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Abstract
Federated Learning (FL) is a method for training machine learning algorithms on decentralized

data where sharing the raw data is not feasible due to privacy regulations. An instance of such

data is Electronic Health Records (EHRs), which contain confidential patient information. In FL,

the sensitive data is not shared, rather local models are trained and the model parameters are then

aggregated on a central server. However, this method presents privacy challenges, necessitating

the implementation of privacy protection strategies, such as data anonymization, before sharing

the model parameters. Balancing the trade-off between privacy and utility is a crucial aspect in

FL research, as integrating privacy algorithms can have an impact on the utility. The objective

of this thesis is to improve the performance of FL while maintaining privacy, through techniques

like data generalization, feature selection for dimension reduction, and minimizing noise in the

anonymization process. This research also investigates separating data based on features instead of

records and evaluates the performance of the proposed model using real healthcare data, with the

aim of developing a predictive model for healthcare applications.
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Chapter 1

Introduction

Machine learning models hold great potential for the analysis of sensitive information, partic-

ularly in the field of healthcare. These algorithms have the ability to analyze medical images and

patient data, helping to diagnose diseases and support treatment decisions. ML models can also be

utilized to predict the likelihood of patients developing certain conditions or complications, allow-

ing for early prevention. Furthermore, the integration of machine learning into medical systems can

assist healthcare providers in making informed decisions by providing real-time, evidence-based

recommendations. For example, research conducted by Zheng et al. [1] showed the use of Elec-

tronic Health Records (EHR) in identifying type-2 diabetes through machine learning. Another

study by Choudhury et al. [2] tested the effectiveness of using EHR and a distributed machine

learning algorithm to predict Adverse Drug Reactions (ADR) in patients.

One of the major challenges in applying machine learning in healthcare research is the dis-

tribution of data. Many clinics are reluctant to release their raw EHR due to legal laws and data

privacy regulations, making it difficult to establish centralized data repositories across geographical

locations. As a result, the raw data remains within the boundaries of each institution. In reality,

a patient’s data is distributed across several sites or clinics, rather than being confined to a central
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Introduction 2

repository. This data can be divided in two ways: horizontally or vertically. Horizontally partitioned

data silos occur when each site has a unique collection of records, yet their data share common fea-

tures. In general, a horizontal partition involves distributing the rows of a table across multiple

database clusters. However, in many current contexts, such as healthcare, it is necessary to process

data from multiple sites for the same set of records, with different sets of attributes, as opposed to

a horizontally partitioned arrangement. Vertical partitioning involves distributing data where the

same set of records has distinct attributes on each site. For example, one clinic may have patient

data with attributes like name, age, and disease code, while another may have attributes like name,

address, and ICU stay timestamps. Therefore, it is important to design a framework that can perform

computations using summary statistics from participating sites, rather than relying on centralized

storage of raw data in both horizontal and vertical settings. This framework should also ensure data

privacy and provide a usable utility. Fig. 1.1 illustrates horizontal and vertical data partitions. In the

horizontal setting, for the different records 1 to 6, the feature set is the same {x1, x2, y}, whereas in

the vertical partition, for the same records 1, 2, and 3, the feature set is unique for each data source.

x1 x2 y

Data Source 1

x2 yx1

Data Source 2

1

2

3

4

5

6

x1 x2 x3

Data Source 1

x5 yx4

Data Source 2

1

2

3

1

2

3

Horizontal Partition Vertical Partition

Figure 1.1: Exmaple of Data Partition

Federated learning is a new approach for training machine learning models iteratively on dis-

tributed data. The gradient descent method is typically used by the sites to train a global model

using their local data in each iteration. The updated parameters of the local models are sent to an
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aggregation server and integrated into the overall model. The sites are then given access to the up-

dated global model for the next training cycle, and this process continues until a certain criterion

is met. This approach reduces the need for transmitting raw data outside the facility and enables

machine learning to be trained on data from multiple locations without sending raw data to a central

server. Only the parameters from locally created machine learning models will be shared, while raw

data will stay with the local storage providers. However, the federated learning model has privacy

concerns, such as the risk of model inversion or reconstruction attacks [3, 4] on the data supplied to

the model. These attacks aim to reconstruct the original training dataset using the model parameters.

An intruder could also determine if a specific person’s data was used to train the model. To protect

data from such attacks, most current approaches use Data Anonymization or Differential Privacy

(DP) algorithm [2, 5, 6] to add a layer of privacy to the federated learning framework. However,

privacy comes at a cost, and the differential privacy method, which adds noise to the data, impacts

the framework’s utility. The more noise added, the more privacy is provided, but the less utility is

available. Therefore, choosing the right privacy method that balances privacy and utility constraints

and model performance is an important research objective in the field of federated learning and our

research focuses on this.

1.1 Contributions

This thesis investigates various methods for constructing a federated machine learning (ML) sys-

tem that balances privacy and utility in both horizontal and vertical data distributions. To enhance

privacy with utility in horizontally divided data, the proposed frameworks use Feature Selection

and Data Sanitization techniques. For vertically partitioned data, all feature information is required

for final training, therefore our framework employs a distributed parallel learning method to gather

local predictions in a central server.
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Following we discuss the technical contributions of this thesis in detail.

Privacy-Preserving Federated Learning Model with Feature Selection

In this work, we introduce a comprehensive data-sharing approach for Federated Learning aimed

at predicting heart failure diseases. Our framework incorporates the use of differential privacy to

ensure privacy while making predictions. To improve the efficiency of our predictions, we employ

a feature selection technique that reduces the dimensionality of the data. By doing so, the data

dimension gets reduced as well as the used of noise through differential privacy, leading to improved

utility while maintaining privacy. Our proposed method achieves 79% and 98% accuracy with a

maximum privacy budget of 30. The results of this chapter appear in IEEE 12th Annual Computing

and Communication Workshop and Conference (CCWC) [7].

Privacy-Preserving Federated Learning Model with Data Sanitization

In this work, we present a privacy-sensitive data-sharing framework for FL by utilizing a differen-

tial privacy approach. Our framework employs a generalization technique that utilizes a top-down

taxonomy tree to summarize the raw data by records or rows, followed by adding count-based noise

through differential privacy. The use of generalization shrinks data and minimises the noise applied,

thereby improving the utility, while differential privacy ensures data privacy. Our approach achieves

at most 77% accuracy against the baseline model with a maximum privacy budget of 5. The results

appear in IEEE International Conference on Bioinformatics and Biomedicine (BIBM) [8].

Privacy Preserving Vertical Distributed Learning

In this study, we presented a privacy-preserving distributed machine learning framework that was

specifically designed for the healthcare sector and applied to vertically partitioned data sets. Our

approach involves the use of a weighted feature implemented at each local site, which results in
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a high-performing score comparable to a centralized architecture. We tested the efficacy of our

method by conducting experiments with real-life health data from the MIMIC-III dataset, using

both linear regression and LSTM-based deep neural network models in four different applications.

Our approach was able to achieve near-baseline accuracy while still preserving a level of privacy.

1.2 Organization of this Thesis

This thesis is organized as follows:

• Chapter 2 discusses related works and necessary background materials, which are utilized by

the different methods proposed in this thesis.

• Chapter 3 shows a privacy-preserving federated learning model with feature selection to re-

duce data dimension.

