many neurons
as the lengths of each input vector. The last layer is called the output layer that
contains as many neurons that are sufficient to obtain some understanding regarding
the input data (for example, a decision to be made). The problem here is that not
every problem can be solved with just an input and output layer and so as and
when required, the usage of hidden layers of variable number of neurons has become

common place in constructing ANN models 1,

ANNSs usually store and operate on two types of patterns — spatial patterns which
can be represented as a single static image and spatiotemporal patterns which is
a sequence of spatial patterns similar to a sequence of static images. The way the
memory in an ANN is represented can be understood as either Content Addressable
Memory (CAM) where data is mapped to addresses using a matrix that stores all
the values of the synaptic weight connections (aptly named the weight matrix), or as
associative memories where data is mapped to other data that works by providing
output responses based on respective input stimuli 2. The model can either be
trained using auto associative memory where all the patterns are stored one after

another or by hetero associative memory which stores patterns in pairs. The hetero
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associative mapping was later extended from pairs to a kind of window applied and

[13]

slid over the pattern set '*. The way the patterns (vectors) are stored represents

the way that they will be used to train the network.

One of the greatest achievement of the ANN is its capability to satisfy the Universal
Approximation Theorem (in theory at least), according to which it is possible to
create an ANN model that would generalize to any function, dataset or problem
provided that there are enough neurons in its hidden layer M. Basically no matter
what function we wanted to compute, there is an ANN that could do the job. How-
ever there’s always the problem of having too many neurons that could either result
in overfitting the model or add unnecessary complexity (as the theorem does not
place any limit on the number of neurons). The beginning of the “Backpropagation”
(BP) algorithm 11111 solved the complexities of training multiple layers in a neural
network by means of applying feedback accross the network. Feedback in BP is
understood as the gradient (or the slope) that is first calculated as the error at the
output layer and then transferred as the gradient obtained at the successive layer.
The gradient of the error is then applied to each neuron that causes the weights to
change in the direction of the optimal result (preferably). If the change leads to a
better result, it is kept under certain conditions to counter the local minima problem,
the change will either be maintained or discarded thus leading into the basic idea

behind the Gradient Descent (GD) algorithm.

2.2.3 Unsupervised Learning with Neural Networks

Unsupervised learning with ANNs has its foundation in the Hebbian learning rule
O where the connections are reinforced irrespective of an error and is specifically a

function on the potential between the two neurons of the connection. While the most
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commonly used unsupervised learning neural network techniques are the Adaptive
Resonance Technique (ART) and the Self-Organizing Maps (SOM), numerous other
valuable neural networks will be discussed in this section with SOMs being discussed

in the next section.

Grossberg Techniques:

In 1968, Grossberg developed an ANS model that had a single layer of neurons
and works as an auto associative, nearest-neighbour classifier to store analog spatial
patterns. It learns using either Hebbian or competitive learning and the model is
called the Additive Grossberg (AG) model 2. Once trained, it results in a one-layer
feedback structure where the neurons correspond to the input features. The neuron
activations work by either self-exciting (positive) or neighbour inhibiting (negative)
lateral feedbacks. The firing of neurons work as a kind of Short Term Memory
(STM) and the final nearest-neighbour classification works dynamically with respect
to each input by making the closest resembling neuron to be maximally activated
and the least resembling ones to be nullified. At the end of training, the optimal
result is that only one neuron would be activated to the maximum at 1 while all

others would be inhibited to the minimum which is 0 for each respective input pattern.

Adaptive Resonance Theory (ART):

The Adaptive Resonance Theory was developed by both Grossberg & Carpenter 16
continuing from previous research on the AG models and is used to address problems
of pattern recognition and prediction. The basic ART is an unsupervised neural
network that consists of one layer of neurons called the comparison layer and another

layer called the recognition layer. The model accepts a vector of input in the first layer

and transfers it to the best match in the recognition layer i.e. the neuron that has
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the weight vector that is closest to the input vector. A negative signal proportional
to the distance between each respective weight vector and the input vector is sent to
all the other neurons thus inhibiting their output and training the network. What’s
interesting about the competitive learning here is that after the inhibition is done,
the model compares the winner with a “vigilance” parameter to make sure that the
input vector is in normal ranges as the input seen before. If it is within ranges, the
winner activations are updated such that they come closer to the respective input
vector, but if the difference is out of the normal ranges, even the winning neuron will
be inhibited. This is the reset function that keeps reducing neuron activations one by
one that do not overcome the vigilance parameter. The value of the vigilance parame-

ter inherently serves as a control variable for how the memories are to be modified 2.

Hopfield Networks:

The Hopfield networks is a variation on the Recurrent Neural Networks (RNN)
which feeds its existing output back into the neuron with the aim that the model
would understand contextual information. It is a single layer, auto associative,
nearest-neighbour encoder similar to the AG model, which works in continuous
time and stores analog spatial patterns. The model is trained using a thresholding
function. It was in 1985 that it was first applied to an ANS network architecture by
Hopfield & Tank ! and it was shown that highly interconnected networks using
non-linear analog neurons are very effective in computing and have 3 major forms
of parallelization in the input, output and the network interconnectivity between
the neurons. The neurons are modelled as amplifiers which use sigmoid monotonic
activation functions with their synaptic weights altering between 0 and 1 for normal
outputs (excitatory response) and between 0 and -1 for inverted outputs (inhibited

outputs). Results were used to solve difficult optimization problems like the Traveling
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Salesman problem where each input was the distance between cities. In order to
approximate more complex problems, a larger number of neurons would need to be

used.

2.2.4 Self Organizing Maps

Tuevo Kohonen began his ANS research working on randomly connected paradigms
but then quickly shifted to focus on associative memories. Later improvements in
1973 resulted in the optimal linear associative memory to find an optimal mapping of
vectors between associative memory and linear vectors. Kohonen’s further research
led to the development of a competitive learning algorithm called the Linear Vector
Quantization (LVQ) which automatically determines the best reference vectors for a
large set of n-dimension data points. This has also been called the self-organizing
feature map because of its early success in organizing sounds into a phonotopic map
which is a part of the brain responsible for understanding sounds, also called the

auditory cortex [17.

The idea of self-organized feature maps in a topological manner was first published
by Kohonen in 1982 '), The main discovery was the self-organizing capabilities of a
simple network containing adaptive physical elements that received signals from an
input space and automatically mapped them onto a set of output responses in a way
that the responses seen in the output acquire a somewhat topological design. The
discovery was followed by finding out that topologically correct maps of structured
distribution were formed form an initial map where no such structure existed (called
retino-tectal mapping). The main objective was to demonstrate that external signal
activity, assuming a proper structural and functional description of system behavior

is sufficient for enforcing such mappings into the system. The first experiment was
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done using an array of units, a neighbourhood detecting function and an adaptive
process applied on the parameters. The topology of the array is determined by the
neighbours to each unit. The mapping is ordered when the neighbours are found to
be similar to the matching unit. Through these initial simulations, multiple different
results are obtained all having the same meaning but differently distributed. To
prevent this, “seeds” i.e. pre-defined input weights should be used. Two phases are
described, phase 1 attempts to define and understand the clustering activity and this
is fine as long as it attains the proper form. In phase 2, the adaption of the input
weights in described. The paper then discusses reasons for choosing a neural network
model and explains some problems encountered such as the “pinch” phenomenon
which occurs when data vectors do not spread out in a planar form but in the shape
of a ring and the “collapse” phenomenon where all the weight vectors obtain the
same value and is observed when the range of lateral interaction between vectors

and neurons was too large.

Further improvement to the organizing maps leading into the current SOMs (or
the Kohonen map) was once again done by Kohonen in 1990 '8/, The paper lays
emphasis on the interesting spatially organized “internal representations” of the
various features of the input signals and their abstractions and this is unique among
all architectures and algorithms suggested for neural networks. The topographical
organization formed is similar to the cortices of animal brains. After fine tuning
the weight vectors, the map can even detect patterns in noisy signals. The spatial
segregation of different responses and their organization into topologically related
subsets results in a high degree of efficiency in typical neural network operations.
The author makes an interesting comparison with studies on “brain maps” that

show evidence that internal representations of information in the brain are generally
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organized spatially, in theory at least. A single vector of data is given as input, and
then a search begins for a match with the right weight vector, usually by Euclidean
distance and the winner is the shortest one. Next the weights are updated (never
independently as this inhibits competitive learning) and tend to attain values that
are ordered along the axes of the network. To enforce lateral interaction in a general
form, a neighbourhood set is defined around the winning neuron and its width could
be a time-variable i.e. wide at the beginning and slowly narrowing down with its
decay following that of a general bell curve function. Some experiments are conducted
to show hierarchical representations in data which show that if the input has well
defined probability density function, the weight vectors would tend to imitate it.
Other experiments include LVQ in the sense of classifying (labeling) each weight
vector using a kind of majority voting. Further results include that fine tuning via

linear vector quantization is the best approach to classification tasks in the SOM.

2.2.5 Other Literature behind the Proposed Model

Sammon Mapping:

Dimensional reduction is a problem encountered in the field of Al where in the data
collected is of many dimensions (features) which makes it very hard to visualize
or understand. However in numerous attempts to perform dimensional reduction,
starting from using the PCA to extract only principal components from the data,
they all result in losing the dataset’s underlying structure when being reduced to 3 or
lower dimensions. Another technique that works much better is called the Sammon

mapping 2.

In Sammon mapping, the goal is to preserve the distance as much as possible

between each pair of points in a multi-dimensional space when reducing it to 2
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dimensions. A good way to start this method is by first picking out the principal
components and finding the respective 2D counterpart. Next the error is calculated
using a function that finds the distance between each pair of points in both the
multi-dimensional space and the 2D space. This error is then used show how much
the next 2D map should be altered such that the inter-point distances in the multi-
dimension will be preserved. It should be noted that the final result is not optimal
but as close as possible to the optimal solution. Resulting dimension reduction from
numerous experiments were found to be much better than PCA 22, The ML like
structure of the algorithm even encouraged an ANN variant of Sammon mapping

being developed to take advantage of the numerous parallel computations involved.

SOM on Time Series:

The dataset analysed and applied in this thesis is in essence a Time Series. A time
series is a series of data points indexed with respect to time which can be defined as
a sequence taken of a successive equally spaced points in time. Time series are used
in all sorts of fields like pattern recognition, signal processing, weather forecasting
and more recently, in the field of Data Science to build models that make predictions
with respect to time. In dealing with Time Series data, SOMs are usually not the
first choice. This is because of numerous other supervised architectures such as the
regular Multi-Layer Perceptron (MLP) and Radial Basis Functions (RBF) which are
chosen thanks to their generalization ability 2. The dynamics of the time series
can be described by means of a nonlinear regressive model such as an autoregressive

model based on the idea of making predictions.

The paper even points out interesting reasons for using SOMs such as the local

nature and growing architectures of SOMs in general . One of the algorithms
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mentioned basically talks about performing vector quantization on vectors together
with their associated one step-ahead observations (a kind of windowing and hetero
associative mapping) which is the idea behind a VQTAM and this can be used
to learn static (memoryless) mapping. The input vectors are arranged in such a
way that each vector is a combination of an input and the output vectors (current
and the one step ahead). However during updating the weights, two separate up-
dates are done on the respective input and output weight vectors. The VQTAM
model is improved through the use of geometric interpolation and smooth output
values can also be done using a VQTAM model in the form of RBF-like networks.
This method is also applied to system identification and adaptive filtering. Once
trained, the results can be interpreted by using rule extraction procedures. Rules

are then applied to each winning neuron based on the input values that activate them.

Windowed input to Neural Networks:

One of the keys to understanding time series is maintaining context between sub-
sequent events to so as to form a kind of spatio-temporal structure in order to
comprehend the dataset and make predictions. The first neural network model that
applied this was the NetTalk to solve speech recognition problems in 1986 13/, The
intent behind the model was to try and understand the complexity of learning simply
human cognitive tasks, more specifically focussed on converting text to speech, which
after training on a corpus of informal words was found to have good performance

and generalisation capabilities.

The model used the basic structure behind an MLP network with 3 layers and
applied the sigmoid activation function. The input layer consists of 7 “groups” of

neurons each taking 7 characters as input leading to the “windowed” input layer
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format where each neuron accepts 7 inputs (7 characters). The expected output
containing 7 neurons is the center character of each window applied on each group
of input neurons. The window is then moved over the sequence of characters by
one step and the overall process is repeated. The results showed that a relatively
small network could capture most irregularities of the dataset. This is very similar
to the discoveries found by the Time Delay neural network in 1989 2!, Its one of
the first times the BP algorithm was applied to train neural networks and also when

windowed input was applied and slid through the dataset.
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Chapter 3

Methodology

The methodology behind this thesis begins by describing the features selected from
the dataset in more detail followed by various modifications done to the data. The
structure of the network used and the way data is fed into the network is then
explained. Then the SOM algorithm is described in detail followed by how the
training algorithm is applied on the SOM. Once trained, the SOM mapping is
created between each map coordinate from the resultant maps and the data points
from the respective dataset. This final trained map is then labeled using numerous
existing labels based on data collected from the participants of the driving simulator
experiments and other interesting labels obtained from analysing the features of the

dataset.

3.1 Description of Data Collected

The dataset that this thesis will be based on is called the Dual Task dataset. It
is one of the many datasets collected in the Drive Lab by Dr. Lana M. Trick and

her students from the Department of Psychology in the University of Guelph. The
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dataset is collected in the form of a Time Series of each driver. It is comprised of
40 young adults who are within the ages of 17 to 22 years old, of whom nine are
male and 31 are female. Each participant made to drive under different distractions
to examine how they perform multiple tasks whilst driving. The three distractions
placed on the drivers were 'Hands Free’ (driving while having a conversation via a
’hands free’ device), 'Music’ (driving while listening to music) and "Text’ (driving
while texting). The data is collected separately for each condition and for each driver,
so a total of 120 Time Series’ (40 drivers x three distractions). Values for all of the
features is obtained from the sensors on the driving simulator sampled at 62.5 Hz.

The following are the features that are present in the datasets:

1. Time: The value of time is being recorded at 62.5 Hz (0.016 s) until the end

of the experiment. It is measured in seconds (s).

2. Brake Pressure: A sensor at the brake sends signals indicating how much
pressure was applied to the brake when it is pressed. When not pressed the
values would be very small (approximately zero), however when pressed the
values vary from 0.1 to ranges of 50 to 70. It is measured in Bar (1 Bar =

100000 Pascal).

3. Tangential Speed: The instantaneous speed measured by the simulator at

every time-step. It is measured in m/s.

4. Tangential Acceleration X: The change in tangential speed measured along
the x-axis with respect to the motion recorded by the simulator in a forward

or backward direction (driving on a straight road). It is measured in m/s>.

5. Tangential Acceleration Y: The change in tangential speed measured along

the y-axis with respect to the motion recorded by the simulator in a left or
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right direction (driving around a turn). It is measured in m/s?.

6. Tangential Acceleration Z: The change in tangential speed measured along
the z-axis with respect to the motion recorded by the simulator in an up and

down direction (driving over varying altitudes). It is measured in m /s

7. Lane Gap: The distance between the center of the simulator and the driving

track. It is measured in meters (m).

Other features were collected in the dataset but they were not examined in this work.
The “Time” feature is removed since the sequential nature of the data collected is

sufficient to understand when each event takes place.

3.2 Feature Engineering and Data Modifications

Resampling the datasets:

The dataset is sampled at 62.5 Hz which means data is collected at every 0.016
seconds. Although this is valuable, in regards to human nature and the respective
actions taken, it would be hard to imagine any significant action done in 0.016
seconds in regards to driving a car. For this reason, the dataset is resampled at the
rate 10 Hz. However this was not reduced further due to possible risk of loss of data,

thus end up in leaving out valuable context between events (each data sample).

General ML related modifications:
The dataset is normalized or scaled within each feature such that every value in
each respective feature is between 0 and 1. The normalization is based on the below

formula:

NOT’ITLXZ‘ = (Xz — Xmin)/(Xma:L’ — Xmin) (31)
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Where:
X, = data sample ‘i’ of feature X
Xmin = The minimum value in feature X

Ximer = The maximum value in feature X

Finally the datasets are placed under a window of size five meaning that the network
is made to be trained by sliding windows of width five with an overlap of four samples.
This means that instead of showing the network one data point at a time (which is
resampled at 1/10%" of a second), we show the network five data points at any given
time (so five times 1/10%" of a second is half a second) and this is described in fig. 3.1.
Similarly the labels to be tested over the resulting trained SOM are placed under the
same window of size five and the center of the window is chosen to be the main label
for every window of input data points to the network. However consideration was put
into choosing the window size with the aim of preventing too much context (large
window) that causes loss of previously learned information, while also preventing the
network from being exposed to too little context such that it never realizes there
exists any context in the first place. Final dataset arrangements:

The final datasets are arranged in the four following sets before being used to train

numerous SOM models, which will be discussed in the next chapter:

1. Hands-Free dataset: Includes the data from all the drivers while placed

under the distraction of using a hands-free device while driving.

2. Music dataset: Includes the data from all the drivers while placed under the

distraction of listening to music while driving.

3. Text dataset: Includes the data from all the drivers while placed under the

distraction of texting on a hand-held device while driving.
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Figure 3.1: A miniature example of the regular dataset being converted
into the windowed dataset, with a chosen window size of five

4. Full dataset: Includes the data from all the drivers while placed under the
3 distractions mentioned above. It is a combination of all the datasets - the

hands-free dataset, the music dataset and the text dataset.

3.3 SOM Architecture and Parameters involved

In this section, the architecture of the SOM model is described along with the way
the model is trained. This is then followed by describing the parameters involved

and the reasons why their respective values are decided.