• Chapter 4 shows a privacy-preserving federated learning model with data sanitisation to lessen

the use of noise and improve utility.

• Chapter 5 describes a vertical distributed learning technique with a weighted feature algo-

rithm, to mitigate the necessity of sharing feature information between sites.

• Chapter 6 concludes the thesis.



Chapter 2

Background

In this chapter, we will explain some of the ideas that are necessary to comprehend the ap-

proaches provided in this thesis. Some broadly related works will also be discussed. Specific

related works will be explored in subsequent chapters.

2.1 Preliminaries

2.1.1 Federated Learning

Federated learning [9] is a distributed machine learning technique that develops a model across

a number of dispersed sites before aggregating it on a centralised server. It is also referred to as

collaborative learning, in which a local model is taught at each site before all models are aggregated

and trained at the central server. Every local model update is available to the aggregating server.

However, this model assumes that there is no communication between the local models in terms of

raw data transmission.

During the local model training, model data is shared with an aggregated trusted server based

on predetermined criteria. The aggregated server’s global model is then updated and shared with

the local sites for additional training. Until a convergence requirement, such as loss function mini-

6
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mization and reasonable accuracy, is fulfilled, the process is repeated. Numerous machine learning

techniques, such as Naive Bayes Classifier, Random Forest Model, Logistic Regression (LR), or

K-Nearest Neighbor, are frequently used to assess accuracy. In our approach, we will mainly use

Random Forest, Naive Bayes, and Logistic Regression (LR) model to evaluate the performance in

FL.

2.1.2 Differential Privacy

Differential privacy [6] is a technique that involves introducing some noise to already-existing data.

It guarantees that adding or deleting a record won’t substantially alter the results, making it impos-

sible for a viewer to draw any important conclusions about any specific individual in the database.

The ϵ variable controls the security level and can be altered in accordance with various conditions

and security policies. The scheme offers more security the higher the ϵ.

Definition 1 (ε-Differential Privacy). An algorithm X is differentially private [6] if for any dataset

D1 and D2 are differed by at most a single record and for all sets S ∈ R, where R is the range of

X ,

Pr[X(D1) ∈ S] ≤ eε × Pr[X(D2) ∈ S]. (2.1)

In this case, two datasets that only differ by one record are said to be neighbours.

Here, the non-negative parameter ε can be used to represent the algorithm’s privacy budget.

In order to ensure differential privacy, it is common practise to introduce random noise to a

function’s actual output. The noise is calibrated based on the function’s sensitivity. The greatest

difference between a function’s outputs from two datasets that only differ by one record is the

function’s sensitivity.
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2.1.3 Generalization

Assuming D as “dataset” with multiple records and domain of D can be represented as Ω(D) =

Ω(A1), ...,Ω(Ad). Here, A = {A1, ..., Ad} is a list of attributes for a particular record d from D

and we assume that each attribute Ai has a finite domain, denoted by Ω(Ai). A value of an attribute

is replaced with a more general value by generalization to sanitise a data collection D. The attribute

partition determines the precise general value.

Definition 2 (Generalization). Generalization is defined by a function ϕ = {ϕ1, ϕ2, ..., ϕd}, where

ϕi : v → p maps each value v ∈ Ω(Ai) to a p ∈ P (Ai).

Here, P (Ai) is the partition of numerical attribute with intervals {I1, I2, ..., Ik} in Ω(Ai) which

includes the union of all the intervals.

As an example, according to the taxonomy tree in Fig. 4.1 and raw data from Table 4.1a, Post-

Secondary is the general value of Undergrad or Postgrad of Education. In addition, the interval

(17-33] can be used to represent age 20. These intervals are determined adaptively from the dataset

for numerical attributes.

2.1.4 Vertical Federated Learning (VFL)

Vertical Federated Learning is a machine learning technique that enables organizations with verti-

cally partitioned data to build and train a machine learning model in a decentralized manner without

compromising data privacy and security. In vertical federated learning, data samples are distributed

across different parties, each party having its own set of features or attributes. The goal of this

technique is to train a global machine-learning model using these vertically partitioned data sam-

ples while ensuring that the raw data remains confidential and secure. To achieve this, each party

trains its own local model based on its data and a central server then aggregates the results to build

the global model. This approach is suitable for scenarios where organizations have data silos and
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want to leverage machine learning to build better models without sharing the raw data with each

other. In VFL, the data is partitioned in such a way that two nodes share the same user profiles but

have different feature information. These nodes could be various health institutions or healthcare

data application providers. The aim of VFL in this case is to construct a comprehensive model by

combining patient features from multiple institutions without directly exchanging patient data. Each

node sharing the same sample of data I and contributing its own unique set of patient features X

and labels Y information, VFL can be denoted as the following:

Ii = Ij =


Xi ̸= Xj i ̸= j

Yi ̸= Yj

(2.2)

For example, from each client for same data sample I can be denoted as {Ii1, Ii2, Ii3} and

{Ij1 , I
j
2 , I

j
3} with different features {xi1, xi2, xi3} and {xj3, x

j
4, x

j
5}. Supposedly, a hospital and a

nearby immunisation centre are two separate healthcare institutions that operate in the same area.

Because they are locals, the patients who use these two healthcare facilities may be largely similar.

However, given that vaccine centres preserve users’ immunisation histories and hospitals keep their

medical treatment histories, the user features may not be related in any way. VFL safely integrates

various feature sets to improve model performance while preserving data locality.

2.1.5 LSTM Neural Networks

A neural network (NN) is an interconnected collection of discrete processing ”nodes”, or units,

whose operation is somewhat analogous to a biological neuron. The nodes or units are synthetic

versions of biological neurons. Each input is multiplied by a weight before being delivered to the

analogue of the cell body since synapses are represented by a single integer or weight. Here, basic

arithmetic produces a node activation by adding the weighted signals together. The calculation

is performed by an activation function, which may produce a result of zero or one. Defining the
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model structure (such as the number of input features and outputs) and initialising the model’s

parameters before running them in a loop are the three basic processes in the construction of a neural

network [10, 11]. After that, the current loss (forward propagation) or current gradient (backward

propagation) calculations and parameter updates (gradient descent) are made. Preparing the dataset

and tuning the learning rate can both have a significant impact on the algorithm.

Recurrent neural networks (RNNs) are a type of neural network that allows for information

to be passed from one step of the network to the next. This makes them well-suited for tasks that

involve sequential data, such as language translation and speech recognition. RNNs process input

sequences element by element, maintaining an internal state that encodes the context of the sequence

up to that point. This allows the network to use the information from earlier elements in the sequence

when processing later ones, which is what gives RNNs the ability to capture dependencies between

elements in the input sequence. There are various types of RNNs, such as long short-term memory

(LSTM) networks and gated recurrent units (GRUs).

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is well-

suited to model temporal data with long-range dependencies. RNNs process sequential data by

iterating through the time steps of the input and maintaining a hidden state that encodes information

about the past. LSTMs are a variant of RNNs that have an additional ”memory cell” that can store

information for an extended period of time, as well as three ”gate” mechanisms (input, output, and

forget gates) that control access to and modification of the cell. The equations for the forward pass

of an LSTM cell can be denoted below:

Forget gate’s compact forms:

ĉ<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (2.3)

Update gate’s activation vector:

Γu = σ(Wu[a
<t−1>, x<t>] + bu) (2.4)
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Forget gate’s activation vector:

Γf = σ(Wf [a
<t−1>, x<t>] + bf ) (2.5)

Output gate’s activation vector:

Γo = σ(Wo[a
<t−1>, x<t>] + bo) (2.6)

Finally, cell state vector ct:

ct = Γu ∗ ĉ<t> + Γf ∗ c<t−1> (2.7)

This is the standard set of equations used to update the hidden state and memory cell in an

LSTM at each time step. x<t>is the input at time step t, a<t> is the hidden state at time step t,

a<t−1> is the hidden state at the previous time step. W is the weight matrices for the input, forget,

output, and memory cell updates, respectively, and b is the bias. The function σ(x) is the sigmoid

function, which maps a value to the range [0, 1]. The function tanh(x) is the hyperbolic tangent

function, which maps a value to the range [-1, 1]. A detailed explanation of the LSTM algorithm

can be found in [12–14].

2.2 Related Work

For the past few years, distributed machine learning research has been focused on data privacy and

security in sensitive data analysis, e.g. Healthcare Data. In this part, we give a quick overview of a

number of related works.

2.2.1 Federated Learning and Privacy Attacks

Federated learning indicates a distributed learning method where sharing sensitive data in raw for-

mat is impractical for preserving data privacy. The advantages of using FL techniques over tra-

ditional, centralised ML models for a number of sensitive data applications have recently been
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demonstrated by studies. However, there are possible privacy attacks in this distributed framework,

such as inference [4], reconstruction [15, 16], or backdoor [17, 18] attacks, where data can be re-

gained back from the exposed information. Rajkumar et al. [19] showed how DP algorithm can

effectively minimize the attack as well as maintain a plausible utility. Choudhury et al. [2] used

this same DP approach in FL architecture for healthcare data, however, showed how the DP noise

can adversely affect the data utility as well. The main advantage of their approach is that local

models may be utilised to train the global server, obviating the requirement to send sensitive raw

healthcare data outside of the institution. Their subsequent contribution [20] attempted to balance

this privacy-utility trade-off by achieving a tailored k-anonymity to reduce DP noise utilisation as

much as feasible. They demonstrated strong model performance based on an empirical assessment

of one million patients’ health records, producing better results than standard DP. Our latest work [7]

was also implemented by the motivation of ”data sensitization first, noise applied last” to minimize

the DP noise in model data, and improve the overall data utility of the framework.

Encryption [21–23] or secret sharing [24–26] through secure multiparty communication is an-

other method for privacy-preserving machine learning. Models are communicated using encrypted

data in these frameworks. However, encryption requires more computational resources and cannot

be used for all scenarios. Furthermore, frequent data transfers between clients are necessary for

secure multiparty communication, which also introduces communication overhead.

It is observed that distributed ML techniques on horizontal data have been given more focus for

the past few years. On the other hand, our work enables feature-parallel machine learning among

nodes with vertically partitioned data which is equally significant and has not yet been investigated

more extensively.
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2.2.2 Privacy-Preserving Federated Learning on Horizontal Data

FL’s privacy issues can be lessened by adopting Privacy-Preserving Federated Learning Models,

which experts can use to lower the danger of re-identification. These techniques aim to teach a

global model with the greatest degree of accuracy while maintaining the donors’ data security. The

main foundation of existing approaches is ε-differential privacy [6, 27] in a FL environment, which

guarantees verified privacy regardless of an adversary’s prior information.

With the help of iterative model averaging through stochastic gradient descent (SGD) and a

thorough empirical evaluation that takes into account five distinct model architectures and four

datasets, Mcmahan et al. [28] proposes a workable strategy for the federated learning of deep net-

works. Geyer et al. [27] introduced a DP-based approach for health applications in FL settings,

but did not consider the scenario where servers can be honest-but-curious and breach the private

data in the training process. In order to add an additional layer of privacy, authors in [2] pre-

sented a similar federated learning paradigm for health care data utilising DP. The quantity of noise

added by the DP technique caused both implementations to perform significantly worse when the

data dimension was relatively large. Choudhury et al. proposed customized anonymity as (k, km)

anonymity [20] to mitigate the privacy-utility trade-off of [2] by proposing a modified k-anonymity

model on set-valued dataset. They showed high model performance focused on an empirical study

on over one million patients’ health records which showed better output than traditional differential

privacy. This method focused on performance optimization using an upgraded version of the data

anonymity model to preserve privacy.

2.2.3 Privacy-Preserving Federated Learning on Vertical Data

There have been a number of research efforts focused on developing privacy-preserving techniques

for vertical distributed learning. These techniques aim to protect the privacy of the data used for

training while still allowing the model to be trained effectively. One common approach is to use
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differential privacy [6, 27], which adds noise to the data in a way that preserves the privacy of

individuals while still allowing the model to learn useful patterns. Other techniques include using

secure multi-party computation (SMC) [29] to allow multiple parties to jointly compute the model

without revealing their data to each other, and using homomorphic encryption to encrypt the data

and allow the model to be trained on the encrypted data without revealing the underlying data.

Liu et al. [30] using SMC approach showed a Federated Stochastic Block Coordinate Descent

(FedBCD) algorithm, where each party conducts multiple local updates to minimize communication

overhead. Their approach works in vertically partitioned data, sharing a single value only instead

of the model or raw data to maintain data privacy. Hu et al. [31] experimented in a similar way for

VFL by only sharing a single value for model training by an Alternating Direction Method of Multi-

pliers (ADMM) approach which is commonly used for distributed ML approach. In their approach,

they also used the ε, δ-differential privacy algorithm to perturb the shared value by Gaussian noise.

When dealing with distributed features, the perturbed method makes sure that the probability distri-

bution of the values communicated is mostly insensitive to any modification to any one feature in a

party’s local dataset. With theoretical privacy guarantees, their method converges with very fewer

epochs than the state-of-the-art SGD approach. Chen et al. [32] also showed a VFL approach in

an asynchronous way, performing the communication between each party using the SMC method.

They used perturbed local embedding with the Gaussian DP noise to add the extra layer of data

privacy and experimented on both logistic regression and deep learning for healthcare data.

To jointly learn and train any classification algorithm in a VFL scenario, it is essential for

each partner to communicate their own unique feature information. The majority of currently used

technologies exchange feature information with clients via the SMC technique. Some strategies

utilise homomorphic encryption or DP for data perturbation or sanitization to protect privacy while

sharing this feature information. Hu et al. [33] described a feature-distributed collaborative learning

strategy in which each client undergoes independent training and the final output of the prediction
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is shared with a central server for the computation of the final score. By making predictions based

purely on the available local features in a similar parallel computing method, this approach preserves

data locality in an asynchronous SGD approach. Additionally, they used Laplacian DP noise to

protect the shared prediction sent to the main server. Their technique, however, did not expressly

target healthcare data. They utilised the NN deep learning technique, however, the LSTM-based

approach fared better. In a similar way, we use a customized weighted feature algorithm and DP

technique to securely exchange the prediction result within the central server in order to ensure data

locality and privacy in a VDL context targeting healthcare data.