3.3.1 Network Architecture and Training

The architecture of the SOM consists of 2 layers. The input layer contains as many

neurons as the features in the dataset. In our case the dataset has 6 features, however

29



with the window size of 5 meaning that when the network is trained, it uses 5 data
points at the same time with each having 6 features, thus leading to a total of 30
features which in turn leads to having 30 neurons in the input layer. The output
layer is the resulting self-organized mapping where each coordinate on the 2D map
corresponds to a neuron. The size of the maps (depending on the number of neurons
in the output layer) are varied based on the size of the dataset with larger maps
(more neurons) being given for the model which trained on the larger dataset.

Before training the networks, the weights to each neuron in the output layer are
first randomly set, where each weight is a randomly generated vector of length 30
(number of features after applying the window). Once initialised, the weights are
saved and repeated for maps of similar size, so as to have a uniform start to training
each model. The training of the network is carried out using the sequential batch
training of the windowed dataset. The process starts at the first windowed vector
and goes all the way to the end and are then repeated for as many iterations as
required, in the case of the experiments conducted the number of iterations used is

10.

3.3.2 Parameters Involved

The control variables used in the SOM algorithm are pre-set after much experimen-
tation and are reasoned as follows:

Input layer neurons: The number of neurons in the input layer is determined by
the number of features in the each vector that would be used to train the network.
So in the case of the original dataset of 6 features, after applying the window of size
5, each vector contains 30 values and thus each input layer would contain 30 neurons.
In the next case, of generating the individual driver as a new feature, there are 7

features and after applying the window of size 5, each vector contains 35 values and
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thus each input layer would contain 35 neurons.

Output layer neurons: The number of neurons in the output layer is repre-
sented by size x size, where size can be any number. So for example when size = 20,
a 20x20 map (which is the output layer) will be generated which is a total of 400
neurons with each neuron being represented as an (x, y) coordinate on the 20x20
map.

Some main cautions are against using too large or too small maps. Large maps
tend to cause different patterns (comparatively recessive patterns) to become more
visible, however too large of a map causes the same patterns that ought to appear
together to become separated and thus end up missing or misinterpreting such
patterns. Smaller maps tend to cause different patterns to come together (resulting
in comparatively dominant patterns), however maps too small cause the patterns to

simply overlap each other to a point where there wouldn’t be any discernable patterns.

Sigma: The value of sigma indicates the distance of the neighbourhood of each
neuron when being used in weight updates. This neighbourhood function deter-
mines how much each weight vector within the neighbourhood is updated and this
update decreases from the neurons closer to the BMU to the neurons within the
neighbourhood but furthest away from the BMU. Further description is given in
section 3.3. After experimentation, it was determined that the sigma value in all
further experiments would be set to 1.0 as this creates a neighbourhood that starts off

by covering the entire map and then slowly becomes decayed at the end of each epoch.

Learning Rate: The value of the learning rate determines how big of a change

would be applied to the weights during their respective updates to prevent over or
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under fitting. However, in an unsupervised learning environment, it is hard to define
when models over fit or under fit the dataset. The learning rates are defined between
0 to 1 which works as a control over how much the weights within a neighbourhood
are updated. In this case, once again after much experimentation it was found that
the highest learning rate (1.0) caused the network weights to be trained much faster
however causing changes so fast that important patterns tend to overlap each other.
Learning rate that is too small (lesser than 0.01) requires too much training time and
even causes important features to be more scattered as opposed to coming together.
To prevent both a learning rate that is too fast and one that is too slow, 0.5 is chosen
as an intermediate between the two. Once again further description is provided in

section 3.3.

Number of Epochs: The number of epochs determine how many number of
iterations that the model is trained on. A single iteration is usually not sufficient for
a model to learn as the changes would apply to the whole dataset but the model would
not retain enough ”knowledge” (changes to weights) to adapt to the dataset. So this
process has to be repeated numerous times. Too few cycles or epochs of training
results in models that do not learn enough about the dataset, however too many
cycles would usually cause the network to over train, but in unsupervised learning,
these would be wasted iterations and time as the control variables would be decayed
to an extent that the network would not learn anymore. For example, a when sigma
is too small, the resulting gaussian function would be too small to make enough of a
change over the neighbourhood matrix. Hence after much experimentation, seven
epochs was determined to be the number of epochs used to train all the models that

will be discussed in the next chapter.
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3.4 Brief description of the SOM Algorithm

The same SOM algorithm given below is applied on all the models trained as part of
this thesis. The only changes are noted in the way the input vectors are shown to
the network (after applying the window), either in batch — one vector after another
in a sequential order or in random — one vector is picked at random from the whole

dataset and this is repeated as many times as required.

A brief description of the SOM algorithm is as follows:
Step 1: Initialisation

The randomly generated weights are saved. The parameters —

1. Sigma: Used to determine the neighbourhood of the winning neurons whose
weight vectors will need to be updated. It is initialised to 1.0. Sigma is
applied into the neighbourhood function as a value between 0 (indicates that
the neighbourhood distance is only restricted to each single neuron) and 1
(indicated that the neighbourhood distance covers the whole distance of the

map).

2. Learning rate: Used to determine how much each neuron’s respective weight
vector would be updated. It is initialised to 0.5. Learning rate is between 0

(no change in weight updates) and 1 (maximum change in weight updates).

At the end of every epoch of training, the hyper-parameters will be decayed with the

aim of learning smaller patterns than those learned in the preceding epoch.

Step 2: Best Matching Unit - Competitive Learning

Training begins by passing the first input vector into the input layer. Based on
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this input vector, the map will be activated. This means that the weight vector
that most closely matches the input vector is selected and the neuron in the output
layer to which the weight vector is connected is called the Best Matching Unit
(BMU). This returns the winning neurons respective coordinate to next be used in

updating the weights once the neighbourhood of the BMU is acquired in the next step.

Step 3: Neighbourhood Function - Cooperative Learning
Next the neighbourhood of the BMU will be found using a neighbourhood function.
The function so chosen is the Gaussian function that will be applied to the (and is

centered around the) BMU coordinate and the sigma hyper-parameter such that:
G = outerproduct(e(”“"f’f’:wm)Q/d, e(ym”f’e’ywi")Q/d) (3.2)

Where:
G = neighbourhood matrix d = 2 * pi * sigma?
(Twin, Ywin) = BMU coordinate

Trange =the set of values along the X-axis (0 to map size)

Yrange = the set of values along the Y-axis (0 to map size)

This is then followed by applying the calculated product of the neighborhood and
learning rate over the weight matrix. This product is then summed with the current
weights to result in the new and updated weights. The weights within the neighbour-
hood will be updated with the strength of the update being the highest at the BMU

and lowest around the edges of the neighborhood. The updated weights are got by:

Weightsupdatea = W eightsprevious + (G * L) (3.3)
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Where:
G = neighbourhood matrix

Lr = learning rate

Step 4: Repetition
The above steps 2 and 3 are repeated for every 30 featured input vector and once

the last vector is complete, the end of one epoch is reached.

Step 5: Epochs and Decay
The total number of epochs selected to train all of the models is seven. At the end
of each epoch, the hyper-parameters sigma and learning rate are decayed using an

asymptotic decay function. They both use the same function given below:

decaynen = (decayprey) /(1 + ((iterationseurrent)/((iterationsioar)/2))) (3.4)

Where:
iterations rens = current iteration number

iterations;,q = total number of iterations
Both the hyper-parameters are decayed, one after the other, after which the above

steps 2, 3 and 4 are repeated for as many epochs as required. An example of the

way both sigma and the learning rate are decayed is shown below in fig. 3.2.
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Figure 3.2: Examining the Decay rate of hyper-parameters. The
learning rate (yellow squares) begins at 1.0 and the sigma (blue squares)
starts at 0.5.

3.5 Labeling the SOM

Once the SOM is trained, the mapping between the neurons (map coordinates) and
the data points in the respective datasets is generated in a one to many kind of
matching where one coordinate has a list of data points — further showing similarities
in data points mapped to the same neuron. This mapping will then be saved and
reloaded so as to reuse the same mapping testing many different kinds of labels.

The labels are selected by understanding and analysing each feature of individual
participants’ respective driving datasets. Labels generated from feature analysis are
then applied on all the drivers in the respective map. They are applied with the aim

of identifying certain specialized driving patterns of each driver in order to:

1. Compare individual driver patterns (obtained from the same label) with every

other driver in the dataset to make conclusions about either trends found
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among drivers or patterns that are unique to particular drivers.

2. Compare individual driver patterns (obtained from the same label), not with
other drivers but among themselves under each of the distractions discussed to

observe how much each driver is affected by the different distractions.

3.5.1 Thresholding each neuron

Once the mapping is obtained, the map is plotted based on each respective label.
However when there are more than two labels, most of the coordinates have lists
of points which map to multiple labels and this in turn results in each coordinate
having multiple labels making it hard to gain any insight into how the labels and
data are organised. To overcome this, each point is passed into a maximum threshold
that returns only the label with the maximum number of instances such that each
point is now indicated by only a single label. This is applied to all the maps once

their respective mappings have been completed and saved.

3.5.2 Labels to be applied

The different feature based labels that are applied to all the trained SOM models,

each of which are discrete in nature and their descriptions are as follows:

1. Brake analysis: Locations where the driver applies the brakes are labeled
versus when the brakes are not applied. This is done by examining the brake

pressure feature.

2. Speed limits: Locations where the driver speeds up (goes above the average
speed) versus where the driver slows down (goes below the average speed).

This is done by examining the tangential speed feature.

37



. Linear acceleration: Labels to identify increasing speed rates along the
x-axis, so between forward and backward directions to understand when the
driver accelerates versus when the driver decelerates are labeled. This is done

by examining the acceleration along the x-axis feature.

. Turning acceleration: Labels to locate when the driver makes a turn are
obtained using the y-axis to indicate when they turn left versus when they

turn right. This is done by examining the acceleration along the y-axis feature.

. Altitude acceleration: Labels to find when the driver goes over varying
altitudes using the z-axis, so as to differentiate between acceleration over a
higher altitude versus the acceleration down a lower altitude. This is done by

examining the acceleration along the z-axis feature.

. Gap between lanes: Labels to identify when the driver comes away from
the center of the lane towards the left versus when they drive closer to the

right of the center of the lane. This is done by examining the lane gap feature.

. Partition the datasets: Label different parts of the each dataset to visually
analyze if certain sections of a driver’s are either similar to or different from

the others.
(a) Two Partitions: Dividing the dataset into two equal sections and label-
ing them as the first section versus the last section.

(b) Three Partitions: Dividing the dataset into three equal sections and

labeling them as the first, second and then the last section.

(c) Four Partitions: Dividing the dataset into four equal sections and

labeling them as the first, second, third and then the last section.
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(d) Five Partitions: Dividing the dataset into five equal sections and label-

ing them as the first, second, third, fourth and then the last section.

8. Distraction Type: Each participant is labeled based on the type of distraction

they are under to understand driver behavior under different distractions.

9. Driver ID: Each participant has an individual unique label to be distinguish-

able from each other.

3.6 Further Feature Augmentation

The SOM’s topological structure ensures that similar data points are closer to each
other while dissimilar ones are further away from each other as seen especially in the
feature analysis labels. It also shows sub-clusters (where each coordinate on the map
or neuron is mapped to a list of data points) found in each cluster which display a
kind of hierarchical arrangement. However ironically, it is this interesting property
that also makes the picking out of specific patterns to be particularly difficult, espe-

cially in the context of this thesis and the corresponding time-series datasets involved.

As shown in all of the feature analysis labels, the structure formed by the SOM is
limited by the features that are used as input. To overcome this more features are
introduced into the SOM so as to obtain the required patterns. Overall this can
be a complicated feature engineering problem, so we make it the main aim of this
thesis to distinguish between individual participants in the experiments. While there
are numerous ways to investigate the datasets, so to simplify this process, the main
focus is placed on observing the structure based on analysing the differences between

each respective driver.
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This results in augmented datasets where the only change is that instead of 6
features in the dataset, there are now 7 features courtesy of the segmented feature.
The main change here is that once the window of size 5 is applied, each vector will
now contain 35 features (previously 30 features). The models are now trained and
follow the same approach where the mapping of each model is obtained and the

testing is conducted using the same set of labels.
In the next chapter, all the results will be discussed along with all the parame-

ters mentioned above, with only changing parameter being the number of neurons in

the output layer (map size) with respect to the dataset that will be used.
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Chapter 4

Experimental Results

This chapter is a compilation of all the significant results obtained as part of this
research. The results are divided by sections based on the models that are trained.
The first section covers results from models trained on the datasets of a single
driver over which thresholds are applied followed by applying the labels which are
completely described in section 3.4. The next section covers results similar to the
previous section except that the models are trained on multiple drivers’ datasets to
understand specific differences between individual drivers.

The final section of models includes those that are trained on all the drivers’ respective

datasets. Once the main labels are discussed, the following steps are taken:

1. Thresholds are then applied, similar to the previous sections except that each
dataset is looked at one at a time versus all the other datasets mapped to
the model. This results in a filtered set of points (the set of most activated
points) that represent an individual dataset as opposed to every single point
to a vector in the dataset. These maximal points denote unique patterns of

each individual dataset in the model.

2. The same labels are once again applied, but this time only to each maximal set
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of points. This will result in a simpler and more efficient way to understand
individual driver behaviour in relation to all the drivers in the dataset as
opposed to looking at the complete mappings of individual datasets. Each
label is then applied as a classifier that then calculates the percentage of how

much each maximal set of points belong each class within each label.

3. After the percentages of each class within each label are calculated and com-
pared with each other, each class is then compared based on the three distrac-
tions to understand and make conclusions on individual driver behaviour under

different distractions.

Before discussing all the results found, the values assigned to the hyper-parameters

are assigned as follows:
1. Sigma is set to 1.0 which encompasses the whole map.
2. Learning rate is set to 0.5 to prevent very fast and very slow convergence.
3. Input layer contains 30 neurons which is six features times a window of five.
4. Output layer contains a varying number of neurons according to each model.

5. Number of iterations that every model is trained on is seven.

4.1 Result analysis of a single driver

The models used in this section are trained only on a single driver (the first driver in
the dataset). The trained models are not modified in any way and are only labeled

with different labels. The models trained are as follows:
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1. Hands-Free distraction driver 1: This model is trained on the “Hands-
Free” distraction of driver 1 and the number of output neurons is 900 neurons

over a 30x30 size map.

2. Music distraction driver 1: This model is trained on the “Music” distraction
of driver 1 and the number of output neurons is 900 neurons over a 30x30 size

map.

3. Text distraction driver 1: This model is trained on the “Text” distraction
of driver 1 and the number of output neurons is 900 neurons over a 30x30 size

map.

4. Combination datasets of driver 1: This model is trained on the combina-
tion of datasets of all the distraction of driver 1 and the number of output

neurons is 900 neurons over a 30x30 size map.

Label 1 Brake Analysis: Labeling the models mentioned above by when the driver
applies the brakes (green) versus when the brakes are not applied (red) as shown in

figure 4.1. This based on the brake pressure feature in the dataset.
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Figure 4.1

(c) Text distraction (bottom-left) and (d) combination of datasets

(bottom-right).

There is a clear divide between vectors (the red and green points) when the

driver applies the brakes versus when the brakes are not applied. This is further

strengthened by observing the space between the two labels. This denotes that

there are neurons which do not map to any vectors thus proving the map’s strong
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distinction between “brake” and “non-brake” vectors.

ts: The average speed found in all the 120 datasets was

1mi1

Label 2 Speed L

found to be 77 km/hr. Labeling the models mentioned above when the driver speeds

up and goes above 77 km/hr which is above the average speed (green) versus when

as shown in figure

)

red

(

the driver slows down going below the same average velocity
4.2. This is based on the tangential speed feature in the dataset.
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(top-right), (c) Text distraction (bottom-left) and (d) combination of
datasets (bottom-right).
45



Similar to the previous label, it is clear there is a divide between when the driver
speed up versus when they slow down. Another indication is that the labels in this
map are almost opposite to the labels under the previous braking behaviour. This
illustrates that speed and brake pressure are inversely related to a certain extent
such that lower the speed, higher is the pressure being applied on the brakes so

indicating that the driver is trying to slow down.

Label 3 Linear Acceleration: Labeling the models mentioned above based on
when the driver accelerates (positive values) (green) versus when the driver decel-
erates (negative values) (red) and this is shown in figure 4.3. This is based on the
acceleration along the X axis feature based on the forward motion observed in the

dataset.
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Figure 4.3
(a) Hands-Free d
In this case, the label appears a bit more scattered as compared to the previous

(c) Text d
feature is comparatively lesser than that of the previous labels and hence the labeling

two labels. It appears that the strength of the values of the acceleration along X
shows that there are no large sections having a common label. This is in comparison



with the results from label 1 where there is a divide between labels, however there
does not seem to be such a divide in this case. Once again it appears that the
acceleration is related to the other features, for example, when the driver accelerates,
there is no pressure on the brakes and there would also be a possible change in label

from below average speed to going above the average speed.

Label 4 Turning Acceleration: Labeling the models mentioned above based
on when the driver accelerates either to the right (positive values) (green) or to the
left (negative values) (red) and this is shown in figure 4.4. This is based on the
acceleration along Y axis feature and can help identify when the driver turns to the

left or right.
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Figure 4.4

the left or right
(a) Hands-Free distraction (top-left), (b) Music distraction (top-right),

f datasets

ion o

inat

(c) Text distraction (bottom-left) and (d) comb

(bottom-right).

When analysing the acceleration behaviour in turning left or right, the labeling

shows that although sections are divided similar to the previous acceleration along X

axis label, the vectors are closer to each other which causes the sections to be larger.
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For example, the driver’s acceleration along the Y axis would be more towards the
left (red) when turning left and even the brakes would be pressed either before or

during this action. Also the speed would change while turning.

Label 5 Altitude Acceleration: Labeling the models mentioned above based
on when the driver accelerates over a higher altitude (positive values) (green) versus
when the driver accelerates over a comparatively lower altitude (negative values)
(red) as shown in figure 4.5. This is based on the acceleration along 7 axis feature in

the dataset.
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lower or higher altitudes
(bottom-right).

(a) Hands-Free distraction (top-left), (b) Music distraction (top-right),

the accelerat

Examining

.
.

In this labeling, the sections are much more scattered indicating that either there

(c) Text distraction (bottom-left) and (d) combination of datasets
is variation in the dataset but not over long enough ranges to cause large sections
to appear on the map or that the other features are more prevalent such that the

Figure 4.5



vectors tend to be arranged more in such a direction.

Label 6 Gap between lanes: Labeling models mentioned above based on when
the driver tends to drive to the right of the center of the lane (positive values) (green)
versus when driving to the left side of the lane (negative values) (red) as shown in

figure 4.6. This is based on the lane gap feature in the dataset.
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Figure 4.6
(a) Hands-Free distraction (top-left), (b) Music distraction (top-right),

(c) Text distraction (bottom-left) and (d) combination of datasets

This label shows more clear partitions in the results between the red and green

portions as compared to other acceleration labels and so it more strongly activates

the SOM.
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Label 7 Split Sections: Labeling the models mentioned above to represent the
sequential flow of dataset. This is done by dividing the dataset into sections and
labeling each section represent when most actions are performed.

Each dataset is tested by dividing them into segments. Experiments include dividing
each dataset into two to five segments, however the results shown in figure 4.7 are
where each dataset is divided into five segments — the first section (red), the second
section (green), the third section (blue), the fourth section (yellow) and the last

section (black).
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segments
(a) Hands-Free distraction (top-left), (b) Music distraction (top-right),

(c) Text distraction (bottom-left) and (d) combination of datasets
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(the first and second sections). Results by experiments on dividing each dataset into

two to four segments can be seen in Appendix A.

Label 8 Distraction: Labeling only the model containing all the three distractions
so as to differentiate between them. The map is labeled by the “Hands-Free” dis-
traction (red), the “Music” distraction (green) and the “Text” distraction (blue) as

shown in figure 4.8.
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the map

From labeling the each distraction, it is found that the music distraction contains

larger sections of activated portions on the map, showing that driving activity while

listening to music is more consistent than the same activity while being distracted

by the hands-free and text distractions.
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Results Summary:

e It was found that the six features based on which the models are trained, have
been learned by the model. However this is completed with differing strengths
which indicates that some features affect the resulting topological structure
more than others which is a result of the overall nature of the set of actions
that comprise the process of driving. For example the tangential speed feature

takes up larger sections as opposed to acceleration along 7 axis.

e Certain features are shown to differ in terms of detecting different distractions.
For example the lane gap feature and the sections label which divides the dataset
into parts was found to differ to a larger extent under music distractions versus

the other two distractions.

e As this study is aimed towards understanding differences between distractions
and most of the features do not highlight such differences, further tests are
performed using multiple drivers to distinguish between both drivers and the

distractions.

4.2 Result analysis of four drivers

The models used in this section are trained using four drivers (the first four drivers
in the dataset) as a test to understand how a model would be trained on multiple
drivers before finally applying and analysing all the drivers in the dataset. The

models trained in this section are as follows:

1. Hands-Free distraction drivers 1 to 4: This model is trained on the
“Hands-Free” distraction of drivers 1 to 4 and the number of output neurons is

1600 neurons over a 40x40 size map.
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2. Music distraction drivers 1 to 4: This model is trained on the “Music”
distraction of drivers 1 to 4 and the number of output neurons is 1600 neurons

over a 40x40 size map.

3. Text distraction drivers 1 to 4: This model is trained on the “Text”
distraction of drivers 1 to 4 and the number of output neurons is 1600 neurons

over a 40x40 size map.

4. Combination datasets of drivers 1 to 4: This model is trained on the
“Hands-Free” distraction of drivers 1 to 4 and the number of output neurons is

2500 neurons over a 50x50 size map.

Most of the results obtained were found to be similar to those obtained for the
single driver in section 4.1. Hence a brief overview of the results using only the
model containing all the distractions of drivers one to four is given below followed
by labeling each driver before finally leading into models that are trained on all the

datasets.

Feature based labels (labels 1 to 6 in section 4.1):
The very same labels in section 4.1 which are — brake pressure, speed limits, linear
acceleration, turning acceleration, altitude acceleration and finally the gap between

lanes as shown in figure 4.9.
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Figure 4.9: Examining the six feature labels of drivers 1 to 4 using
datasets of all three distractions
(a) Brake pressure (top-left), (b) Speed limits (top-right), (c) Linear
acceleration (middle-left), (d) Turning acceleration (middle-right), (e)
Altitude acceleration (bottom-left) and (f) Gap between lanes
(bottom-right).
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As stated previously the results of drivers 1 to 4 including datasets of all distrac-
tions, after applying the feature labels is found to be similar to the results discussed

from dealing with a single driver in section 4.2.

Section split labels (label 7 in section 4.1):

The same labels used to separate the dataset into sections is applied on the model
trained on the four drivers with datasets of all three distractions with labels similar
to those mentioned in section 4.1, where part one is labeled red, part two is labeled
green, part three is labeled blue, part four is labeled yellow and part five is labeled

black as shown in figure 4.10.
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Figure 4.10: Examining splitting the dataset of drivers 1 to 4 using
datasets of all three distractions
by dividing into (a) Two sections (top-left), (b) Three sections
(top-right), (c) Four sections (bottom-left) and (d) five sections
(bottom-right).

Once again the results obtained here are very similar to those found in section 4.1.
The common trend is maintained in that the music distraction is more active and
prevalent towards the last sections as opposed to the hands-free and text distractions
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Labeling each distraction:

The model that contains all the distractions and datasets of the four drivers is labeled
to understand each distraction. The labels used are similar to those used in section
4.1 where the hands-free datasets are labeled red, music datasets are labeled green

and finally the text datasets are labeled blue as seen in figure 4.11.
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Figure 4.11: Examining each distraction in the model trained on the
first four drivers and on all the three distractions.

Similar to the results in section 4.1, the music distraction has larger sections on
the map, but in this case, it appears that listening to music and texting create the

most unique behaviours in the map.

Labeling each driver:
The four drivers in the dataset that the model is trained on are labeled such that

driver one is labeled with red, driver two is labeled with green, driver three is labeled
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with blue and driver four is labeled with yellow as shown in figure 4.12.

plt al 1dnre wt spl thr

Figure 4.12: Examining each individual driver in the model trained on
the first four drivers and on all the three distractions.

There are patterns that show each drivers’ individuality from each other, such
as the patterns of driver two (green) and driver four (yellow), while the others
appear too mixed up to make any conclusion. A more drivers are added, some show
particular patterns but others do not. How this is made use of will be described in
detail in the next section where all the models used will be trained on the datasets

of all the 40 drivers.

4.3 Result analysis of 40 drivers:

Finally the models trained in this section incorporate all the datasets of the 40

drivers including all the separate datasets on the three distractions for a total of 120
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datasets. Individual driver patterns are labeled after applying the maximal set of
points of each driver in comparison to all the other datasets. These maximal points
are labeled using the existing labels but now each individual label is broken down
into its specific classes. After this, percentages of how many points in the maximal
set belong to each class are calculated and they serve as measures to distinguish
between each unique driver pattern. The models trained on all 40 drivers are as

follows:

1. Hands-Free distraction drivers 1 to 40: This model is trained on the
“Hands-Free” distraction of drivers 1 to 40 and the number of output neurons

is 3600 neurons over a 60x60 size map.

2. Music distraction drivers 1 to 40: This model is trained on the “Music”
distraction of drivers 1 to 40 and the number of output neurons is 3600 neurons

over a 60x60 size map.

3. Text distraction drivers 1 to 40: This model is trained on the “Text”
distraction of drivers 1 to 40 and the number of output neurons is 3600 neurons

over a 60x60 size map.

4. Combination dataset of drivers 1 to 40: This model is trained on the
datasets of all three distractions of drivers 1 to 40 and the number of output

neurons is 6400 neurons over a 60x60 size map.

While studying the models trained under individual distractions can lead to insight
into unique driver patterns, it is difficult to compare the distractions that are trained
on separate maps. When all distractions were trained on the same map, it is possible
to make conclusions about both individual drivers and differences in distractions.

For this reason only the results of the fourth model, trained on all the 40 drivers
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using data of all the three distractions is examined.The same procedure in section 4.2
is repeated where the labeled results are discussed before getting into the problems
encountered in the newly trained model on all 40 drivers
Feature based labels (labels 1 to 6 in section 4.1):
The very same labels in section 4.1 which are — brake pressure, speed limits, linear
acceleration, turning acceleration, altitude acceleration and finally the gap between

lanes as shown in figure 4.13.
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Figure 4.13: Examining the six feature labels of drivers 1 to 40 using
datasets of all three distractions
(a) Brake pressure (top-left), (b) Speed limits (top-right), (c) Linear
acceleration (middle-left), (d) Turning acceleration (middle-right), (e)
Altitude acceleration (bottom-left) and (f) Gap between lanes
(bottom-right).
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Some interesting points to note are that certain features such as the three acceler-
ations along the X, Y and 7 axes, slowly start to spread out when compared with the
previous maps on a single driver and the four drivers, thus resulting in smaller sec-
tions on the map. This is once again due to the differences between each driver in all

the datasets which will be further examined while labeling the drivers and distractions.

Section split labels (label 7 in section 4.1):

Once again the very same labels used to separate the dataset into sections is applied
on the model trained on all the forty drivers with datasets of all three distractions
with labels similar to those mentioned in section 4.1, where part one is labeled red,
part two is labeled green, part three is labeled blue, part four is labeled yellow and

part five is labeled black as seen in figure 4.14.
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Figure 4.14: Examining splitting the dataset of drivers 1 to 40 under all
three distractions by dividing into
(a) Two sections (top-left), (b) Three sections (top-right), (c) Four
sections (bottom-left) and (d) five sections (bottom-right).

Labeling each distraction:
The model that contains all the distractions and datasets of all the 40 drivers is
labeled to understand each distraction. The labels used are similar to those used in

section 4.1 where the hands-free datasets are labeled red, music datasets are labeled
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green and finally the text datasets are labeled blue as seen in figure 4.15.

plt aln_re wt_dil thr

Figure 4.15: Examining each distraction in the model trained on data of
all the 40 drivers and on all the three distractions.

In the final case of comparing distractions of all the drivers on a single model,
the results show that the music distraction remains almost constant by having its
own section but there are also scattered smaller sections. Interestingly, the patterns
from the text distraction were also found to gain larger sections of the map, denoting
common characteristics with drivers listening to music and drivers texting while

driving.

Labeling each driver:
The 40 drivers in the dataset that the model is trained on, is labeled such that driver
one is labeled with 40 unique colors to differentiate between them as seen in figure

4.16.
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Figure 4.16: Examining each individual driver in the model trained on
data of all 40 drivers and on all the three distractions.

No particular driver has their data clearly grouped together on the map. Al-
though each point is a cluster of common characteristics, this does not seem to
extend to other points nearby and so there is no clustering of individual drivers. The
topological structure of the SOM forces patterns to be different from each other, so

when patterns are found near each other as they indicate similarities between drivers.

Training an Augmented Model:

Numerous efforts were taken to include labels for individual drivers during training
to gain better understanding of how each driver differs from each other. An example
of this is mentioned in section 3.5 where the label of each driver is added to the six
features of the dataset during training as the new seventh feature. This is done with

the aim of bringing together clusters of drivers. These features were then trained
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on a new model (all the parameters were maintained) where each driver was then
labeled with each feature. The model had seven input neurons and the output layer
had 900 neurons which is a 30x30 map. Data was randomly ordered during training
which resulted in drivers, to an extent, being grouped together. This in turn led to
certain other problems which will be described after viewing the results in figure

4.17.
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Figure 4.17: Examining each individual driver in the model trained on
data of all 40 drivers, but augmented with the driver label.

Looking at the above result, the first assumption would be that it divides drivers
in the map and causes individual drivers to be grouped. However this contains
certain inherent issues that must be addressed and is the reason why the model is

discarded from future analysis.

The first issue is in the way of labeling which adds the new seventh feature, the
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driver ID, in turn changes the behaviour of the map. When labeled between 0 and
39 where each driver gets a label, driver 1 is labeled as 0 and driver 40 is labeled as
39. This makes the model learn that according to the new feature driver 1 is distinct
from driver 40 which creates the structure that can be seen in the map where the
labels move across the map in a diagonal pattern. Another issue is that this new
feature overwhelms the patterns found by using the initial six features and replaces
existing patterns that could lead to potentially interesting results. Due to these
reasons this model has not been used and the idea of grouping drivers in this manner

has been discarded in favor of the results from the other features in the data.

Results Summary:

e Results of labeling with the feature analysis and section split labels are very
similar to those previously discussed in sections 4.1 and 4.2. The main difference
is that as the number of datasets increases, some features in the models become
more scattered over the map while others remaining constant, thus showing

the changing patterns when more drivers are added to create the model.

e Attempts to make individual driver groups to form on the map despite each
point already being a cluster of vectors of that particular driver were not
successful because adding the driver label as a new feature resulted in patterns
that were too heavily influenced by the newly added driver label. This in turn
caused the loss of the other patterns formed by the initial six features and

hence lost the individuality of each driver.
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4.4 Thresholding and label to classifier

Due to the complexity of the previous maps, thresholding of the nodes was used to
reduce the number of active nodes on the map to make it easier to understand. This
map is trained on all 40 drivers with all the distractions. A threshold is applied to
each node which selects the driver which has the largest number of activations in the
node. The resulting set of neurons is the distinct points for each driver under the

respective distractions.

Examples of applying the threshold:
Examples of this threshold are shown with respect to driver 1 under hands-free
distraction in figure 4.18, under music distraction in figure 4.19 and under text

distraction in figure 4.20 which are all shown below:

plt aln_re wt one0 plt aln_re wt vs0

Figure 4.18: Examining how the threshold over the set of activated
neurons of driver 1 dataset under the hands-free distraction works
(a) All activated neurons versus (left) (b) maximally activated neurons
after applying the threshold (right).
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plt aln_re wt oned0 plt aln_re wt vsd0
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Figure 4.19: Examining how the threshold over the set of activated
neurons of driver 1 dataset under the music distraction works
(a) All activated neurons versus (left) (b) maximally activated neurons
after applying the threshold (right).
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Figure 4.20: Examining how the threshold over the set of activated
neurons of driver 1 dataset under the text distraction works
(a) All activated neurons versus (b) maximally activated neurons after
applying the threshold.
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In this way two factors are achieved, where the first being a very significant
decrease in data points leading to results that uniquely distinguish each driver. The
second and more important factor is that this reduced set of points means that they
are only the most distinct points for their respective dataset and this leads to the
individual driver patterns being explicitly understood by the model.

An important point is that the maximal points obtained do not show all the charac-
teristics of that particular driver but only the most distinctive traits of each driver
in comparison to other drivers. It was also found that certain sets of maximal points
contain points that are activated for different drivers (sets overlap), meaning that
the same neurons tend to be activated by different drivers. Although the threshold
selects the driver who has the most activations of a particular node, it is possible for
there to be two drivers with the same maximum. This is used as a way of representing

drivers that share common traits.

Feature label analysis after thresholding:

The same labels based on the features that were used in sections 4.1, 4.2 and 4.3 are
now applied to the maximal set for points of each driver obtained after applying the
threshold. In this case the label will now be used as a classifier. Each maximal set is
labeled, after which percentages are calculated that measure how much each driver
(under one distraction at a time) belongs to one of the classes within that particular
label.

The labels applied remain the same and the only difference is that after thresholding,
there remain fewer points in the set. For example, consider the brake pressure label.
It contains two types of labels — when the brakes are applied and when they are
not applied. These two will now serve as classes and the percentages of how many

maximal points fall under each category is calculated.
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Individual feature label analysis
Label 1 Brake Analysis: Labeling the models mentioned above by when the driver
applies the brakes (green) versus when the brakes are not applied (red) as shown in

figure 4.21. This is based on the brake pressure feature in the dataset.
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Figure 4.21: Examining applying the brake pressure label over the
maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 2 Speed Limits: Labeling the models mentioned above when the driver
speeds up and goes above 77 km/hr which is above the average speed (green) versus
when the driver slows down going below the same average velocity (red) as shown in

figure 4.22. This is based on the tangential speed feature in the dataset.
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Figure 4.22: Examining applying the speed limits label over the
maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 3 Linear Acceleration: Labeling the models mentioned above based

on when the driver accelerates (positive values) (green) versus when the driver

decelerates (negative values) (red) and this is shown in figure 4.23. This is based on

the acceleration along the X axis feature in the dataset.
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Figure 4.23: Examining applying the linear acceleration label over the
maximal points set of driver 1

(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 4 Turning Acceleration: Labeling the models mentioned above based
on when the driver accelerates either to the right (positive values) (green) or to the
left (negative values) (red) and this is shown in figure 4.24. This is based on the
acceleration along Y axis feature and can even help analyse when the driver turns to

the left or right.
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Figure 4.24: Examining applying the turning acceleration label over the
maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 5 Altitude Acceleration: Labeling the models mentioned above based
on when the driver accelerates over a higher altitude (positive values) (green) versus
when the driver accelerates over a comparatively lower altitude (negative values)
(red) as shown in figure 4.25. This is based on the acceleration along Z axis feature

in the dataset.
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Figure 4.25: Examining applying the altitude acceleration label over the
maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 6 Gap between lanes: Labeling models mentioned above based on when
the driver tends to drive to the right of the center of the lane (positive values) (green)
versus when driving to the left side of the lane (negative values) (red) as shown in

figure 4.26. This is based on the lane gap feature in the dataset.

alq_map000 Ig cl2 alg_map040 Ig cl2
B = === B = ===
! . ) ! ' i
f0 f0 :
50 50 foe

! L
® ® ' .
0y o . El
n{ . ' 0
] "
0{ ’ 0{ ,
0 . 0
0 o0 0 4 % & W& 0 W ®o BN 4 U @ W 8w

alq_map080 Ig cl2

Figure 4.26: Examining applying the gap between lanes - label over the
maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 7 Split Sections: Labeling models mentioned above to understand the
sequential flow of how each model adapts to the dataset. This is done by dividing
the dataset into sections and labeling each sections on each model to understand
when most actions are performed and how often the neurons are activated.