Chapter 3

Privacy-Preserving Federated Learning

Model with Feature Selection

Federated Machine Learning (FL) can be used effectively in distributed datasets, where data

owners hesitate to share their raw data, as a reliable approach to train an ML algorithm. However,

in the case of sensitive healthcare datasets, additional privacy measures before feeding into machine

learning mechanisms are also necessary as the exposed data in ML training may have privacy at-

tacks. Our approach uses the federated learning framework, which removes the necessity of sharing

patients’ sensitive data in a raw format outside the premise. First, the data owners agree on a list

of features selected by the correlation; then, after training the local models, the obtained local mod-

els are transmitted to the central server for aggregation. The differential privacy (DP) approach is

adopted to perturb the local models before transmission to add an extra privacy layer. As a result,

our framework achieves improved utility as the feature selection reduces the data dimension as well

as noise usage by DP. Finally, based on the patient’s genomic data, the framework establishes a

practical healthcare application to privacy-predict certain heart failure/cancer diseases.

16
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3.1 Introduction

Machine learning (ML) models have promising applications for healthcare data. For example, learn-

ing from this real-world health data can be utilized to build medical diagnostic tools, predict disease

risk factors or analyze gene sequence data for medical treatments. Zheng et al. [1] showed how

machine learning model can be utilized to identify type-2 diabetes by analyzing electronic health

records(EHR). Choudhury et al. [34] also experimented with how successful the application can

be using a federated machine learning model to predict patients’ adverse drug reactions (ADR) by

analyzing electronic health data. ML algorithms analyze these EHR to identify hidden patterns to

be leveraged in diagnosing and predicting diseases that have considerable benefits, e.g. increasing

treatment probability. ML is trained by the provided training data and gets ready to be used in real

situations.

Several medical regulatory policies restrict healthcare data access due to containing sensitive

patient information. Hence, rethinking data analytics methodologies for healthcare applications is

required to employ such data while adhering to privacy policies. Generally, ML algorithms need to

access the accumulated data to achieve the best accuracy. However, health data can expose sensitive

information about individuals in its raw form, and publishing such data will violate their privacy.

Therefore, in healthcare use cases, collecting all data in a centralized centre might not be feasible,

hindering data owners from sharing their raw data. Furthermore, the shared data of a person releases

some information about their relatives who may not give consent for sharing information about their

healthcare data. A distributed ML algorithm can be an effective alternative solution in this regard.

Federated Learning (FL) is a new ML technique that proposes a solution to mitigate the neces-

sity to share raw EHR outside of health premises. In this approach, a ML is trained on distributed

data hosted by different data owners without passing raw data to a centralized manager. Raw data

will stay at local storage providers. They can monitor the transmitted information and pursue their
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own privacy policy, which can be modified or changed according to unforeseen circumstances. This

is in contrast to centralized models. When the data is handed into a centralized manager, data

owners cannot control what the manager will do with the accumulated data. However, model data

transmitted in a federated learning approach can still have privacy attacks known as model inversion

or reconstruction attacks [3,4]. The goal of a reconstruction attack is to rebuild the original training

dataset using model parameters. Also, an intruder can infer if an individual’s data was used for

training the model. Therefore, incorporating an additional layer of privacy model to protect data

from such attacks must also be managed. Our approach chooses the differential privacy model [5]

to add a layer of protection to this FL framework by selecting a proper privacy budget.

In this thesis, we use the FL framework to analyze patients’ genomic data to identify the po-

tential risk in patients with various health conditions like heart failure with maintaining privacy.

Genomic data are one key area of sensitive health data, revealing our well-being and disease sus-

ceptibility are also lawfully protected from public access. Transthyretin amyloid cardiomyopathy is

such type of genomic data which contains information on the cause of heart failure. To identify the

potential risk of such health conditions, ML model always comes as effective support. Therefore,

our federated machine learning model will analyze the patient’s genomic data to predict the risk of

heart failure by identifying if a group of patients have the potential risk of wild-type transthyretin

amyloid cardiomyopathy with known phenotypes. From this set of data, through privacy-preserving

federated learning, our generated model should predict whether it will progress towards the disease

of heart failure.

An example of the dataset is provided in Table 3.1. The data table shows that around 1874

phenotypes or columns are present from each genomic sample. Another dataset for our experiment

is from BC-TCGA with almost 17814 genes.

Our approach builds the model locally with the raw genomic data and sends it to a central server

with differential privacy to train the final framework. Only perturbed model data through differential
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privacy mechanism is shared with the central aggregated server. The trusted aggregator server trains

the global model based on the aggregated local data and builds the final model. The main structure of

this FL model consists of two entities. Data owner(s) that provide raw data for training a model and a

model manager that all data owners interact with. Notice that data provider(s) cannot communicate

any messages with each other. Also, we assume the aggregator server is honest-but-curious and

can not regain the raw data of a data owner from the generated model, which is protected by an

additional privacy layer through differential privacy.

Table 3.1: Sample Genomic Dataset

Id Gene1 Gene2 Gene3 . . . Genem Disease

2356256 1 0 1 0 1

2456246 1 1 0 1 0

6575678 1 1 0 0 0

... . . .

n 0 1 0 0 0

The main challenge of our approach is the high-dimensional data with a large number of

columns that can directly affect the accuracy and efficiency of any ML model. It can worsen the

utility when noise is added to maintain privacy. More columns get less budget within a fixed pri-

vacy budget through equal distribution. According to the differential privacy theorem, the less the

privacy budget, the more noise will be added to the data. Therefore, more noise can impact the data

utility of the model. The current solutions do not address this high dimensionality problem with

the privacy model. Our approach will use statistical methods using the highest correlation value to

reduce the number of dimensions of the raw data to consume less noise in total and improve the

model’s accuracy.

Contributions. In this paper, we propose a generalized data-sharing framework for FL us-
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ing differential privacy to predict certain heart failure diseases. Our framework reduces the whole

data dimension through feature selection, reducing the noise addition for differential privacy while

maintaining efficient scores. The contributions can be summarized as follows:

• We propose a feature selection mechanism based on the correlation value of the data to reduce

dimension and maximize the utility of the ML models.

• We employ a differentially private technique to enable privacy-preserving data sharing among

collaborating parties using FL infrastructure.

• We demonstrate the effectiveness of our proposed technique by experimenting on iDASH

2021 competition dataset [35]. Our proposed method achieves 79% and 98% accuracy with

a maximum privacy budget of 30 and 10 for IQVIA and BC-TCGA datasets respectively and

takes around 10 seconds for training on a federated training setting.

3.2 Methods

In this section, proposed methods detailing the privacy-preserving techniques will be discussed.

3.2.1 Problem Description

In this model (Fig. 3.1), we use the federated learning framework to analyze patients’ gene data

to identify the potential risk in patients with various health conditions like heart failure. Data is

collected from different locations maintaining proper privacy as due to health data regulatory poli-

cies, these data cannot be shared across the premises in raw format. Therefore, we build the model

locally and share those with the central server for training. In the proposed scheme, only perturbed

model data is shared with the central aggregated server. The trusted aggregator server trains the

global model based on the aggregated local data and builds the final model. However, model data
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Local Site D_1 Trusted Model Manager Local Site D_2

Feature Selected Model
Data D_1` with DP

Feature Selected Model
Data D_2` with DP

RandomForest 
NaiveBayesClassifier 

Figure 3.1: Multiple Data Owners are training a model collaboratively using federated machine

learning algorithm providing a privacy guarantee over the data

transmitted in a federated learning approach can still have privacy attacks [3, 4, 36] like model in-

version or reconstruction attacks. Therefore, an additional layer of privacy is needed. The privacy

mechanism is achieved through the differential privacy algorithm by adding noise to the model data

through the sharing process between sites and aggregator servers.

High-dimensional data with more columns can affect the model’s accuracy if a noticeable

amount of noise is added to the data. In order to achieve a shared list of the features that the training

is performed a federated correlation-based feature selection is designed to reduce the number of

data dimensions and improve the model’s accuracy.

Transthyretin amyloid cardiomyopathy is a cause of heart failure. To identify the potential risk

of such health conditions, ML model always comes as effective support. Therefore, our federated

machine learning model will analyze the patient’s gene data to predict the risk of heart failure

through identifying if a group of patients have the potential risk of wild-type transthyretin amyloid

cardiomyopathy with known phenotypes. The dataset is separated into two parties with a total of

1713 samples, where 855 samples are diagnosed as wild-type amyloidogenic TTR cardiomyopathy

(ATTR-CM) (case group) and 858 samples (sample per row) and each sample have 1874 phenotypes

(features per column). From this set of data, through privacy-preserving federated learning, our
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generated model should predict whether it will progress towards the disease of heart failure. An

example of the dataset is provided in Table 3.1

3.2.2 Summary of Methodology

The size of electronic health records and datasets is extensive, which can affect their usefulness

when working with limited privacy resources. With a restricted privacy budget, more columns

receive less budget, so we mitigate this by reducing the dimensionality through feature selection.

Our approach to feature selection involves identifying the columns in the provided data that have the

highest correlation value with the disease. To ensure privacy, we utilize Differential Privacy (DP)

mechanisms and apply the Laplace Transformation to add noise to the derived statistics. Rather

than transmitting the raw data, we send the resulting noisy data to the aggregator server. The central

aggregator server then uses this data to train a machine learning framework that learns a global

model used to predict the likelihood of heart failure.

3.2.3 Feature Selection

Many genes available in a genomic dataset are the first essential factor impacting the model’s util-

ity due to diversity in the whole dataset. Any machine learning system processing such vast data

dimension often leads to less accuracy because some genes provide no value to the analysis. There-

fore, proper methodologies for feature selection from the whole dataset constantly improve the score

efficiently.

While reducing the data dimension, we focus on two things: Choosing genes based on their

correlation with the disease and sending only summarized data as a model to the central Server.

A correlation coefficient is a numerical measure of some type of correlation, meaning a statistical

relationship between two variables.
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corr(X,Y ) = ρX,Y =
cov(X,Y )

σXσY
=

E[(X − µx)(Y − µy)]

σXσY
(3.1)

Similarly, in our approach, each local server chooses a list of a maximum of 200-300 Genes

that have the highest correlation with the disease as per the above equation to build up the local

model. Finally, the central Server receives and matches each local model’s columns and feeds them

to the ML framework for training.

In our approach, reduced dimensions require less privacy budget (in terms of ε) while main-

taining the model’s utility. Within a limited budget, if the number of columns is high, the privacy

budget will be distributed to each column with less amount, resulting in more noise to be added.

Therefore, more noise can impact the accuracy of the score directly. After feature selection in our

approach, the data dimension reduces, resulting in higher accuracy through less noise added.

According to Table 3.2, if any gene from the whole data set contains control value as True,

refers to Positive Prediction of Heart Failure while False value represents negative prediction. We

calculate the correlation value for each column and define it as (µ, σ) for True prediction label

and (µ′, σ′) as the False prediction label. Then we select the top 200-300 columns based on the

correlation value. In this way, we calculate the feature for each column and generate the two rows

of data based on the control value as per shown in Table 3.2. Note that these two rows of data do

not contain the actual raw value, rather the calculated model data based on the highest correlation

for that column. Finally, after noise addition, Table 3.3 is sent to the model manager or central

aggregation server with additional layer of protection using differential privacy.

3.2.4 Privacy Mechanism

Our approach solely depends on the differential privacy mechanism to maintain the additional pri-

vacy layer of the shared model data. In this approach, the noise will be added to the model data

based on Laplace Mechanism [6]. The privacy budget, ε, is varied based on the data dimension
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Table 3.2: Column Selection based on highest correlation value

Gene1 Gene2 Gene3 Control Value

(µ1, σ1) (µ2, σ2) (µ3, σ3) # Have Heart Disease

(µ′
1, σ

′
1) (µ′

2, σ
′
2) (µ′

3, σ
′
3) # Don’t have Heart Disease

Table 3.3: Diffenrential Privacy mechanism applied to the model data

Gene1 Gene2 Gene3 Control Value

(µ1, σ1) + Lap∆f/ε1 (µ2, σ2) + Lap∆f/ε2 (µ3, σ3) + Lap∆f/ε3 Have Heart Disease

(µ′
1, σ

′
1) + Lap∆f/ε1 (µ′

2, σ
′
2) + Lap∆f/ε2 (µ′

3, σ
′
3) + Lap∆f/ε3 Don’t have Heart Disease

to achieve the best utility. Data size will be reduced by dimension first based on feature selection

rather than applying noise to the complete data sets. Finally, the noise will be added to the sum-

marized data, as shown in Table 3.3. Note that the total privacy budget ε is distributed to each

column based on the inverse correlation value. Therefore, the column with the highest correla-

tion value will receive the most privacy budget and have less noise to be added. Also, according

to the composition theorem [37] of the DP mechanism as detailed in the Background section, If

F1(x) satisfies ε1-differential privacy and F2(x) satisfies ε2-differential privacy, then the mech-

anism G(x) = (F1(x), F2(x)) which releases both results satisfies ε1 + ε2-differential privacy

satisfying the following equation:

ε1 + ε2 + ε3 + ...+ εn = ε, εi ∝ (Corr(µi, σi))
−1 (3.2)

Therefore, the total privacy budget will be equal to the summation of distributed budget for

each column. In this way, the more relevant column with the disease prediction will add less noise

value, resulting in an improved utility of the framework.



Privacy-Preserving Federated Learning Model with Feature Selection 25

3.2.5 Federated Learning Mechanism

In our federated framework, after adding the privacy mechanism, only model data from each local

data owner are sent to the aggregator server to train the ML framework. We have utilized two ML

algorithms for the federated training: a) Naive Bayes Classifier and b) Random Forest in a federated

setting to validate the efficacy of the proposed method.

The data owners remain solely responsible for building their local model, while the aggregator

server builds the results in a collaborative learning setting. The statistics required for Random

Forest and Naive Bayes, for example, are first completed at the data owner’s location and then

shared with an additional privacy layer (DP) to be robust against further model inversion attacks.

For RandomForest, after reducing the column with the highest correlation values, only the two rows

with control value True or False is calculated as (µ, σ) and (µ′, σ′) respectively. Finally, Table 3.3

is generated at each data owner and sent to the aggregator server after adding the noise according to

the Laplace mechanism. The same approach is applied for RandomForest, except the model is built

on the Tree from raw data and noise is added afterwards.

3.3 Results

In this section, the experimental result is described. Since the proposed method is a generalized

data-sharing mechanism for federated ML applications, we experiment with different settings as

portrayed in Table 3.4. We utilized multiple machines at our lab as server-client settings to conduct

the experiments. The average latency between the servers was minimal.