Label 7a: Dividing each dataset into two sections — the first section (red) and the

second section (green) as seen in figure 4.27.

alg map000 s2 cl2 alg_map040 s2 cl2

alg_map080 52 cl2

Figure 4.27: Examining applying the split into two sections - label over
the maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 7b: Dividing the dataset into three sections — the first section (red), the

second section (green) and the last section (blue) as shown in figure 4.28.
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Figure 4.28: Examining applying the split into three segments - label
over the maximal points set of driver 1

(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 7c: Dividing the dataset into four sections — the first section (red), the
second section (green), the third section (blue) and the last section (yellow) as seen

in figure 4.29.
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Figure 4.29: Examining applying the split into four segments - label
over the maximal points set of driver 1
(a) hands-free distraction (top-left), (b) music distraction (top-right)
and (c) text distraction (bottom).
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Label 7d: Dividing the dataset into five sections — the first section (red), the

second section (green), the third section (blue), the fourth section (yellow) and the

last section (black) as shown in figure 4.30.
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Figure 4.30: Examining applying the split into fives sections - label over

(a) hands-free distraction (top-left), (b) music distraction (top-right)
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the maximal points set of driver 1

and (c) text distraction (bottom).
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Calculating class percentages:

After all of the maximal set of points for all drivers and distractions are labeled,
percentages are calculated as a measure of each class within a single label, and this
is repeated for every label and every dataset. These percentages represent how each
driver differs from their counterparts under that specific action (class within the
label).

For example, consider a driver under music distraction, whose maximal points are
computed and then labeled with the brake pressure label which results in having 85%
towards when the brake is not applied and 15% towards when the brake is applied.
This same driver when under the text distraction may tend to result in 70% towards
when the brake is not applied and 30% towards when the brake is applied. From
this the conclusion is made that the “action of applying the brake” is more frequent
while the driver is under the distraction of texting as opposed to while he is under
the distraction of listening to music.

Each percentage is calculated by using the basic percentage formula as seen in

equation 4.1:

(Number of points corresponding to label A)

Label A Percentage % = * 100

(Number of points in the respective maximal set)
(4.1)

All the results obtained by these experiments are shown below, separated by the
labels applied. The results are represented in the form of tables whose respected
bar plots are displayed only for the first label. For the remaining labels, only their
respective tables of results are provided in this section and their respective bar plots

can be found in Appendix B.

Label 1 Brake Analysis: The percentages for all the drivers under all the three
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distractions for the label — brake analysis are compiled in table 4.1 given below where

every pair of percentages are of the two classes (non-brake and brake) within the

label.
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Driver ID

Hands-Free

Music

Text

Driver 1

89.2% / 10.8%

871% / 12.9%

66.7% / 33.3%

Driver 2

83.3% / 16.7%

91.2% / 8.8%

74.0% | 26.0%

Driver 3

88.9% / 11.1%

86.8% / 13.2%

77.8% [ 22.2%

Driver 4

85.0% / 15.0%

96.3% / 3.7%

88.4% [ 11.6%

Driver 5

63.0% / 37.0%

87.8% / 12.2%

83.7% / 16.3%

Driver 6

81.2% / 18.8%

02.7% ] 7.3%

69.0% / 31.0%

Driver 7

85.7% / 14.3%

885% / 11.5%

85.1% / 14.9%

Driver 8

67.7% / 32.3%

75.0% [ 25.0%

67.4% ] 32.6%

Driver 9

76.9% / 231%

87.5% [ 12.5%

78.7% [ 21.3%

Driver 10

85.4% [ 14.6%

76.3% [ 23.1%

82.4% / 17.6%

Driver 11

71.0% [ 29.0%

100.0% / 0.0%

81.7% / 18.3%

Driver 12

89.7% / 10.3%

83.3% / 16.7%

80.0% / 20.0%

Driver 13

88.4% / 11.6%

02.3% / 7.7%

77.6% ] 22.4%

Driver 14

86.2% / 13.8%

80.4% / 19.6%

67.4% / 32.6%

Driver 15

86.1% / 13.9%

77.8% [ 22.2%

59.0% [ 41.0%

Driver 16

80.0% / 20.0%

93.3% / 6.7%

91.7% / 8.3%

Driver 17

91.9% / 8.1%

84.2% / 15.8%

86.8% / 13.2%

Driver 18

65.4% / 34.6%

86.5% / 13.5%

80.9% / 19.1%

Driver 19

94.1% / 5.9%

75.0% [ 25.0%

64.8% / 35.2%

Driver 20

70.6% / 29.4%

75.8% [ 24.2%

781% / 21.9%

Driver 21

81.8% / 182%

TTA% [ 22.6%

73.1% / 26.9%

Driver 22

70.7% [ 29.3%

78.0% / 22.0%

66.7% / 33.3%

Driver 23

75.0% [ 25.0%

75.0% [ 25.0%

73.2% | 26.8%

Driver 24

75.0% / 25.0%

791% [ 20.9%

85.7% / 14.3%

Driver 25

81.2% / 18.8%

66.0% / 34.0%

574% ] 42.6%

Driver 26

79.1% [ 20.9%

77.3% [ 22.7%

69.5% / 30.5%

Driver 27

875% / 12.5%

78.7% [ 21.3%

72.1% / 27.9%

Driver 28

69.4% / 30.6%

778% [ 22.2%

70.9% [ 29.1%

Driver 29

86.5% / 13.5%

66.7% / 33.3%

59.8% [ 40.2%

Driver 30

81.4% / 18.6%

73.1% | 26.9%

84.2% / 15.8%

Driver 31

85.2% [ 14.8%

78.3% [ 21.7%

63.6% / 36.4%

Driver 32

70.7% [ 29.3%

84.6% / 15.4%

82.3% / 17.7%

Driver 33

93.3% / 6.7%

88.7% / 11.3%

67.7% / 32.3%

Driver 34

81.0% / 19.0%

81.2% / 18.8%

68.4% / 31.6%

Driver 35

92.3% [ 7.7%

91.4% ] 8.6%

80.3% / 19.7%

Driver 36

89.1% / 10.9%

89.8% / 10.2%

80.5% / 19.5%

Driver 37

02.8% / 7.2%

91.7% / 8.3%

100.0% / 0.0%

Driver 38

86.1% / 13.9%

83.3% / 16.7%

59.1% / 40.9%

Driver 39

79.1% / 20.9%

84.1% / 15.9%

68.5% / 31.5%

Driver 40

T1.7% ] 28.3%

82.5% / 17.5%

81.3% / 18.7%

Table 4.1: Results from the Brake Analysis label
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Label 2 Speed Limits: The percentages for all the drivers under all the three
distractions for the label — speed limits are compiled in table 4.2 given below where
every pair of percentages are of the two classes (below and above the average speed)

within the label.
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Driver ID

Hands-Free

Music

Text

Driver 1

54.1% / 45.9%

54.8% / 45.2%

80.6% / 19.4%

Driver 2

56.7% / 43.3%

441% ] 55.9%

61.0% / 39.0%

Driver 3

481% [ 51.9%

26.3% ] 73.7%

47.2% [ 52.8%

Driver 4

62.5% / 37.5%

66.7% / 33.3%

48.8% / 51.2%

Driver 5

70.4% [ 29.6%

46.3% / 53.7%

51.0% / 49.0%

Driver 6

62.5% / 37.5%

29.3% [ 70.7%

60.3% / 39.7%

Driver 7

50.0% / 50.0%

73.1% / 26.9%

58.1% [ 41.9%

Driver 8

58.1% / 41.9%

54.2% ] 45.8%

48.8% / 51.2%

Driver 9

56.4% ] 43.6%

425% ] 57.5%

19.3% / 50.7%

Driver 10

39.0% / 61.0%

44.7% ] 55.3%

441% ] 55.9%

Driver 11

58.1% / 41.9%

28.0% / 72.0%

451% ] 54.9%

Driver 12

38.5% / 61.5%

55.0% [ 45.0%

146.2% ] 53.8%

Driver 13

41.9% / 58.1%

140.4% ] 59.6%

70.7% [ 29.3%

Driver 14

69.0% / 31.0%

431% ] 56.9%

82.6% / 17.4%

Driver 15

38.9% / 61.1%

58.3% [ A1.7%

65.6% / 34.4%

Driver 16

41.7% ] 58.3%

28.0% / 72.0%

29.8% / 70.2%

Driver 17

56.8% [ 43.2%

63.2% / 36.8%

50.0%50.0%

Driver 18

46.2% / 53.8%

37.8% [ 62.2%

46.8% / 53.2%

Driver 19

31.4% ] 68.6%

50.0% / 50.0%

58.0% / 42.0%

Driver 20

52.9% [ 471%

57.6% [ 42.4%

54.7% / 45.3%

Driver 21

60.6% / 39.4%

54.8% / 45.2%

16.2% / 53.8%

Driver 22

63.4% / 36.6%

48.8% / 51.2%

76.8% [ 23.2%

Driver 23

81.2% / 18.8%

58.3% [ 41.7%

67.6% / 32.4%

Driver 24

64.3% / 35.7%

67.4% / 32.6%

52.4% [ 47.6%

Driver 25

53.1% ] 46.9%

56.0% / 44.0%

67.6% / 32.4%

Driver 26

51.2% [ 48.8%

65.9% / 34.1%

54.2% [ 45.8%

Driver 27

40.6% / 59.4%

45.9% ] 54.1%

65.6% / 34.4%

Driver 28

72.2% [ 278%

52.8% / 47.2%

63.6% / 36.4%

Driver 29

44.2% [ 55.8%

48.9% / 51.1%

59.8% [ 40.2%

Driver 30

16.5% / 53.5%

71.2% ] 28.8%

46.3% / 53.7%

Driver 31

33.3% / 66.7%

35.0% / 65.0%

55.8% / 44.2%

Driver 32

75.6% /] 24.4%

40.4% ] 59.6%

29.8% / 70.2%

Driver 33

25.0% [ 75.0%

33.9% / 66.1%

67.7% / 32.3%

Driver 34

39.3% / 60.7%

341% / 65.9%

60.5% / 39.5%

Driver 35

36.5% / 63.5%

55.2% ] 44.8%

63.4% ] 36.6%

Driver 36

59.4% ] 40.6%

42.4% ] 57.6%

52.4% | 47.6%

Driver 37

21.7% ] 73.3%

19.4% / 80.6%

39.3% / 60.7%

Driver 38

52.8% [ 47.2%

81.0% / 19.0%

54.8% [ 45.2%

Driver 39

46.5% / 53.5%

46.0% / 54.0%

66.7% / 33.3%

Driver 40

50.0% / 50.0%

52.5% / 47.5%

50.7% / 49.3%

Table 4.2: Results from Speed Limits label
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Label 3 Linear Acceleration: The percentages for all the drivers under all
the three distractions for the label — linear accerelation are compiled in table 4.3
given below where every pair of percentages are of the two classes (acceleration and
deceleration) within the label.

Label 4 Turning Acceleration: The percentages for all the drivers under all the
three distractions for the label — turning accerelation are compiled in table 4.4 given
below where every pair of percentages are of the two classes (accelerating towards

the left and towards the right) within the label.
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Driver ID

Hands-Free

Music

Text

Driver 1

20.7% / 70.3%

35.5% / 64.5%

50.0%50.0%

Driver 2

50.0% / 50.0%

55.9% [ 44.1%

58.4% [ 41.6%

Driver 3

63.0% / 37.0%

57.9% [ 42.1%

69.4% / 30.6%

Driver 4

45.0% / 55.0%

29.6% / 70.4%

39.5% / 60.5%

Driver 5

63.0% / 37.0%

415% ] 58.5%

42.9% [ 57.1%

Driver 6

50.0% / 50.0%

34.1% ] 65.9%

39.7% ] 60.3%

Driver 7

T1.A% [ 28.6%

38.5% / 61.5%

37.8% / 62.2%

Driver 8

71.0% / 29.0%

50.0% / 50.0%

41.9% ] 58.1%

Driver 9

53.8% [ 46.2%

67.5% / 32.5%

62.7% ] 37.3%

Driver 10

43.9% / 56.1%

44.7% ] 55.3%

50.0%50.0%

Driver 11

64.5% / 35.5%

44.0% ] 56.0%

51.2% / 48.83%

Driver 12

33.3% / 66.7%

40.0% / 60.0%

40.0% / 60.0%

Driver 13

44.2% ] 55.8%

42.3% [ 57.7%

41.4% [ 58.6%

Driver 14

41.4% ] 58.6%

56.9% / 43.1%

41.3% [ 58.7%

Driver 15

47.2% ] 52.8%

52.8% | 47.2%

59.0% [ 41.0%

Driver 16

145.0% / 55.0%

56.0% / 44.0%

45.2% [ 54.8%

Driver 17

29.7% ] 70.3%

31.6% / 68.4%

52.6% | 47.4%

Driver 18

76.9% / 231%

62.2% / 37.8%

42.6% / 57.4%

Driver 19

56.9% [ 43.1%

43.2% ] 56.8%

63.6% / 36.4%

Driver 20

47.1% ] 52.9%

51.5% [ 485%

40.6% / 59.4%

Driver 21

63.6% / 36.4%

56.5% / 43.5%

57.7% / 42.3%

Driver 22

48.8% ] 51.2%

53.7% [ 46.3%

52.2% | 47.8%

Driver 23

16.9% / 53.1%

41.7% ] 58.3%

40.8% /59.2%

Driver 24

50.0% / 50.0%

39.5% / 60.5%

47.6% ] 52.4%

Driver 25

43.8% ] 56.2%

60.0% / 40.0%

574% ] 42.6%

Driver 26

53.5% ] 46.5%

43.2% ] 56.8%

59.3% /[ 40.7%

Driver 27

50.0% / 50.0%

42.6% ] 57.4%

45.9% ] 54.1%

Driver 28

44.4% ] 55.6%

33.3% / 66.7%

45.5% [ 54.5%

Driver 29

481% ] 51.9%

55.6% [ 44.4%

54.9% / 45.1%

Driver 30

48.8% / 51.2%

46.2% ] 53.8%

421% ] 57.9%

Driver 31

10.7% / 59.3%

433% / 56.7%

53.2% [ 46.8%

Driver 32

63.4% / 36.6%

731% [ 26.9%

53.2% / 46.8%

Driver 33

53.3% ] 46.7%

48.4% [ 51.6%

59.4% [ 40.6%

Driver 34

44.0% ] 56.0%

50.6% / 49.4%

4877% ] 51.3%

Driver 35

28.8% / 71.2%

39.7% / 60.3%

36.6% / 63.4%

Driver 36

39.1% / 60.9%

50.8% [ 49.2%

36.6% / 63.4%

Driver 37

39.1% / 60.9%

36.1% / 63.9%

40.2% ] 59.8%

Driver 38

44.4% ] 55.6%

35.7% ] 64.3%

57.0% / 43.0%

Driver 39

46.5% / 53.5%

52.4% [ 47.6%

435% / 56.5%

Driver 40

52.2% [ 47.8%

35.0% / 65.0%

54.7% [ 45.3%

Table 4.3: Results from Linear Acceleration label
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Driver ID

Hands-Free

Music

Text

Driver 1

45.9% / 54.1%

20.0% / 71.0%

27.8% [ 72.2%

Driver 2

56.7% / 43.3%

64.7% / 35.3%

40.3% / 59.7%

Driver 3

51.9% / 48.1%

52.6% ] 47.4%

63.9% / 36.1%

Driver 4

65.0% / 35.0%

40.7% / 59.3%

51.2% [ 48.83%

Driver 5

44.4% ] 55.6%

53.7% ] 46.3%

49.0% / 51.0%

Driver 6

56.2% [ 43.8%

43.9% ] 56.1%

37.9% / 62.1%

Driver 7

42.9% [ 57.1%

53.8% / 46.2%

39.2% / 60.8%

Driver 8

355% / 64.5%

375% ] 62.5%

535% [ 46.5%

Driver 9

53.8% [ 46.2%

425% ] 57.5%

53.3% [ 46.7%

Driver 10

63.4% / 36.6%

421% ] 57.9%

54.4% ] 45.6%

Driver 11

54.8% [ 45.2%

82.4% [ 17.6%

62.2% / 37.8%

Driver 12

41.0% / 59.0%

55.0% [ 45.0%

32.3% / 67.7%

Driver 13

41.9% / 58.1%

51.9% [ 481%

51.7% / 48.3%

Driver 14

37.9% / 62.1%

62.7% / 37.3%

37.0% / 63.0%

Driver 15

58.3% [ 41.7%

61.1% / 38.9%

52.5% | 47.5%

Driver 16

41.7% ] 58.3%

48.0% / 52.0%

41.7% ] 58.3%

Driver 17

48.6% [ 51.4%

31.6% / 68.4%

421% ] 57.9%

Driver 18

46.2% / 53.8%

51.4% [ 48.6%

51.1% [ 48.9%

Driver 19

49.0% / 51.0%

65.9% / 34.1%

48.9% / 51.1%

Driver 20

82.4% [ 17.6%

66.7% / 33.3%

20.7% / 70.3%

Driver 21

33.3% / 66.7%

56.5% / 43.5%

38.5% / 61.5%

Driver 22

65.9% / 34.1%

58.5% [ 41.5%

60.9% / 39.1%

Driver 23

71.9% / 28.1%

33.3% / 66.7%

32.4% ] 67.6%

Driver 24

53.6% / 46.4%

51.2% [ 483%

61.9% / 38.1%

Driver 25

50.0% / 50.0%

52.0% [ 48.0%

45.6% | 54.4%

Driver 26

55.8% / 44.2%

34.1% ] 65.9%

39.0% / 61.0%

Driver 27

56.2% / 43.8%

19.2% ] 50.8%

45.9% ] 54.1%

Driver 28

72.2% [ 278%

69.4% / 30.6%

58.2% [ 41.8%

Driver 29

44.2% [ 55.8%

48.9% / 51.1%

47.6% / 52.4%

Driver 30

53.5% [ 46.5%

57.7% [ 42.3%

60.0% / 40.0%

Driver 31

29.6% / 70.4%

483% [ 51.7%

42.9% [ 57.1%

Driver 32

39.0% / 61.0%

42.3% [ 57.7%

44.7% ] 55.3%

Driver 33

46.7% ] 53.3%

50.0% / 50.0%

41.7% ] 58.3%

Driver 34

44.0% ] 56.0%

48.2% ] 51.8%

52.6% [ 47.4%

Driver 35

57.7% [ 42.3%

56.9% [ 43.1%

36.6% / 63.4%

Driver 36

375% ] 62.5%

475% ] 52.5%

29.3% /[ 70.7%

Driver 37

42.0% ] 58.0%

44.4% ] 55.6%

76.8% [ 23.2%

Driver 38

44.4% ] 55.6%

47.6% | 52.4%

50.5% / 49.5%

Driver 39

51.2% [ 43.8%

57.1% ] 42.9%

42.6% [ 57.4%

Driver 40

39.1% / 60.9%

50.0% / 50.0%

53.3% [ 46.7%

Table 4.4: Results from Turning Acceleration label
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Label 5 Altitude Acceleration: The percentages for all the drivers under all
the three distractions for the label — altitude accerelation are compiled in table 4.5
given below where every pair of percentages are of the two classes (lower and higher

altitudes) within the label.
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Driver ID