3.3.1 Experimental Setup

The experimental data were taken from the iDASH 2021 competition [35] which tested the proposed

solutions with a single dataset: IQVIA Inc, for predicting causes of certain heart failure. We utilized
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Figure 3.2: Accuracy difference with different privacy budgets and methods

Table 3.4: Different experimental parameters considered in this approach

Dataset ML Methods budget ε Dimensions

IQVIA Inc. Naive Bayes [20, 30, 40, 50, 60] 1874

BC-TCGA Random Forest [1, 3, 5, 10, 20] 17814

additional datasets from BC-TCGA [38] for cancer prediction alongside to compare our proposed

method:

1. IQVIA Inc.: 1713 samples, where 855 samples are diagnosed as wild-type amyloidogenic

TTR cardiomyopathy (ATTR-CM) as well as positive cases of heart failure, and 876 negative

controls

2. BC-TCGA: 17814 genes with 424 positive labels and 50 negative labels

The training data for the ML models were chosen at random in an 80:20 split, with 80% of the

data being used in training. In a two-party setup where the data is split into two, the identical training

data was used in both Naive Bayes and Random Forest. The training procedure was repeated ten
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times, with the Area Under the Curve (AUC) values from each test set being averaged. We also

experimented with different parameters, privacy budget ϵ varying data dimension to 200-350 for

IQVIA and 20-50 for BC-TCGA. These are outlined in Table 3.4.

3.3.2 Accuracy

We utilised the Area Under Curve (AUC) to evaluate both ML models as the significant accuracy

metric. AUC accurately describes the binary classifier since it uses True Positive and False Posi-

tive rates to generate the curve (receiver operating characteristic). Furthermore, it chooses several

thresholds from [0, 1], with 1 being the most accurate, indicating that the model successfully pre-

dicts all data occurrences for all thresholds. However, for every binary classification, an AUC≤ 0.5

demonstrates that the model is no better than a coin toss. In our scenario, the proposed model can

only categorise positive records accurately and not classify negative ones. In Fig. 3.2, we depict

the relation between privacy budget, ε and Area Under Curve (AUC) for different methods (Naive

Bayes and Random Forest). It shows that the privacy budget of 30 and more provides higher AUC

values for the competition (IQVIA Inc.) dataset with the Random Forest algorithm. The reduced

dimension is set to be m′ = 250 for this experiment. Similarly in Fig. 3.2, BC-TCGA datasets

were evaluated with higher accuracy within privacy budget 10. The reduced dimension is set to be

m′ = 20 for this case. Finally, in terms of accuracy, we see a similar tendency, with greater ε values

resulting in higher AUCs.

Fig. 3.2 also shows similar behaviour in terms of AUC, with Random Forest providing greater

AUCs even with various m′ values. However, we have noticed that, besides the AUC discrepancy,

the Random Forest technique takes longer to execute than Naive Bayes because it requires more

computations. It also depicts the behaviour for multiple data dimensions m′ as both larger and

smaller values adversely affect the results. Smaller m′s cause much data loss whereas larger m′s

consume much ε that adds excessive noise to the data. Therefore, m′ ∈ {250, 300, 350} performs
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well for ε = 30.

We applied our solution with BC-TCGA data. Note that the overall score seems near the

value of 98% for the BC-TCGA data, though IQVIA data can reach up to a maximum of 80%

only with DP setting. This is because the maximum baseline score for IQVIA data is 84% without

any privacy protection in a central architecture, whereas BC-TCGA data is 98% for this similar

settings. Also, IQVIA data contains only binary value, which is known as Haplotype Data as well

as more refined removing details. Therefore, this data set with dimension reduction affects the

overall score requiring more privacy budget than BC-TCGA to achieve the data utility. We believe

that this scenario happened due to data loss in this haplotype gene data, which directly impacted the

framework’s accuracy. In contrast, BC-TCGA data had minor effects on the score as more relevant

data were chosen through feature selection for dimension size reduction.

3.4 Conclusion

Most of the existing approaches using the federated learning model for analyzing healthcare data

generally do not ensure privacy along with performance. This paper builds a healthcare data analy-

sis framework using federated learning in a private manner. In addition, differential privacy mecha-

nisms are applied through feature selection based on statistical methods to improve scalability and

accuracy. In future, we plan to integrate data anonymization with differential privacy to improve the

score further through an improved feature selection algorithm.



Chapter 4

Privacy-Preserving Federated Learning

Model with Data Sanitization

Federated Learning (FL) is an efficient way to train Machine Learning (ML) algorithms on

distributed datasets where data owners are restricted by policies to share their raw data. Through

local training and model aggregation to a central server, this method reduces the need to commu-

nicate raw data with parties outside of the premises. However, FL raises serious privacy concerns.

Therefore, additional privacy measures are required. The differential privacy (DP) approach is a

cutting-edge privacy method used to perturb the local models prior to transmission and add an addi-

tional layer of privacy. However, this technique can affect the utility of the framework. To balance

the privacy-utility trade-off, we implement a private technique to sanitize raw data using a combi-

nation of a top-down taxonomy tree and DP noise. The generalized data using DP noise is used to

train local models to be shared in the FL architecture. The proposed framework achieves improved

utility with a moderate privacy budget.

29
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4.1 Introduction

Machine learning (ML) models offer a lot of prospects in the analysis of sensitive and crucial data.

Learning from real-world healthcare data can be applied, for example, to the development of medi-

cal diagnostic tools, the identification of disease risk factors, or the evaluation of gene sequence data

for medicinal therapy. Zheng et al. [1] demonstrated how examining Electronic Health Records

(EHR) may be used to identify type-2 diabetes using machine learning. Choudhury et al. [34] also

tested the efficacy of the application for predicting Adverse Drug Reactions (ADR) in patients using

EHR and a distributed machine learning algorithm. ML algorithms examine these sensitive data to

find underlying patterns that can be used in disease diagnosis and prediction, which has significant

advantages, such as boosting the effectiveness of therapy.

Important patient information is contained in sensitive data like healthcare, and various reg-

ulatory laws prevent direct access to it. Therefore, it is necessary to reevaluate data analytics ap-

proaches for these data while upholding privacy policies. For instance, posting health data will

breach people’s privacy because it can reveal critical information about them in their raw form. It

also might not be feasible to gather all the data from different healthcare clinics in one place because

the policies forbid sharing the information outside of the clinic’s walls. Additionally, a person’s sup-

plied data may reveal details about their family who might not agree to the sharing of their medical

information. An efficient alternative approach in this case is a distributed ML algorithm, where

model sharing reduces the risk of raw data sharing outside of the premises.

A new approach for iteratively training machine learning models on distributed data is pro-

vided by federated learning. The sites typically employ the gradient descent method to train a

global model on their local data at each iteration. The local models’ parameter updates are trans-

mitted to an aggregation server and incorporated into the overall model. For the upcoming training

cycle, the sites are once again given access to the revised global model. This process is repeated
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until a certain criterion is met up. The whole process suggests a way to reduce the need to transmit

raw data outside of the facility. Without sending raw data to a centralised server, ML is trained on

distributed data held by several locations. Only locally created ML models’ data will be shared; raw

data will remain with local storage providers. Model inversion or reconstruction attacks [3, 4] on

the model data supplied in a federated learning approach are still a possibility. Reconstructing the

initial training dataset using the model parameters is the goal of a reconstruction attack. Addition-

ally, an intruder can determine whether a specific person’s data was utilised to train the model. As

a result, it is necessary to manage the inclusion of a second layer of privacy to safeguard data from

such attacks. Most of the current approaches choose DP [2, 5, 6] to add a layer of protection to this

FL framework by selecting a proper privacy budget. The DP method works by introducing noise to

the training model data, which might directly impact the framework’s utility. We suggest a method

using a differentially private strategy, a combination of data generalisation and DP approaches to

improve the framework utility as much as feasible, to balance this privacy-utility trade-off. Our con-

tribution is to instrument the DP generalization algorithm [39] in the domain of federated learning

to countermeasure the aforementioned approach.

Our model consists of two parts for data privacy, generalization and noise addition. One of

the most widely used methods for transforming raw data to meet a particular privacy criterion is

generalization [40, 41]. Generalization reduces the precision of information while maintaining its

”truthfulness” by substituting a specific value for a more general one. An example of the dataset

sanitization is provided in Table 4.1. Table 4.1b shows the generalized contingency table of Table

4.1a. However, applying this generalized contingency data directly to ML algorithms is vulnerable

to minimality attack [36] and does not provide the claimed privacy guarantee. Therefore, we use a

unique approach, where raw data is sanitized first through a generalization-based algorithm DiffGen

[39, 42], which uses top-down taxonomy tree and publishes the leaf node data with DP noise. The

robust privacy mechanism DP is adapted to this generalized contingency data like Table 4.2 before
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sending it to FL architecture. Differential privacy [6] is a strict privacy model that does not assume

the knowledge of an adversary. A differentially-private mechanism guarantees that all outputs are

insensitive to any individual’s data by ensuring that the likelihood of any output (released data) is

equal from all near identical input datasets. The utility of the data can be greatly reduced when the

added noise is rather considerable compared to the count, hence employing solely DP may not be

appropriate for high-dimensional data with a wide domain. In our approach, noise is added to each

count of published data to satisfy the privacy requirement and the noisy sanitized data can be fed

into the FL model. In this way, noise usage is reduced significantly to improve classification scores.

In summary, our approach converts the raw data table to a general contingency table and applies

it to a top-down taxonomy tree-like Fig. 4.1 through specialization. The leaf nodes of the tree are

published with noisy counts which mitigates noise usage as much as possible to preserve the data

utility. The sanitized released data like Table 4.2 are finally converted to a model and sent to a

central server to train the global framework. By using a differential privacy approach, only data

from perturbed models are shared with the central aggregated server in this manner. On the basis of

the local model data aggregated, the trusted aggregator server creates the final model and trains the

global model. Two entities make up the main framework of this FL model. A central server with

which all data owners communicate and the data owner(s) who supply the raw data used to train the

model. It is assumed that data cannot be exchanged across data providers in our model. Additionally,

since the constructed model is shielded by a second privacy layer created by differential privacy, we

suppose the aggregator server is honest but curious and cannot recover the raw data of a data owner

from it.

Contributions. In this paper, we combine data sanitization and differential privacy to present a

generic framework for FL-sensitive data exchange. The contributions can be summarized as follows:

• To enable privacy-preserving data sharing among cooperating parties using FL infrastructure,

we use a differentially private approach.
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• We used generalization-based algorithm using top-down taxonomy tree to sanitize raw data

first and then apply differentially private count based noise to reduce the amount of noise in

every level of data for utility improvement

• We demonstrated the effectiveness of the proposed technique by experimenting on two real

datasets using three different ML classifications in FL architecture and comparing them with

the baseline centralized model. Our approach achieves at most 77% accuracy against the

baseline model with 84% maximum score.

(a) Raw Data Table

Education Age Income

College 20 <=50k

Secondary 17 <=50k

College 31 >50k

Secondary 34 <=50k

Undergrad 20 <=50k

Postgrad 30 >50k

Postgrad 41 >50k

Undergrad 37 <=50k

(b) Contingency Table

Education Age Count

Secondary [17-33) 2

Secondary [33-70) 1

College [17-33) 3

College [33-70) 0

Undergrad [17-33) 2

Undergrad [33-70) 0

Postgrad [17-33) 3

Postgrad [33-70) 3

Table 4.1: A raw data table and its generalized versions

4.2 Methods

This section will explain the suggested strategies for training a model using local data sanitization

and privacy-preserving procedures.
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Any_Education {NonPost-Secondary, Post-Secondary}

Education Age Income Count
Any [17-70) >50k: 6; <=50k: 4 10

[17-70) >50k: 2; <=50k: 4Post-
Secondary 6[17-70) >50k: 2; <=50k: 2Non Post-

Secondary 4

[17-33) >50k: 2; <=50k: 1Non Post-
Secondary 3 [33-70) >50k: 0; <=50k: 1Non Post-

Secondary 1 [17-33) >50k: 2; <=50k: 2Post-
Secondary 4 [33-70) >50k: 0; <=50k: 2Post-

Secondary 2

[17-33) <=50kNon Post-
Secondary

1-1 = 0

[17-70) {[17-33), [33,70)}

[17-33) >50kNon Post-
Secondary

2+1 = 3

[33-70) <=50kNon Post-
Secondary

1+1= 2

[33-70) >50kNon Post-
Secondary

0+0 = 0

[17-33) <=50kPost-
Secondary

2+1 = 3

[17-33) >50kPost-
Secondary

2-2 = 0

[33-70) <=50kPost-
Secondary

2+1= 3

[33-70) >50kPost-
Secondary

0+0 = 0

Noisy Count

Figure 4.1: Noisy Count added to Leaf Node after partitioning records

4.2.1 Problem Description

In our strategy (Fig. 5.1), we analysed sensitive data using the federated learning architecture to

identify or forecast through categorization. Since they cannot be disseminated across the premises

in raw format due to regulatory restrictions, data is gathered from various sites while keeping ap-

propriate privacy. As a result, the DiffGen [39] method is used through the DP mechanism to first

sanitize the raw data. Then the model is built locally on those sanitized data and shared with the cen-

tral server for training. Only model data that has been perturbed is shared with the central aggregated

server under the proposed system. Based on the combined local data, the trustworthy aggregator

server creates the final model after training the global model. We use the state-of-the-art stochastic

Table 4.2: Sanitized Representation of Raw Data

Education Age Count (>50k + <=50k) Noisy Count

Non Post-Secondary [17-33) 2+1=3 3+0=3

Non Post-Secondary [33-70) 0+1=1 0+2=2

Post-Secondary [17-33) 2+2=4 0+3=3

Post-Secondary [33-70) 0+2=2 0+3=3
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Figure 4.2: Structure of our collaborative federated machine learning algorithm

gradient descent (SGD) [27,28,34] for model optimization of the federated training process. In each

iteration of this process, the sites use the gradient descent method to optimize the global model on

their local data. The local models’ parameter updates are then forwarded to an aggregation server

and incorporated into the global model. For the following round of training, the new global model

is shared with the sites again for further optimization. Until a convergence requirement, such as

loss function minimization, is satisfied, the process is repeated. The paragraphs that follow provide

more information on this procedure.