Hands-Free

Music

Text

Driver 1

62.2% / 37.8%

61.3% / 38.7%

47.2% ] 52.8%

Driver 2

433% [ 56.7%

441% ] 55.9%

39.0% / 61.0%

Driver 3

63.0% / 37.0%

50.0% / 50.0%

38.9% / 61.1%

Driver 4

50.0% / 50.0%

44.4% [ 55.6%

65.1% / 34.9%

Driver 5

55.6% [ 44.4%

34.1% ] 65.9%

59.2% / 40.8%

Driver 6

65.6% / 34.4%

41.5% ] 58.5%

44.8% ] 55.2%

Driver 7

50.0% / 50.0%

16.2% ] 53.8%

47.3% ] 52.7%

Driver 8

58.1% / 41.9%

50.0% / 50.0%

55.8% /[ 44.2%

Driver 9

41.0% [ 59.0%

375% ] 62.5%

33.3% / 66.7%

Driver 10

43.9% / 56.1%

60.5% / 39.5%

39.7% / 60.3%

Driver 11

742% [ 258%

99.2% / 0.8%

61.0% / 39.0%

Driver 12

59.0% / 41.0%

63.3% / 36.7%

67.7% ] 32.3%

Driver 13

67.4% ] 32.6%

38.5% / 61.5%

48:3% [ 51.7%

Driver 14

55.2% [ 44.8%

451% ] 54.9%

52.2% [ 478%

Driver 15

63.9% / 36.1%

61.1% / 38.9%

52.5% | 47.5%

Driver 16

53.3% [ 46.7%

37.3% ] 62.7%

39.3% / 60.7%

Driver 17

45.9% [ 541%

36.8% / 63.2%

47.4% [ 52.6%

Driver 18

69.2% / 30.8%

54.1% [ 45.9%

16.8% / 53.2%

Driver 19

56.9% [ 43.1%

63.6% / 36.4%

48.9% / 51.1%

Driver 20

52.9% [ 471%

42.4% [ 57.6%

53.1% / 46.9%

Driver 21

45.5% ] 54.5%

30.6% / 69.4%

36.5% / 63.5%

Driver 22

58.5% [ 41.5%

61.0% / 39.0%

50.7% [ 49.3%

Driver 23

34.4% ] 65.6%

37.5% ] 62.5%

57.7% [ 42.3%

Driver 24

75.0% / 25.0%

44.2% [ 55.8%

50.0%50.0%

Driver 25

50.0% / 50.0%

58.0% / 42.0%

45.6% | 54.4%

Driver 26

46.5% / 53.5%

50.0% / 50.0%

52.5% [ 47.5%

Driver 27

53.1% / 46.9%

52.5% [ 47.5%

51.1% / 45.9%

Driver 28

55.6% /[ 44.4%

66.7% / 33.3%

61.8% / 38.2%

Driver 29

481% ] 51.9%

51.1% / 48.9%

50.0%50.0%

Driver 30

53.5% [ 46.5%

40.4% ] 59.6%

43.2% ] 56.8%

Driver 31

51.9% [/ 481%

60.0% / 40.0%

61.0% / 39.0%

Driver 32

39.0% / 61.0%

34.6% / 65.4%

39.7% / 60.3%

Driver 33

55.0% [ 45.0%

67.7% / 32.3%

49.0% / 51.0%

Driver 34

45.2% ] 54.8%

10.0% / 60.0%

32.9% / 67.1%

Driver 35

55.8% /[ 44.2%

50.0% / 50.0%

38.0% / 62.0%

Driver 36

57.8% [ 42.2%

57.6% [ 42.4%

42.77% ] 57.3%

Driver 37

40.6% / 59.4%

33.3% / 66.7%

91.1% / 8.9%

Driver 38

52.8% [ 47.2%

33.3% / 66.7%

39.8% / 60.2%

Driver 39

60.5% / 39.5%

63.5% / 36.5%

58.3% / 41.7%

Driver 40

58.7% [ 41.3%

75.0% [ 25.0%

60.0% / 40.0%

Table 4.5:

Results from Altitude Acceleration label
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Label 6 Gap between lanes: The percentages for all the drivers under all the
three distractions for the label — gap between lanes are compiled in table 4.6 given
below where every pair of percentages are of the two classes (left and right of the
center of the lane) within the label.

Label 7 Split Sections: The percentages for all the drivers under all the three
distractions for the label — split segments are described below depending on how
many segments the dataset is split into.

Label 7a: The percentages for all the drivers under all the three distractions for
the label — two segments are compiled in table 4.7 given below where every pair of

percentages are of the two classes (the first and last segments) within the label.
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Driver ID

Hands-Free

Music

Text

Driver 1

43.2% ] 56.8%

74.2% / 25.8%

30.6% / 69.4%

Driver 2

46.7% / 53.3%

79.4% ] 20.6%

26.0% | 74.0%

Driver 3

40.7% / 59.3%

39.5% / 60.5%

44.4% ] 55.6%

Driver 4

775% [ 22.5%

51.9% / 481%

535% [ 46.5%

Driver 5

63.0% / 37.0%

34.1% ] 65.9%

61.2% / 38.8%

Driver 6

46.9% / 53.1%

68.3% / 31.7%

17.2% / 82.8%

Driver 7

21.4% ] 78.6%

80.8% / 19.2%

43.2% ] 56.8%

Driver 8

67.7% / 32.3%

79.2% [ 20.8%

69.8% / 30.2%

Driver 9

30.8% / 69.2%

60.0% / 40.0%

53.3% [ 46.7%

Driver 10

51.2% ] 43.8%

50.0% / 50.0%

54.4% ] 45.6%

Driver 11

80.6% / 19.4%

32.0% / 68.0%

89.0% / 11.0%

Driver 12

23.1% ] 76.9%

83.3% / 16.7%

33.8% / 66.2%

Driver 13

20.9% / 79.1%

731% [ 26.9%

46.6% / 53.4%

Driver 14

37.9% / 62.1%

84.3% / 15.1%

73.9% / 26.1%

Driver 15

50.0% / 50.0%

69.4% / 30.6%

78.7% [ 21.3%

Driver 16

20.0% / 80.0%

74.7% ] 25.3%

26.2% | 73.8%

Driver 17

51.4% ] 48.6%

737% ] 26.3%

44.7% ] 55.3%

Driver 18

61.5% / 38.5%

29.7% ] 70.3%

36.2% / 63.8%

Driver 19

235% [ 76.5%

86.4% / 13.6%

60.2% / 39.8%

Driver 20

58.8% [ 41.2%

63.6% / 36.4%

18.8% / 81.2%

Driver 21

51.5% / 48.5%

67.7% / 32.3%

67.3% / 32.7%

Driver 22

80.5% / 19.5%

58.5% [ 41.5%

59.4% ] 40.6%

Driver 23

28.1% / 71.9%

54.2% ] 45.8%

35.2% / 64.8%

Driver 24

42.9% [ 57.1%

60.5% / 39.5%

64.3% / 35.7%

Driver 25

53.1% ] 46.9%

56.0% / 44.0%

50.0%50.0%

Driver 26

46.5% / 53.5%

84.1% / 15.9%

39.0% / 61.0%

Driver 27

21.9% / 781%

78.7% [ 21.3%

344% / 65.6%

Driver 28

55.6% /[ 44.4%

66.7% / 33.3%

58.2% [ 41.8%

Driver 29

25.0% [ 75.0%

62.2% / 37.8%

43.9% / 56.1%

Driver 30

39.5% / 60.5%

59.6% / 40.4%

47.4% [ 52.6%

Driver 31

20.4% ] 79.6%

90.0% / 10.0%

31.2% / 68.8%

Driver 32

48.8% ] 51.2%

481% / 51.9%

433% / 56.7%

Driver 33

30.0% / 70.0%

95.2% [ 4.8%

67.7% / 32.3%

Driver 34

46.4% ] 53.6%

51.1% / 45.9%

55.3% [ 44.7%

Driver 35

42.3% [ 57.7%

67.2% / 32.8%

42.3% [ 57.7%

Driver 36

39.1% / 60.9%

84.7% / 15.3%

25.6% ] 74.4%

Driver 37

62.3% / 37.7%

61.1% / 38.9%

69.6% / 30.4%

Driver 38

50.0% / 50.0%

64.3% / 35.7%

47.3% ] 52.7%

Driver 39

60.5% / 39.5%

71.4% [ 28.6%

65.7% / 34.3%

Driver 40

23.9% / 76.1%

725% ] 275%

44.0% ] 56.0%

Table 4.6: Results from Gap between Lanes label
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Driver ID

Hands-Free

Music

Text

Driver 1

54.1% / 45.9%

80.6% / 19.4%

66.7% / 33.3%

Driver 2

63.3% / 36.7%

76.5% [ 23.5%

16.8% / 532%

Driver 3

51.9% / 48.1%

63.2% / 36.8%

52.8% | 47.2%

Driver 4

57.5% [ 42.5%

59.3% / 40.7%

535% [ 46.5%

Driver 5

81.5% / 18.5%

415% ] 58.5%

55.1% / 44.9%

Driver 6

59.4% [ 40.6%

51.2% [ 48.8%

53.4% [ 46.6%

Driver 7

50.0% / 50.0%

73.1% / 26.9%

60.8% / 39.2%

Driver 8

71.0% / 29.0%

66.7% / 33.3%

535% [ 46.5%

Driver 9

53.8% [ 46.2%

70.0% / 30.0%

19.3% / 50.7%

Driver 10

61.0% / 39.0%

65.8% / 34.2%

54.4% ] 45.6%

Driver 11

71.0% [ 29.0%

432% ] 56.8%

52.4% [ 47.6%

Driver 12

43.6% / 56.4%

68.3% / 31.7%

146.2% ] 53.8%

Driver 13

41.9% / 58.1%

67.3% / 32.7%

65.5% / 34.5%

Driver 14

79.3% / 20.7%

58.8% [ 41.2%

78.3% / 21.7%

Driver 15

50.0% / 50.0%

58.3% [ A1.7%

70.5% [/ 29.5%

Driver 16

35.0% / 65.0%

50.7% / 49.3%

31.0% / 69.0%

Driver 17

64.9% / 35.1%

84.2% / 15.8%

47.4% [ 52.6%

Driver 18

42.3% [ 57.7%

43.2% ] 56.8%

51.1% [ 48.9%

Driver 19

35.3% [ 64.7%

84.1% / 15.9%

63.6% / 36.4%

Driver 20

52.9% [ 471%

60.6% / 39.4%

46.9% / 53.1%

Driver 21

66.7% / 33.3%

72.6% [ 27.4%

51.9% [/ 481%

Driver 22

78.0% / 22.0%

51.2% / 48.8%

73.9% [ 26.1%

Driver 23

71.9% / 28.1%

58.3% [ 41.7%

66.2% / 33.8%

Driver 24

57.1% [ 42.9%

55.8% [ 44.2%

50.0%50.0%

Driver 25

65.6% / 34.4%

62.0% / 38.0%

63.2% / 36.8%

Driver 26

46.5% / 53.5%

88.6% / 11.4%

49.2% ] 50.8%

Driver 27

46.9% / 53.1%

51.1% / 45.9%

57.4% [ 42.6%

Driver 28

72.2% [ 278%

44.4% [ 55.6%

60.0% / 40.0%

Driver 29

46.2% [ 53.8%

73.3% [ 26.1%

57.3% [ 42.7%

Driver 30

51.2% ] 43.8%

71.2% ] 28.8%

195% / 50.5%

Driver 31

27.8% ] 712.2%

66.7% / 33.3%

16.8% / 53.2%

Driver 32

78.0% [ 22.0%

146.2% ] 53.8%

31.9% / 68.1%

Driver 33

31.7% ] 68.3%

64.5% / 35.5%

63.5% / 36.5%

Driver 34

46.4% ] 53.6%

51.1% / 45.9%

59.2% / 40.8%

Driver 35

40.4% [ 59.6%

483% / 5L.7%

63.4% ] 36.6%

Driver 36

51.6% / 48.4%

83.1% / 16.9%

36.6% / 63.4%

Driver 37

30.4% ] 69.6%

48.6% [ 51.4%

455% ] 54.5%

Driver 38

50.0% / 50.0%

69.0% / 31.0%

50.5% / 49.5%

Driver 39

58.1% / 41.9%

41.3% ] 58.7%

731% [ 26.9%

Driver 40

47.8% ] 52.2%

50.0% / 50.0%

50.7% / 49.3%

Table 4.7: Results from Split two Segments label
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Label 7b: The percentages for all the drivers under all the three distractions for
the label — three segments are compiled in table 4.8 given below where every set of

percentages are of the three classes (the first, middle and last segments) within the

label.
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Driver ID

Hands-Free

Music

Text

Driver 1

51.4% / 37.8% / 10.8%

51.6% / 35.5% / 12.9%

63.9% / 22.2% / 13.9%

Driver 2

56.7% / 33.3% / 10.0%

412% [ 44.1% [ 14.7%

33.8% / 31.2% / 35.1%

Driver 3

51.9% / 44.4% ] 3.7%

39.5% / 55.3% / 5.3%

47.2% / 36.1% / 16.7%

Driver 4

47.5% / 40.0% / 12.5%

51.9% / 29.6% / 18.5%

37.2% / 51.2% [ 11.6%

Driver 5

70.4% / 25.9% / 3.1%

31.7% ] 43.9% / 24.4%

A4.9% [ 32.7% ] 22.4%

Driver 6

50.0% / 34.4% / 15.6%

244% [ 48.8% / 26.8%

41.4% /19.0% / 39.7%

Driver 7

50.0% / 35.7% / 14.3%

53.8% / 30.8% / 15.4%

15.9% [ 39.2% [ 14.9%

Driver 8

58.1% / 32.3% ] 9.1%

50.0% / 33.3% / 16.7%

37.2% / 39.5% / 23.3%

Driver 9

4877% / 25.6% | 25.6%

45.0% / 35.0% / 20.0%

41.3% [ 38.7% / 20.0%

Driver 10

39.0% / 56.1% / 4.9%

36.8% / 60.5% / 2.6%

12.6% / 38.2% / 19.1%

Driver 11

58.1% / 41.9% / 0.0%

13.6% / 72.0% / 14.4%

32.9% / 53.7% ] 13.4%

Driver 12

35.9% / 41.0% / 23.1%

50.0% / 36.7% / 13.3%

415% / 431% / 15.4%

Driver 13

34.9% / 44.2% [ 20.9%

38.5% / 59.6% / 1.9%

55.2% [ 32.8% [ 12.1%

Driver 14

724% J 241% / 3.4%

33.3% / 47.1% / 19.6%

73.9% / 8.1% / 17.4%

Driver 15

38.9% / 44.4% /| 16.7%

A1.7% [ 44.4% ] 13.9%

63.9% / 24.6% / 11.5%

Driver 16

35.0% / 45.0% / 20.0%

33.3% / 54.7% ] 12.0%

25.0% / 41.7% / 33.3%

Driver 17

56.8% / 32.4% / 10.8%

52.6% / 42.1% / 5.3%

A4.7% ] 31.6% ] 23.7%

Driver 18

30.8% / 50.0% / 19.2%

27.0% / 54.1% / 18.9%

44.7% | 40.4% / 14.9%

Driver 19

275% ] 60.8% / 11.8%

52.3% / 40.9% / 6.8%

56.8% / 33.0% / 10.2%

Driver 20

412% [ 35.3% | 235%

51.5% / 30.3% / 18.2%

10.6% / 21.9% / 37.5%

Driver 21

54.5% / 36.4% / 9.1%

53.2% / 32.3% / 14.5%

442% [ 481% | 7.7%

Driver 22

61.0% / 39.0% / 0.0%

415% [ 31.7% | 26.8%

62.3% / 21.7% / 15.9%

Driver 23

65.6% / 21.9% / 12.5%

33.3% / 41.7% ] 25.0%

63.4% / 7.0% / 29.6%

Driver 24

50.0% / 25.0% / 25.0%

41.9% / 32.6% / 25.6%

42.9% / 42.9% / 14.3%

Driver 25

50.0% / 43.8% / 6.2%

40.0% / 32.0% / 28.0%

58.8% / 14.7% ] 26.5%

Driver 26

41.9% / 30.2% / 27.9%

63.6% / 27.3% / 9.1%

158% /102% / 44.1%

Driver 27

10.6% / 53.1% / 6.2%

311% / 54.1% / 14.8%

55.7% / 21.3% ] 23.0%

Driver 28

63.9% / 25.0% / 11.1%

38.9% / 44.4% ] 16.7%

56.4% / 21.8%21.8%

Driver 29

34.6% / 40.4% /] 25.0%

51.1% / 31.1% / 17.8%

53.7% / 17.1% / 29.3%

Driver 30

16.5% / 37.2% / 16.3%

69.2% / 15.4% / 15.4%

432% [/ 31.6% / 25.3%

Driver 31

278% / 44.4% ] 27.8%

35.0% / 51.7% / 13.3%

41.6% / 23.4% ] 35.1%

Driver 32

75.6% / 9.8% / 14.6%

385% / 46.2% / 15.4%

26.2% / 34.8% / 39.0%

Driver 33

25.0% / 58.3% / 16.7%

30.6% / 64.5% / 4.8%

59.4% / 19.8% [ 20.8%

Driver 34

25.0% / 56.0% / 19.0%

28.2% / 54.1% [ 17.6%

53.9% / 21.1% ] 25.0%

Driver 35

32.7% / 50.0% / 17.3%

44.83% [ 31.0% [ 24.1%

60.6% / 26.8% / 12.7%

Driver 36

45.3% [ 32.8% | 21.9%

441% [ 47.5% | 8.5%

31.7% [ 14.6% / 53.7%

Driver 37

20.3% / 72.5% ] 7.2%

20.8% / 73.6% / 5.6%

35.7% / 55.4% / 8.9%

Driver 38

38.9% / 55.6% / 5.6%

61.9% / 16.7% / 21.4%

39.8% / 26.9% / 33.3%

Driver 39

41.9% [ 535% ] 4.7%

30.2% / 41.3% / 28.6%

59.3% / 27.8% [ 13.0%

Driver 40

135% / 32.6% / 23.9%

32.5% / 32.5% / 35.0%

11.3% [ 12.0% ] 46.7%

Table 4.8: Results from Split three Segments label
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Label 7c: The percentages for all the drivers under all the three distractions for
the label — four segments are compiled in table 4.9 given below where every set of
percentages are of the four classes (the first, second, third and the last segments)

within the label.
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Driver ID

Hands-Free

Music

Text

132% [ 81% ]

29.0% / 45.2% |

58.3% / 8.3% ]

Driver 11 a5 106/ 135% | 6.5% / 194% | 13.9% / 19.4%
Driver 2 | 53:3% [ 16.7% [ | 35.3% / 38.2% / | 81.2% [ 22.1%
rver 26.7% / 3.3% | 14.7% / 11.8% | 16.9% / 29.9%
Driver 3 | 1A% / T48% [ | 36.8% ] 26.3% [ | 41.7% ] 13.9% |
rver 33.3% / 74% | 31.6% /5.3% | 30.6% / 13.9%
Driver 4 | 20:0% [ 20.0% /| 51.9% / T.4% /| 25.6% | 41.9% /
rver 275% / 12.5% | 25.9% / 14.8% | 18.6% / 14.0%
Driver 5 | 993% / 25.9% [ | 26.8% ] 14.6% / | 44.9% ] 14.3% |
rver 74% [ TA% | 39.0% /19.5% | 24.5% / 16.3%
Driver 6 | 438% / 25.0% [ | 24.4% [ 19.5% [ | 414% ] 13.8% /
rvet 15.6% & 15.6% | 39.0% / 17.1% | 3.4% / 41.4%
Driver 7 | 90-0% [ 28.6% [ | 38.5% [ 23.1% /| 35.1% / 32.4% |
rver 21.4% / 0.0% | 23.1% ) 15.4% | 10.8% / 21.6%
Driver 8 | 081% [ 16.1% [ [ 45.8% [ 20.8% /| 30.2% / 25.6% |
rver 19.4% / 6.5% | 29.2% ) 4.2% | 16.3% / 27.9%
Driver o | 330% [ T7% [ | 52.5% [ 15.0% [ | 34.7% [ 14.7% |
rver 23.1% / 30.8% | 15.0% / 17.5% | 33.3% / 17.3%
. 34.1% / 26.8% / | 28.9% / 31.6% / | 33.8% / 27.9% |
Driver 10 | "oy 7o/ 7.39% " | 184% /211% | 22.1% / 16.2%
. 51.6% / 22.6% / | 10.4% / 38.4% / | 29.3% / 30.5% /
Driver 111 %0 6% / 3.2% | 31.2% / 20.0% | 24.4% / 15.9%
. 33.3% / 17.9% / | 50.0% / 20.0% / | 40.0% / 6.2% /
Driver 12 1 “og 9% /20.5% | 16.7% / 13.3% | 40.0% / 13.8%
. 32.6% / 9.3% / | 30.8% ] 30.8% / | 44.8% ] 20.7% /
Driver 13 14400/ 14.0% | 34.6% / 3.8% 17.2%17.2%
. 62.1% / 20.7% / | 29.4% / 21.6% / | 65.2% / 15.2% /
Driver 14 14030/ 6.9% | 33.3% / 15.7% | 6.5% / 13.0%
. 27.8% [ 278% ] | 33.3% ] 27.8% / | 59.0% / 11.5% /
Driver 15 | “as 200/ 11.1% | 194% & 19.4% | 11.5% / 18.0%
. 31.7% ] 6.7% ] | 26.7% / 17.3% / | 21.4% [ 71% /
Driver 16 1 46 705/ 15.0% | 48.0% / 8.0% | 48.8% / 22.6%
. 15.9% / 32.4% [ | 47.4% ] 26.3% ] | 42.1% / 7.9% /
Driver 171 45500 /81% | 211% /53% | 23.7% / 26.3%
. 23.1% / 30.8% / | 27.0% / 135% / | 42.6% / 17.0% /
Driver 18 1719 905 / 26.9% | 43.2% / 16.2% | 27.7% / 12.8%
. 20.4% ] 235% / | 47.7% / 31.8% / | 53.4% ] 15.9% /
Driver 19 1 “as 306 / 11.8% | 9.1% / 11.4% | 22.7% / 8.0%
Driver 20 | 303% / 235% [ | 424% [ 18.2% [ | 35.9% [ 141% |

17.6% / 23.5%

21.2% / 18.2%

20.3% / 29.7%
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51.5% / 182% /

56.5% / 16.1% /

442% /231% /

Driver 21| "o 3% /3.0% | 145% /12.9% | 25.0% / 7.7%
Driver 22 | *0 ! o | 1o 3 | 10/ 17450
Driver 28 | 1360 5.1 | 2800 o 23001 | 8% ) 209
river 24 | 00! Sl | Yot S avod | o s
Driver 25 40.6% / 34.4% / | 34.0% / 36.0% / | 55.9% / 13.2% /

12.5% & 12.5% | 8.0% / 22.0% | 2.9% / 27.9%
Driver 26 | 300! toasi | i) 150% | 2379 ) 20
Driver 27| U0 1o | “sua /1 | 1079 ) 3300
Driver 28 | "0 oy | “moasd  amsol | vase s 210
river 20| %5050/ ol | ‘a1 | Tt/ 30
Driver 30 | *3 60! v | 1/ 1 | 2% ) 205
Driver 81| 5100 0.1, | 2% ) 100% | 1435 | 3255
Driver 82 | 0ot fosol | wn ) 17 | 45/ 241%
Driver 88 | *50700 1 | oo 1l | 5% 2009
river 84 | "5/ v | st 2 | 1o | 2085
Driver 35| 300! V5 | 3aa% ) 1724 | 1895/ 14.1%
Driver 36 | 510 vro0h | 180% | S | 104 / 500%
Driver 37| "0 Vo | “onah ) 500 | an1% | 21
Driver 38 | 30! orod | Vo) 31 | 10 | 3i
Driver 39 | *3 oo [ | 2wt ) 2o | 1as | 120%
Driver 40 | 37-0% [/ 174% [ | 25.0% ] 22.5% [ | 32.0% / 14.7% ]

21.7% / 23.9%

22.5% / 30.0%

5.3% / 48.0%

Table 4.9: Results from Split four Segments label
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Label 7d: The percentages for all the drivers under all the three distractions
for the label — five segments are compiled in table 4.10 given below where every set
of percentages are of the five classes (the first, second, third, fourth and the last

segments) within the label.
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Driver ID Hands-Free Music Text
Driver 1 43.2% [ 2.7% / 24.3% | 29.0% / 19.4% / 29.0% | 50.0% / 8.3% / 8.3%
/ 16.2% / 13.5% / 0.0% / 22.6% / 16.7%16.7%
Driver 2 36.7% / 23.3% / 30.0% | 35.3% / 32.4% / 14.7% | 20.8% / 22.1% / 15.6%
/ 10.0% / 0.0% /0.0% / 17.6% / 10.4% / 31.2%
Driver 3 40.7% [/ 7.4% / 40.7% | 31.6% / 2.6% / 44.7% | 38.9% / 11.1% / 19.4%
[ 7.4% | 3.7% / 15.8% / 5.3% / 16.7% / 13.9%
Driver 4 32.5% / 20.0% / 25.0% | 40.7% / 0.0% / 22.2% | 23.3% / 25.6% / 14.0%
/ 10.0% / 12.5% / 11.1% / 25.9% / 18.6%18.6%
Driver 5 481% /[ 22.2% / 18.5% | 9.8% / 22.0% / 31.7% | 38.8% / 12.2% / 16.3%
/0.0% / 11.1% / 17.1% / 19.5% / 10.2% / 22.4%
Driver 6 37.5% / 281% / 12.5% | 19.5% / 14.6% / 26.8% | 36.2% / 10.3% / 10.3%
/6.2% / 15.6% / 22.0% / 17.1% / 52% / 37.9%
Driver 7 28.6% / 28.6% / 15.4% / 38.5% / 19.2% | 31.1% / 24.3% / 14.9%
28.6% / 7.1% & 7.1% / 11.5% / 15.4% /[ 4.1% / 25.7%
Driver 8 581% / 6.5% / 16.1% | 41.7% / 12.5% / 20.8% | 27.9% / 20.9% / 11.6%
/16.1% / 3.2% / 20.8% / 4.2% /9.3% / 30.2%
Driver 9 20.5% / 20.5% / 7.7% | 52.5% / 5.0% / 27.5% | 28.0% / 14.7% / 29.3%
/ 20.5% / 30.8% ]/ 7.5% | 7.5% / 10.7% / 17.3%
Driver 10 34.1% / 29.3% / 171% | 34.2% / 23.7% / 21.1% | 25.0% / 20.6% / 20.6%
/ 17.1% / 2.4% / 2.6% / 18.4% / 14.7% / 19.1%
Driver 11 45.2% / 6.5% / 32.3% 8.0% / 9.6% / 59.2% | 20.7% / 20.7% / 34.1%
/ 6.5% / 9.7% / 11.2% / 12.0% ]/ 7.3% [ 17.1%
Driver 12 28.2% / 51% / 33.3% | 43.3% / 13.3% / 18.3% | 33.8% / 7.7% / 24.6%
/ 12.8% / 20.5% / 10.0% / 15.0% / 20.0% / 13.8%
Driver 13 25.6% / 9.3% / 39.5% | 28.8% / 28.8% / 23.1% | 39.7% / 27.6% / 12.1%
/ 7.0% / 18.6% / 19.2% / 0.0% / 34% / 17.2%
Driver 14 41.4% /) 37.9% / 13.8% | 27.5% / 11.8% / 23.5% | 47.8% / 26.1% / 0.0%
/ 3.4% & 3.4% / 17.6% / 19.6% / 6.5% / 19.6%
Driver 15 22.2% / 19.4% / 38.9% | 22.2% / 19.4% / 33.3% | 42.6% / 18.0% / 11.5%
/ 13.9% / 5.6% / 83% / 16.7% / 6.6% / 21.3%
Driver 16 26.7% / 8.3% / 23.3% | 28.0% / 14.7% / 41.3% | 16.7% / 8.3% / 39.3%
/ 23.3% / 18.3% /9.3% / 6.7% / 13.1% / 22.6%
Driver 17 37.8% / 18.9% / 21.6% | 42.1% / 21.1% / 26.3% | 31.6% / 18.4% / 15.8%
/ 13.5% / 8.1% / 5.3% / 5.3% / 10.5% / 23.7%
Driver 18 23.1% / 15.4% / 30.8% | 21.6% / 5.4% / 51.4% | 36.2% / 12.8% / 19.1%
[/ 77% [ 23.1% / 10.8% / 10.8% / 14.9% / 17.0%
Driver 19 21.6% / 7.8% / 56.9% | 54.5% / 9.1% / 27.3% | 51.1% / 9.1% / 22.7%

/ 9.8% / 3.9%

/0.0% / 9.1%

/11.4% | 5.7%
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17.6% / 35.3% / 17.6%

39.4% / 182% / 12.1%

281% / 14.1% / 10.9%

Driver 20 / 5.9% / 23.5% /15.2% / 15.2% / 15.6% / 31.2%

Dreiver 21 | 30-4% [ 21.2% / 33.3% | 38.7% / 17.1% [ 21.0% | 365% / 115% / 25.0%
/6.1% / 3.0% /11.3% / 11.3% /13.5% / 13.5%

Driver 29 | 16:3% [ 22.0% [ 22.0% | 22.0% / 122% / 17.1% | 39.1% / 26.1% / 11.6%
/ 7.3% | 2.4% /12.2% / 36.6% / 4.3% | 18.8%

Driver 23 | 438% [ 219% [ 15.6% | 20.8% / 20.8% / 20.8% | 40.8% / 211% / 4.2%
/ 6.2% / 12.5% / 4.2% | 33.3% / 7.0% | 26.8%

Driver 24 | 39-3% [ 14.3% [ 21.4% | 27.9% / 25.6% / 16.3% | 38.1% / 7.1% / 11.9%
/14.3% / 10.7% /9.3% / 20.9% / 23.8% / 19.0%

Driver 25 | 344% [ 25.0% [ 25.0% | 32.0% / 10.0% / 28.0% | 44.1% / 13.2% / 8.8%
/ 31% / 12.5% / 8.0% / 22.0% / 1.5% | 32.4%

Driver 26 | 32-6% [ 11.6% [ 18.6% | 45.5% / 15.9% [ 25.0% | 37.3% / 5.1% [ 11.9%
/ 18.6% & 18.6% /0.0% / 13.6% / 23.7% | 22.0%

Driver 27 | 31:2% [ 6:2% [ 50.0% | 26.2% / 18.1% / 26.2% | 42.6% / 6.6% / 13.1%
/9.4% | 3.1% /19.7% | 14.8% / 11.5% | 26.2%

Driver 20 | 231% [ 154% [ 25.0% | 37.8% / 15.6% / 15.6% | 39.0% / 15.9% / 9.8%
/ 231% / 13.5% /11.1% / 20.0% / 8.5% /| 26.8%

Driver 30 | 349% /[ 233% [ 302% | 48.1% [ 15.4% [ 7.7% | 211% ] 23.2% ] 20.0%
) 7.0% | 4.7% /9.6% / 19.2% /14.7% | 21.1%

Driver 31 | 22:2% [ TA% [ 185% | 200% / 26.7% ] 26.% | 32.5% [ 15.6% ] 8%
/ 38.9% / 13.0% /13.3% / 13.3% /11.7% | 32.5%

Driver 3 | 43:9% [ 26.8% [ 24% | 25.0% / 17.3%  21.2% | 17.7% [ 13.5% / 24.1%
/ 7.3% / 19.5% /15.4% | 21.2% / 24.8% / 19.9%

Driver 33 | 183% / 6.7 [ 3LT% | 22.6% / 22.6% / 41.9% | 46.9% / 14.6% / 8.3%
/ 33.3% / 10.0% /3.2% / 9.7% /5.2% / 25.0%

Driver 34 | 10-7% / 333% [ 26.2% | 21.2% / 20.0% / 31.8% | 40.8% / 18.4% / 9.2%
/13.1% / 16.7% / 7.1% / 20.0% /5.3% / 26.3%

Driver 35 | 20:0% [ 9.6% [ 26.9% | 27.6% / 15.5% / 24.1% | 52.1% [ 9.9% [ 14.1%
/ 28.8% / 9.6% /15.5% | 17.2% /14.1% / 9.9%

Driver 36 | 40-6% /94% [ 188% | 32.2% / 16.9% / 37.3% | 19.5% [ 12.2% ] 4.9%
/15.6% / 15.6% / 5.1% | 8.5% / 14.6% | 48.8%

Driver 37 | 15:9% / 138.0% [ 63.8% | 11.1% / 8.3% [ 63.9% | 23.2% / 15.2% / 42.0%
/ 4.3% | 2.9% /6.9% / 9.7% /17.0% | 2.7%

Driver 38 | 30-6% / 18.9% [ 27.8% | 26.2% ] 23.8% [ 11.9% | 34.4% [ 12.9% / 12.9%
/ 8.3% / 19.4% [ 71% / 31.0% /3.2% / 36.6%

Driver 39 | 302% [ 14.0% [ 302% | 20.6% /[ 9.5% / 222% | 39.8% / 27.8% / 13.0%
/18.6% / 7.0% /28.6% / 19.0% / 7.4% | 12.0%

Driver 40 | 259% [ 174% [ 174% | 22.5% [ 20.0% ] 7.5% | 25.3% / 18:7% / 0.0%

/13.0% / 28.3%

/ 22.5% | 27.5%

/ 5.3% / 50.7%

Table 4.10: Results from Split five Segments label
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Results Summary:

The results obtained in this section are summarised as follows:

e Applying the threshold over the set of neurons activated by a single dataset
results in only the maximally activated points that particular dataset which
represent the distinctive patterns for an individual dataset. This means that
only the neurons that are matched to the most vectors of the particular dataset

will be activated while the rest are deactivated.

e Applying the threshold identifies the nodes which are most frequently activated
by each feature that is labeled in the data. This represents a distinctive pattern

for an individual feature.

e This set of points obtained after thresholding are then labeled to show which

feature they represent.

e After applying the labels, each feature within a label are treated as separate
classes and a calculation is done to denote what percentage the set of points

relates to the features within each label.

e The above steps are repeated for all the three distractions and their results are

shown separately as seen above.

4.5 Driver and Distraction results comparison

In this section each label is broken down into individual classes and comparisons are
made between drivers and distractions. Each class (within each label) for individual
drivers will be compared with all the distractions at the same time. A measure (the

percentage described in the previous section) is required to compare drivers in their
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respective maximal sets. As described in section 4.4, each driver has a percentage
denoting their characteristics with respect to each class and each distraction.

The main goal of this thesis is to distinguish between drivers and how similar they
are relative to the three distractions. To do this, another measure is required that
combines drivers from the three distractions (under a single class) to give conclusive
results on which distraction is most disruptive or tends to require the most attention.
The measure to do this is the percentage of how many drivers are most active for

their respective class (within each label). This is given below in equation 4.2:

(Number of drivers most activated)

Distraction Percentage % = 100 (4.2)

(Total number of drivers)

Where:

Number of drivers most activated: The count of drivers who are most activated
for a particular distraction under an individual class.

Total number of drivers: The count of drivers under each individual distraction

on which the model is trained and this is always 40.

The results begin by first calculating the percentages of each driver under each
distraction (from section 4.4) and plotting them on a bar chart based on a single
class. Then the number of drivers that are maximally activated for a single class
under each distraction are counted. Then each of their percentage is calculated using
the formula above in equation 4.2. This percentage is a score of how much drivers
under different distractions tend to be activated when analysing each individual class,

one at a time. The algorithm for this is described below:
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DistractionTally (DriverSet, LabelSet, DriverPercentages):

// DriverSet: Set of drivers in the combined dataset

// LabelSet: Set of all the labels that each driver is tested on.

// DriverPercentages: List containing all the percentages for each class for each
driver under all of the three distractions.

final results <[ |
for Label in LabelSet:
for Class in Label:
hands — free_tally < 0
music_tally < 0
text tally < 0
class_results «[ ]
for Driver in DriverSet:
percentages <— Driver Percentages|Class|[Driver]
find the maximum percent in percentages
update the distraction tally having the maximum percent by 1
end for
class_percents < percentages of the distraction counters (equation 4.2)
for result in class_percents
add result to class_results list
end for
end for
add class_results to the final_results
end for
return final results

Some important points to note before analysing the results are as follows:

e There are also cases where more than one distraction is maximally activated

for a particular class label.

e Some distractions show the same number of drivers being activated. This does
not mean that both distractions activate the same set of drivers although there

can be overlap between sets of drivers activating different distractions.
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Figure 4.31: Examining the activity of drivers under all the distractions
under the non-brake class label.

4.5.1 Individual class analysis

After applying all the labels and calculating their respective percentages a comparison
is done between each of the drivers for all three distractions where one class is
examined at a time. This is also a way to test specific behaviour of drivers under the
three distractions. Figure 4.31 represents the comparison of all the drivers under the
three distractions while testing the action of not applying the brake denoted by the
non-brake class under the brake pressure label. The music distraction shows that
the highest proportion of drivers tend not to apply the brakes very much while the
text distraction shows that the lowest proportion of drivers tend not to apply the
brakes very much. This supports the claim that texting while driving is the most
disruptive distraction as a very small proportion of drivers tend not to apply the

brakes very often. Figure 4.32 represents the comparison of all the drivers under
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Figure 4.32: Examining the activity of drivers under all the distractions
under the brake class label.

the three distractions while testing the action of applying the brake denoted by the
brake class under the brake pressure label. The music distraction shows that the
lowest proportion of drivers tend to apply the brakes while the text distraction shows
that the highest proportion of drivers tend to apply the brakes. This supports the
claim that texting while driving is the most disruptive distraction as a very large
proportion of drivers tend to frequently apply the brakes.

The other classes are examined in the same way as figures 4.31 and 4.32, however it
is found that visualizing them in the form of bar plots or tables does not make it
easy to make conclusions among all the drivers for each distraction under each class.
This is because not all the bar plots obtained are as clearly distinguishable as figures
4.44 and 4.45. Hence the number of drivers that are most activated under all three

distractions are counted based on the distraction separation algorithm specified above
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and their respective percentages are recorded below in table 4.11. For reference, the

bar plots of all the remaining classes are documented in Appendix C.

No. Class Name Hands-Free | Music | Text
47.5% 47.5% | 10.0%

L. | Non-Brake (19/40) | (19/40) | (4/40)
5 | Brake 32.5% 10.0% | 62.5%
' (13/40) (4/40) | (25/40)
32.5% 27.5% | 45.0%
3. | Below Average Speed (13,/40) (11/40) | (18/40)
45.0% 45.0% | 17.5%

4. | Above Average Speed (18/40) (18/40) | (7/40)
5 | Deceloration 32.5% 32.5% | 37.5%
' (13/40) (13/40) | (15/40)
6. | Accoleration 37.5% 37.5% | 27.5%
' (15/40) (15/40) | (11/40)

. 32.5% 45.0% | 30.0%
7. | Left Acceleration (13/40) (18/40) | (12/40)
. . 40.0% 17.5% | 45.0%
8. | Right Acceleration (16,/40) (7/40) | (18/40)
. . 47.5% 30.0% | 27.5%
9. | Lower Altitude Acceleration (19/40) (12/40) | (11/40)
. . . 17.5% 42.5% | 40.0%
10. | Higher Altitude Acceleration (7/40) (17/40) | (16/40)
12.5% 72.5% | 20.0%

11. | Left Center Lane (5/10) (20/40) | (8/40)
. 55.0% 20.0% | 27.5%
12. | Right Center Lane (22/40) (8/40) | (11/40)
. 27.5% 57.5% | 17.5%

13. | Splits Two 1st (11/40) (23/40) | (7/40)
. 45.0% 22.5% | 32.5%
14. | Splits Two 2nd (18/40) (9/40) | (13/40)
. 40.0% 17.5% | 42.5%
15. | Splits Three 1st (16/40) (7/40) | (17/40)
. 35.0% 52.5% | 17.5%

16. | Splits Three 2nd (14/40) (21/40) | (7/40)
. 17.5% 27.5% | 57.5%
17. | Splits Three 3rd (7/40) (11/40) | (23/40)
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10.0% | 25.0% | 35.0%
(16/40) | (10/40) | (14/40)
32.5% | 57.5% | 15.0%
(13/40) | (23/40) | (6/40)
52.5% | 37.5% | 15.0%
(21/40) | (15/40) | (6/40)
125% | 40.0% | 57.5%
(5/40) | (16/40) | (23/40)
30.0% | 27.5% | 45.0%
(12/40) | (11/40) | (18/40)
10.0% | 47.5% | 27.5%
(16/40) | (19/40) | (11/40)
175% | 50.0% | 5.0%
(19/40) | (20/40) | (2/40)
35.0% | 35.0% | 37.5%
(14/40) | (14/40) | (15/40)
10.0% | 27.5% | 65.0%
(4/40) | (11/40) | (26/40)

18. | Splits Four 1st

19. | Splits Four 2nd

20. | Splits Four 3rd

21. | Splits Four 4th

22. | Splits Five 1st

23. | Splits Five 2nd

24. | Splits Five 3rd

25. | Splits Five 4th

26. | Splits Five 5th

Table 4.11: Results containing percentages and number of drivers
distinctive under every class under each distraction

4.5.2 Results Analysis and Findings

The results in table 4.11 are studied and conclusions are derived on how disruptive
each distraction would be depending on each class of behaviour which represent the

actions performed by the drivers.

1. Brake Analysis:

Non-Brake class: 47.5% of drivers (19 out of 40) are most distinctive while being
distracted by the “hands-free” distraction and the same result is seen while being
distracted by the “music” distraction, while drivers under the “text” distraction
were the least distinctive where only 10% of the driver patterns (4 out of 40) were

maximally activated.
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Brake class: 62.5% of drivers (25 out of 40) are most distinctive while under the
“text” distraction, 32.5% of drivers (13 out of 40) are distinctive while under the
“hands-free” distraction, while drivers under the “music” distraction were the least dis-

tinctive where only 10% of the driver patterns (4 out of 40) were maximally activated.

Looking into the braking patterns of drivers, it is found that 47.5% of drivers
under the distractions of hands-free and music tend not to apply the brake very
much and comparatively more than drivers under the text distraction which is about
10% of the drivers. This implies that drivers under text distraction tend to apply
the brakes more in comparison to drivers under hands free and music distractions.
This in turn indicates that texting is more disruptive than the other distractions.

This is further strengthened in the next result where 62.5% of drivers tend to exhibit
more frequent braking while under the text distraction. This is much lesser under
the hands free distraction with 32.5% and the music distraction with just 10%. This
illustrates that listening to music while driving is the least distracting compared with
driving while talking on a hands-free device while texting while driving requires the
most brake presses and hence it is the most distracting while analysing the braking

behaviour.

2. Speed Limits:

Below Average Speed class: 45% of drivers (18 out of 40) are most distinctive
while under the “text” distraction, 32.5% of drivers (13 out of 40) are distinctive
while under the “hands-free” distraction, while drivers under the “music” distraction
were the least distinctive where only 27.5% of the driver patterns (13 out of 40) were
maximally activated.

Above Average Speed class: 45% of drivers (18 out of 40) are most distinctive
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while under the “hands-free” distraction and the same results are seen for the “music’
distraction, while drivers under the “text” distraction were the least distinctive where

only 17.5% of the driver patterns (7 out of 40) were maximally activated.

When analysing the changing speeds of the drivers, it is found that 32.5% of drivers
under the hands-free distraction and 27.5% of drivers under the music distraction ex-
hibit distinctive patterns where drivers drive at speeds below the average speed limit
according to their recorded data, while the most distinctive patterns are observed
under text distraction with 47.5% of the drivers driving below the average speed.

However when comparing this to patterns observed when driving above the average
speed limit, the most distinct patterns found were under the hands-free and music
distraction with both being at 45%. The least distinctive patterns over the speed
limit were found under the text distraction with 17.5%. Once again the results
suggest that texting while driving appears to be most distracting where most drivers

are unable to go over the speed limit.

3. Linear Acceleration:

Deceleration class: 37.5% of drivers (15 out of 40) are most distinctive while under
the “text” distraction, while 32.5% of drivers (13 out of 40) are distinctive while
under the “hands-free” distraction were maximally activated and these are the same
results found under the “music” distraction.

Acceleration class: 37.5% of drivers (15 out of 40) are most distinctive while under
the “hands-free” distraction and the same results are seen for the “music” distraction,
while drivers under the “text” distraction were the least distinctive where only 27.5%

of the driver patterns (11 out of 40) were maximally activated.
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32.5% of drivers under either the hands-free or the music distraction show pat-
terns where they to decelerate or slow down during the course while 37.5% of the
drivers under the text distraction showed patterns containing the action of decelera-
tion. This shows that drivers under text distraction tend to slow down more than
while they are under the hands-free and music distractions.

Contradictory to the above results, 37.5% of drivers’ patterns under either the
distraction of hands-free or music were found to display patterns of acceleration
while only 27.5% of drivers displayed similar behaviour under the text distraction,
thus showing that drivers listening to music or using a hands-free device recorded
patterns containing lesser deceleration but more acceleration behaviour while the

inverse is found for drivers who text while driving.

4. Turning Acceleration:

Left Acceleration class: 45% of drivers (18 out of 40) are most distinctive while
under the “music” distraction, 32.5% of drivers (13 out of 40) are distinctive while
under the “hands-free” distraction, while drivers under the “text” distraction were
the least distinctive where only 30% of the driver patterns (12 out of 40) were
maximally activated.

Right Acceleration class: 45% of drivers (18 out of 40) are most distinctive while
under the “text” distraction, 40% of drivers (16 out of 40) are distinctive while under
the “hands-free” distraction, while drivers under the “music” distraction were the
least distinctive where only 17.5% of the driver patterns (7 out of 40) were maximally

activated.

Looking into the acceleration behaviour of drivers while turning, distinctive patterns

signifying acceleration towards the left are found with 32.5% of drivers being under
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the hands-free distraction, 45% of drivers under the music distraction but only 30%
of drivers under text distraction. This shows that there was less activity while
accelerating to the left (including situation where a left turn is made) under text
distraction and most activity under the music distraction.

Looking at accelerating to the right, 40% of drivers under the hands-free distrac-
tion, 17.5% drivers under the music distraction and 45% of drivers under the text
distraction revealed most distinctive patterns. So most drivers who were distracted
by texting showed the most acceleration towards the right while the least distinctive
patterns were found by the music distraction. Therefore observing the activity of
drivers under music distraction shows that they tend to display patterns of turning
towards the left while those under the text distraction show more activity while

turning towards the right.

5. Altitude Acceleration:

Lower Altitude Acceleration class: 47.5% of drivers (19 out of 40) are most
distinctive while under the “hands-free” distraction, 30% of drivers (12 out of 40)
are distinctive while under the “music” distraction, while drivers under the “text”
distraction were the least distinctive where only 27.5% of the driver patterns (11 out
of 40) were maximally activated.

Higher Altitude Acceleration class: 42.5% of drivers (17 out of 40) are most
distinctive while under the “music” distraction, 40% of drivers (16 out of 40) are
distinctive while under the “text” distraction, while drivers under the “hands-free”

distraction were the least distinctive where only 17.5% of the driver patterns (7 out

of 40) were maximally activated.

While analysing the acceleration with respect to the altitude, comparisons are
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made as to when the driver goes between lower to higher altitudes and vice versa,
most activity is found with drivers under the hands-free distraction at 47.5% drivers,
under the music distraction at 30% drivers and the least is found under the text
distraction at only 27.5%.

Similarly under the activity of acceleration while moving towards higher altitudes,
just 17.5% of drivers under the hands-free distraction were distinguishable but 42.5%
of drivers under music distraction and 40% under text distraction were recorded.
This is one of the first results to show a clear divide between behaviour between
drivers under hands-free and music distractions where drivers were more distracted
by using a hands-free device versus listening to music while testing behaviour found

while speeding up over higher altitudes.

6. Gap between Lanes:

Left Center Lane class: 72.5% of drivers (29 out of 40) are most distinctive while
under the “music” distraction, 20% of drivers (8 out of 40) are distinctive while under
the “text” distraction, while drivers under the “hands-free” distraction were the least
distinctive where only 12.5% of the driver patterns (5 out of 40) were maximally
activated.

Right Center Lane class: 55% of drivers (22 out of 40) are most distinctive while
under the “hands-free” distraction, 27% of drivers (11 out of 40) are distinctive while
under the “text” distraction, while drivers under the “music” distraction were the
least distinctive where only 20% of the driver patterns (8 out of 40) were maximally

activated.

Looking into how drivers drove within their respective lane, it is found that most

drivers up to 72.5% tended to drive closer to the left side of the lane while listening
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to music while results under the hands-free and music distractions revealed far lesser
scores of 12.5% and 20% respectively. This shows that while listening to music, most
drivers drive closer the left of the lane.

However while under hands-free distraction, 55% of drivers tended to drive closer to
the right of the lane, while only 20% and 27.5% tended to do the same under the
music and text distraction. Once again a big difference is seen between the drivers
under the music and hands-free distractions. The results show that driver distracted
by music drive more to the left of the lane while those distracted by hands-free drive

more to the right of the lane.

7. Split into two segments:

Two split first section class: 57.5% of drivers (23 out of 40) are most distinctive
while under the “music” distraction, 27.5% of drivers (11 out of 40) are distinctive
while under the “hands-free” distraction, while drivers under the “text” distraction
were the least distinctive where only 17.5% of the driver patterns (7 out of 40) were
maximally activated.

Two split second section class: 45% of drivers (18 out of 40) are most distinctive
while under the “hands-free” distraction, 32.5% of drivers (13 out of 40) are distinc-
tive while under the “text” distraction, while drivers under the “music” distraction
were the least distinctive where only 22.5% of the driver patterns (9 out of 40) were

maximally activated.

When dividing the dataset into two parts, the starting half and the ending half, it
is found that while under the hands-free distraction, the drivers’ patterns are less
distinct in the first half with only 27.5% activity and are more distinct in the ending

half with 45% activity. For the music distraction, in the starting half, drivers exhibit
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most activity with 57.5% and least activity in the ending half with 22.5%. Finally
for the text distraction, 17.5% driver patterns were distinct in the starting half while
32.5% were more distinct in the ending half. Most distinct patterns were located at
the ending, starting and ending halves for the hands-free, music and text distractions

respectively.

7. Split into three segments:

Three split first section class: 42.5% of drivers (17 out of 40) are most distinctive
while under the “text” distraction, 40% of drivers (16 out of 40) are distinctive
while under the “hands-free” distraction, while drivers under the “music” distraction
were the least distinctive where only 17.5% of the driver patterns (7 out of 40) were
maximally activated.

Three split second section class: 52.5% of drivers (21 out of 40) are most distinc-
tive while under the “music” distraction, 35% of drivers (14 out of 40) are distinctive
while under the “hands-free” distraction, while drivers under the “text” distraction
were the least distinctive where only 17.5% of the driver patterns (7 out of 40) were
maximally activated.

Three split third section class: 57.5% of drivers (23 out of 40) are most distinc-
tive while under the “text” distraction, 27.5% of drivers (11 out of 40) are distinctive
while under the “music” distraction, while drivers under the “hands-free” distraction
were the least distinctive where only 17.5% of the driver patterns (7 out of 40) were

maximally activated.

Similar to the previous split, this time the dataset is divided into three parts
being the start, middle and end parts. It is found that under the hands-free dis-

traction, 40% of the driver patterns are active in the first part, 35% of the patterns
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are active in the middle part and 17.5% are active at the end. Under the music
distraction, 17.5% of drivers show patterns active in the first section, 52.5% in
the middle section and 27.5% show active patterns in the last section. Under the
text distraction, 42.5% of drivers show active patterns in the first section, 17.5%
in the middle section and 52.5% in the ending section. This shows that drivers
using hands-free devices tend to be more active towards the starting and middle of
their drive, while listening to music were more active at the middle of their drive

while those texting were more active at the first and last part of their respective drives.

8. Split into four segments:

Four split first section class: 40% of drivers (16 out of 40) are most distinctive
while under the “hands-free” distraction, 35% of drivers (14 out of 40) are distinctive
while under the “text” distraction, while drivers under the “music” distraction were
the least distinctive where only 25% of the driver patterns (10 out of 40) were
maximally activated.

Four split second section class: 57.5% of drivers (23 out of 40) are most dis-
tinctive while under the “music” distraction, 32.5% of drivers (13 out of 40) are
distinctive while under the “hands-free” distraction, while drivers under the “text”
distraction were the least distinctive where only 15% of the driver patterns (6 out of
40) were maximally activated.

Four split third section class: 52.5% of drivers (21 out of 40) are most distinctive
while under the “hands-free” distraction, 37.5% of drivers (15 out of 40) are distinc-
tive while under the “music” distraction, while drivers under the “text” distraction
were the least distinctive where only 15% of the driver patterns (6 out of 40) were
maximally activated.

Four split fourth section class: 57.5% of drivers (23 out of 40) are most distinc-
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tive while under the “text” distraction, 40% of drivers (16 out of 40) are distinctive
while under the “music” distraction, while drivers under the “hands-free” distraction
were the least distinctive where only 12.5% of the driver patterns (5 out of 40) were

maximally activated.

In this split, each dataset is divided and labeled by four equal sections, the first
part, the second part, the third part and the ending part. Under the hands-free
distraction, driver patterns in the first part were 40% active, in the second part were
32.5% active, in the third part were 52.5% and finally in the last part were 12.5%
active, thus showing that under the hands-free distraction, drivers are most active at
the third part. Under the music distraction, active driver patterns were found by
25% drivers in the first part, by 57.5% drivers in the second part, by 37.5% of drivers
in the third part and by 40% of drivers in the last part. Under the text distraction,
active patters in the first part were found by 35%, 15% in both the second and
third parts and 57.5% in the last part. This shows that drivers under hands-free
distraction are most active or distinct at the third part, under music distraction were
most distinct in the second part and under the text distraction were most active in

the last part.

9. Split into five segments:

Five split first section class: 45% of drivers (18 out of 40) are most distinctive
while under the “text” distraction, 30% of drivers (12 out of 40) are distinctive while
under the “hands-free” distraction, while drivers under the “music” distraction were
the least distinctive where only 27.5% of the driver patterns (11 out of 40) were
maximally activated.

Five split second section class: 47.5% of drivers (19 out of 40) are most distinc-
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tive while under the “music” distraction, 40% of drivers (16 out of 40) are distinctive
while under the “hands-free” distraction, while drivers under the “text” distraction
were the least distinctive where only 27.5% of the driver patterns (11 out of 40) were
maximally activated.

Five split third section class: 50% of drivers (20 out of 40) are most distinctive
while under the “music” distraction, 47.5% of drivers (19 out of 40) are distinctive
while under the “hands-free” distraction, while drivers under the “text” distraction
were the least distinctive where only 5% of the driver patterns (2 out of 40) were
maximally activated.

Five split fourth section class: 37.5% of drivers (15 out of 40) are most distinctive
while under the “text” distraction, while drivers under the “hands-free” distraction
were the least distinctive where 35% of the driver patterns (14 out of 40) were
maximally activated and these results are the same as those found while under the
music distraction.

Five split fifth section class: 65% of drivers (26 out of 40) are most distinctive
while under the “text” distraction, 27.5% of drivers (11 out of 40) are distinctive
while under the “music” distraction, while drivers under the “hands-free” distraction
were the least distinctive where only 10% of the driver patterns (4 out of 40) were

maximally activated.

In this final split, each dataset is divided and labeled by five equal sections, the first
part, second, third fourth and the fifth which is the last part. Under the hands-free
distraction, driver patterns in the first part were 30% active, in the second part were
40% active, in the third part were 47%, in the fourth part were 35% and finally in
the last part were 10% active, thus showing that under the hands-free distraction,

drivers are most active at the third part. Under the music distraction, active driver
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patterns were found by 27.5% drivers in the first part, by 47.5% drivers in the second
part, by 50% of drivers in the third part, by 35% in the fourth part and by 27.5%
of drivers in the last part. Under the text distraction, active patters in the first
part were found by 45%, 27.5% in the second part, 5% in the third part, 37.5% in
the fourth part and 65% in the last part. This shows that drivers under hands-free
distraction are most active or distinct at the third part, under music distraction were
once again more active in the third part and under the text distraction were most

active in the last part.
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Chapter 5

Conclusions & Future Work

The ultimate chapter briefly encompasses all the results of this research described
in the previous chapter and what was learned from it including brief descriptions
on the SOM architecture and the way the model is trained. After summarising the
results, the different ideas to further build on the existing work are proposed while

briefly describing the potential for future growth.

5.1 Conclusions

Training the SOM over time series datasets and analysing the features one at a
time shows that the SOM is able to understand the structure of a time series
dataset. By applying a window of size five over the dataset and then sliding the
window one step at a time over the dataset in order to provide context to each
individual event (vector in the dataset), the SOM also learns contextual information,

once again by the numerous feature analysis shown in section 4.1 of the fourth chapter.

In order to study multiple drivers’ behaviour in regards to understanding both
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the differences between individual drivers and the same driver under different dis-
tractions, the SOM was trained on the first four driver datasets which also included
the same drivers under different distractions as seen in section 4.2. The results once
again showed how the SOM adapted to the datasets with similar feature analysis.
It was also found in feature analysis that some features were stronger than others
in that they activated the SOM more than other features. For individual drivers,
the SOM showed many smaller clusters. The smaller clusters were usually not near
each other which in turn shows how unique each driver is in regards to the action
they perform. This shows that a SOM trained with the first four drivers represents
the specific attributes of each dataset and this is why the SOM is used to pick out
distinct driver patterns. Tests done on analysing the patterns of distractions on the
map showed that the “music” distraction was the most visible because of having the
most clusters closest to each other, followed by the “text” distraction and lastly the

“hands-free” distraction.

Finally the SOM is trained on all 40 with each of the three distractions. Once
again similar tests were done through feature analysis where the features that most
activated the SOM were further strengthened while the effect of other features is
further weakened. This highlighted the gap between stronger and weaker features

which can be seen in section 4.3 of the fourth chapter.

The most significant result was found while identifying each driver in the map
using the driver ID to label the clusters in the map. The focus is on differentiating
between different drivers was difficult due to the overlap between used ID labels. To
reveal only the distinct patterns of each driver and each dataset, a threshold was

applied on the map such that each node only has one label which is the driver 1D
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that most often activates that particular neuron in the map. This process is then
applied in such a way that each of the three datasets is used to activate to the map
followed by thresholding it to obtain a set of points that activate and most represent
each particular dataset. This process is repeated for all the 120 datasets (40 drivers
under three distractions) such that each dataset now has their own set of maximally

activated points which is seen in at the beginning of section 4.4.

The threshold results in each driver having their own set of points (that indicate
distinct patterns) but they were so sparse and varied that almost none of the drivers
had their own large clusters forming out of individual smaller clusters. The datasets
of the same drivers but under different distractions did not form larger clusters nor
did their patterns overlap in most cases, all the results of which are documented
in section 4.4. Numerous attempts were made to cause larger clusters of drivers to
form by augmenting the dataset and training a new model, however they affected
the natural structure created by the SOM by adding a layer of complexity and by

adversely affecting the strength of features already present.

Applying the threshold ensures that distinct patterns of clusters for each driver
under different distractions are obtained. It is on these distinct patterns that further
analysis can occur since they are representative of each dataset, which can be seen
at the beginning of section 4.4. Previous results have shown that the SOM adapts
differently to all the features it is trained on. To understand the significance of each
set of patterns, multiple labels are applied, that features of the drivers and labels

that represent the activity of the drivers in different sections of the course.

When the labels are applied to the patterns, percentages are calculated based on how
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much a pattern relates with each class within a label. These percentages represent
a score of how much a particular dataset relates to each class which represents of
specific actions which indicate a drivers’ behaviour at any given time. This process is
then repeated for all the labels which are seen in section 4.4 and then the percentages
of how much each pattern belongs to a class, are calculated. This process is repeated
for all the driver patterns that are obtained after applying the threshold. All the
percentages of drivers based on the action performed (each class) thus obtained
now denote the relationship between each class and how much a particular driver’s
pattern tends to relate to it. Each driver has a percentage for each class which can
now be compared with other drivers and classes to identify how the drivers relate

the most or the least to an individual class. All of the results are seen in section 4.4.

The percentages obtained serve as measures to compare drivers under different
distractions. This is seen in section 4.5 where the percentages for all the drivers a
comparison is made of all drivers under each of the three distractions. This com-
parison is represented as a percentage for each distraction that contains the number
of drivers that are most active (having the highest percentage) for each distraction
under a specific class. Once these are computed (as seen in table 4.1) the following

conclusions are made for the distinct driver patterns under each distraction:

e Drivers distracted by texting tend to use the brake more often and the least
non-braking activity. Under the music distraction, the fewest number of drivers
apply the brakes and also show the most non-braking behaviour which is similar

to the hands-free distraction.

e Drivers under the text distraction had most of their recorded speeds below the

average and the least above the average. Similarly under the music distraction
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drivers recorded higher speeds, mostly above the average and the least number

of drivers displayed speeds below the average.

Drivers under the text distraction showed most deceleration behaviour and then
least acceleration behaviour. While under hands-free and music distractions

drivers showed least deceleration behaviour and the most acceleration behaviour.

Drivers under the music distraction showed the most acceleration towards
the left while those under the hands-free and text distraction displayed more

behaviour in accelerating towards the right.

Drivers under the hands-free distraction had the most acceleration from lower
to higher altitudes while those under the music and text distraction showed

the most behaviour in accelerating from a higher to lower altitudes.

Drivers under the music distraction showed that most of them tended to drive
to the left of the center of the lane while most drivers under the hands-free

distraction tend to driver closer to the right of the center of the lane.

When examining driver’s data while dividing them into two parts — a starting
and an ending half. Drivers under the music distraction had the most activity
at the starting half of the drive while under the hands-free distraction, the

most activity is recorded in the ending half.

When examining driver’s data while dividing them into three parts — a starting
part, a middle portion and an ending portion. Drivers under the hands-free
and text distractions showed the most activing in the starting portion. Drivers
under the music distraction showed the most activity in the middle portion
and drivers under the text distraction showed the most activity in the ending

portion.
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e When examining driver’s data while dividing them into four parts — a starting
portion, a second portion, a third portion and finally the ending portion.
Drivers under the hands-free distraction showed the most activing in the
starting portion. Drivers under the music distraction showed the most activity
in the second portion and drivers under the hands-free distraction showed the
most activity in the third portion. Finally drivers under the text distraction

showed the most activity in the last portion.

e When examining driver’s data while dividing them into five parts — a starting
portion, a second portion, a third portion, a forth portion and finally the ending
portion. Drivers under the text distraction showed the most activing in the
starting portion. Drivers under the music distraction showed the most activity
in both the second and third portions. Drivers under the all the distractions
showed almost equal activity in the forth portion. Finally drivers under the

text distraction showed the most activity in the last portion.

5.2 Future Work

Numerous other interesting ideas that build upon the existing work of finding
distinctive patterns using SOMs came up during the course of this research. This
section briefly discusses those ideas and other possible routes that the research could
have taken in terms of extending the applications of the SOM beyond its usage as a

tool of visualization and dimensionality reduction.

e One of the main contributions is the set of maximal points that indicate the
distinct patterns of each driver under different distractions. While different
percentages were used to understand the value of these distinct points, other

metrics or analysis could be used that would further bring out their value.
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e In addition to the existing three distraction datasets for each individual driver,
if there are experiments resulting in datasets of the same drivers not under
any distractions, comparisons could be made as to when the drivers actually

become distracted during the course of the experiment.

e When labeling these distinct patterns, the labels used could be further modified

as required in the following ways:

— Analyse the data within the each specific distinct pattern to understand
more about driver behaviour and generate more specialized labels to test

them on the map.

— Experiment with labels of more than two classes would increase the
possibility of detecting both general and specific patterns within the

driver patterns.

— Expanding on the previous point to build a multi class classifier and test
the map on drivers that have not yet been tested. This can further be
expanded by either comparing or even augmenting the SOM with any

classification algorithms.

e Using the existing labels (or even labels customized as mentioned in the previous
point) to create a vector for each driver and dataset that would serve as a
unique identifier. Provided the labels applied are well defined, this unique
identifier can be used to provide a description of a particular driver under any

specific distraction.

e To get a more generalized understanding of driver traits and characteristics,
it would have been valuable to have a larger number of drivers in the overall

dataset. This would have also enabled possible cases of using training and
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testing sets for making predictions (explained further in the next two points)

and in making a comparatively more accurate consensus.

Given enough datasets, it would be interesting create two SOM models, one
trained on all the datasets and the other on most of the datasets. Then both
the models are tested on the datasets that the latter model is not trained on.
The results of the predictions are compared to examine if the results in the
latter SOM is capable of generalizing and can predict driver patterns on data

that it is not trained on.

Once a SOM is sufficiently trained on numerous drivers, techniques such as
Linear Vector Quantization could be applied to generate vectors closest to the
ones used to train the model and these vectors could be tested to understand if
they replicate driver behaviour at a very small scale since the result are limited

by the six features that the model is trained on.
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(a) Hands-Free distraction (top-left), (b) Music distraction (top-right),
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(a) Hands-Free distraction (top-left), (b) Music distraction (top-right),

(c) Text distraction (bottom-left) and (d) combination of datasets

(bottom-right).
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B Driver and distraction analysis by labeling
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Figure B.1: Examining the braking behaviour by separating the classes
within the brake pressure label based on percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.2: Examining the speeding behaviour by separating the classes
within the speed limits label based on percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.3: Examining the acceleration along X axis behaviour by
separating the classes within the linear acceleration label based on
percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.4: Examining the acceleration along Y axis behaviour by
separating the classes within the turning acceleration label based on
percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.5: Examining the acceleration along Z axis behaviour by
separating the classes within the altitude acceleration label based on
percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.6: Examining the lane gap behaviour by separating the classes
within the gap between lanes label based on percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).

146



hf Sp2_1st Sp2_2nd

100
N Sp2_1st
EE Sp2_2nd
80 A
Y, 60 A
3
o
[}
2
& 404
20 1
0 u T
10 15 20 25 30 35 40
Driver ID
100 mu_Sp2_1st_Sp2_2nd
N Sp2_1st
HEEN Sp2_2nd
80 A
Y, 60 A
3
o
[T}
I~
& 404
20 A
0 f T
10 15 20 25 30 35 40
Driver ID
100 te_Sp2_1st Sp2_2nd
I Sp2_1st
N Sp2_2nd
80 A
Y, 60 -
3
e
[T}
2
&L 401
20 A
(0] u y T
10 15 20 25 30 35 40
Driver ID

Figure B.7: Examining the activity of drivers under different section of
their dataset by separating the classes within the split into two sections

label based on percentages

(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.8: Examining the activity of drivers under different section of
their dataset by separating the classes within the split into three
sections label based on percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.9: Examining the activity of drivers under different section of
their dataset by separating the classes within the split into three
sections label based on percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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Figure B.10: Examining the activity of drivers under different section of
their dataset by separating the classes within the split into three
sections label based on percentages
(a) hands-free distraction (top), (b) music distraction (middle) and (c)
text distraction (bottom).
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C Combined analysis under each class

Below_Average_Speed

100

Il Hands-Free
N Music
30 4 HE Text
Y 604
8
=
]
=
&40
20 4
0_
0 5 10 15 20 25 30 35 40

Driver ID

Figure C.1: Examining the activity of drivers under all the distractions
under the below average speed class label.
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Figure C.2: Examining the activity of drivers under all the distractions
under the above average speed class label.
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Figure C.3: Examining the activity of drivers under all the distractions
under the backward deceleration class label.
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Figure C.4: Examining the activity of drivers under all the distractions
under the forward acceleration class label.
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Figure C.5: Examining the activity of drivers under all the distractions
under the left acceleration class label.
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Figure C.6: Examining the activity of drivers under all the distractions
under the right acceleration class label.
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Figure C.8: Examining the activity of drivers under all the distractions
under the higher altitude acceleration class label.
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Figure C.7: Examining the activity of drivers under all the distractions
under the lower altitude acceleration class label.
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Figure C.9: Examining the activity of drivers under all the distractions
under the left center lane class label.
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Figure C.10: Examining the activity of drivers under all the distractions
under the right center lane class label.
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Figure C.11: Examining the activity of drivers under all the distractions
under the split two 1st section class label.
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Figure C.12: Examining the activity of drivers under all the distractions
under the split two 2nd section class label.
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Figure C.13: Examining the activity of drivers under all the distractions
under the split three 1st section class label.
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Figure C.14: Examining the activity of drivers under all the distractions
under the split three 2nd section class label.
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Figure C.15: Examining the activity of drivers under all the distractions
under the split three 3rd section class label.
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Figure C.16: Examining the activity of drivers under all the distractions
under the split four 1st section class label.
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Figure C.17: Examining the activity of drivers under all the distractions
under the split four 2nd section class label.
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Figure C.18: Examining the activity of drivers under all the distractions
under the split four 3rd section class label.
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Figure C.19: Examining the activity of drivers under all the distractions
under the split four 4th section class label.
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Figure C.20: Examining the activity of drivers under all the distractions
under the split five 1st section class label.
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Figure C.21: Examining the activity of drivers under all the distractions
under the split five 2nd section class label.
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Figure C.22: Examining the activity of drivers under all the distractions
under the split five 3rd section class label.
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Figure C.23: Examining the activity of drivers under all the distractions
under the split five 4th section class label.
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Figure C.24: Examining the activity of drivers under all the distractions
under the split five 5th section class label.
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