4.2.2 Local Data Sanitization

Before feeding into our federated ML framework, raw data are sanitized through generalization

and specialization using top-down taxonomy tree. Any sanitization algorithm will work for our
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Algorithm 1: Algorithm for Data Site
Input : Raw data set D, privacy budget ε, and number of specializations h, global

model wt

Output: Private model parameter of classification Algorithm

// Raw data D is sanitized using DiffGen algorithm

1 D′ ← DiffGen(D, ε, h);

// Initialize local model with global initial model of

classification algorithm

2 w ← wt;

// For each local epoch

3 for e ∈ [E] do

// For bacth of Sanitized Data D’

4 for b ∈ B do

5 w ← w − η∇F (w) ; // Gradient Descent optimization

6 wt+1 ← w − wt ; // Update local model

7 return wt+1 for further global update

approach, however, to achieve the best performance, we follow the algorithm DiffGen [39] for this

purpose. The algorithm first divides the raw data into numerous equivalence groups by generalising

the predictor attributes each with the same attribute values. Then it releases the noisy group counts.

The general idea is to sanitize the raw data by a series of specializations, starting from the topmost

general state as shown in Fig. 4.1. Considering the raw data in Table 4.1a, if it is only converted

to a contingency table like 4.1b, the noise amount will be excessive for high dimensional data as

more rows with less generalization will consume more noise to add. Therefore, a more generalized

version is needed to have a balanced utility. Table 4.2 shows a more generalized version contain-
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Algorithm 2: Algorithm for Aggregator Server
Input : Total number of data parties P, Total number of training rounds R

Output: Updated Global Model

1 Initialize Global Model wt;

// Set the model with classification parameter

2 wt ←ModelParamter(Classificationalgorithm);

// for each round of training

3 for r ∈ R do

// for each client in parallel, model update

4 for p ∈ P do

5 wt+1 ← LocalDataSiteUpdate(wt);

// Aggregate global model through SGD for minimum loss

function

6 wt+1 ← wt − η
∑P

p=1∇Fp(wt)

7 return wt+1 for ML classification

ing attributes Education, Age and Income. The Education attribute provides information such as

elementary, secondary, college, undergrad, and postgrad etc. All values have been generalised to

Non Post-secondary and Post-secondary. Similarly, the Age attribute ranges from 17 to 70, thus

it may be summed up as [17-70]. The dependant variable or the label attribute here for the ML

classification training is the Income attribute, which has values of either > 50k or <= 50k. In

this example, the topmost tree serves as a root partition, including all records with count values of

Income attribute that are generalised to {Any Education, [17-70]}.

Then the specialization process starts, as v −→ child(v), where child(v) denotes the set of

child values of v, replaces the parent value v with a child value. The specialisation process is analo-
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gous to the downward ”cut” of each taxonomy tree. Each root-to-leaf path in a cut of the taxonomy

tree for an attribute has exactly one value. For example, as our root of the tree is now {”Any Ed-

ucation”, [17-70)} can be denoted as root attribute and the “cut” based on Education can push the

tree downwards with two leaf-node as child(v). Let the first specialization be Any Education −→

{Non Post-secondary, Post-secondary}. The algorithm creates two new partitions and splits data

records between them denoted as {Non Post-secondary, [17-70)} and {Post-secondary, [17-70)}.

By specialising a few split values in the current cut, the specialisation begins at the topmost cut

and iteratively pushes the cut down. Similarly, as shown in Fig. 4.1, the next cut is executed using

age group [17-70) −→ {[17-33), [33-70)} and the leaf is specialized into two children. At each

iteration DiffGen probabilistically selects a candidate v ∈ Cut using an exponential algorithm. The

exponential mechanism ensures privacy as well as it also exponentially favours a candidate with

a high score. This satisfies ε-differential privacy because the probability of choosing any value is

proportional to exp(
ε′u(D, v)

2△ u
). Detailed proof for this theorem is given in [39].

Each node stores the count value, as seen in Fig. 4.1. In the root node, it is shown as 10,

however, notice that after specialisation through Education attribute, each child node gets a count

value of 4 and 6 correspondingly. It can be observed that it is the real count in each node through-

out the specialisation process if the Income attribute values are noticed for each node. When the

specialisation process is completed at the leaf node, however, the real count is not released since

disclosing the actual values of these groups violates differential privacy. According to the Laplace

process, these values are countered by adding noise to each group’s count. Each true count of the

groups is given Laplace noise via this DiffGen algorithm. Because the sensitivity of the count query

is 1, it also satisfies ε−differential privacy [6]. The output is a list of each leaf partition’s equiva-

lence groups, together with their noisy counts. Finally, by letting the specialisation continue until it

reaches the leaf level of the attribute domains, a contingency table similar to Table 4.2 is produced.

In the following section, we explain how Table 4.2 is converted to the respective classification
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model and sent to the central aggregation server for the federated machine learning training.

4.2.3 Building the Local Model on Sanitized Data

The framework starts training from a central server by sharing a global model across all sites, fol-

lowing the FL standard. The model is built using sanitized local datasets after DiffGen mechanism,

and parameter modifications are then included in the global model. This technique is repeated until

the global model converges. Here, the data owners perform their computations and the aggregator

server aggregates the results needed for the ML operation. We use three classification models that

can be trained using gradient descent optimization: Logistic Regression, Random Forest, and Naive

Bayes for this federated training process.

Initially, the global model is shared with each site, which trains the model on its local data.

After computing the average gradient, the updated local parameter w is aggregated to the shared

global model and sent back to the central server. The process is continued till the minimization

of loss function Fn(w) is reached. If there are N sites, for example, we divide the training data

into N disjoint subsets of the feature set {Xi
train}Ni=1 and the corresponding label set {Y i

train}Ni=1.

Let R stands for the number of rounds in which local model updates are aggregated, E number of

epochs, η the learning rate and batch based on a given batch size B, respectively, for stochastic

gradient descent. At a fixed learning rate η, for each data site n, average gradient (∇Fn(w)) [27,28]

is computed with respect to its current model parameter w. Here, Fn(w) is the local loss function

of the nth site with respect to its model parameter w. The model update will follow the equation:

wn ← wn − η∇Fn(w
n). Epoch R, the number of training runs each client does on its local dataset

every round, and B, the local minibatch size from the sanitised dataset D′ used for client updates,

are the key factors affecting the amount of computation. To indicate that the entire local dataset

is processed as a single minibatch rather than a portion of it, we write B = ∞. This step is

required, as the Diffgen algorithm already generalizes the raw data with the best specialization,
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further partitioning in the training process with batch might lose the utility of the overall framework.

Algorithm 1 refers to the process in each client site. A global classification ML model wt is

initialized (Naive Bayes, Random Forest or LR in our approach) and shared to each local site at

the startup of the federated training process. Initially, at Line 3, the DiffGen algorithm converts the

raw data D to sanitized data D′ using DP algorithm and the output is similar to Table 4.2. After

that, the global model wt is updated in the local site using the local model created by the local

sanitized dataset. Each site updates its local model to the shared global model based on the epoch,

the maximum number of passes over the training data, as indicated in Line 5. As previously stated,

the batch is obtained from the sanitised data D′ and prepares an updated model parameter at Line

6 using the SGD method. Finally, for aggregation, this model is returned to the central aggregator

server.

Table 4.2, for example, shows that the sanitised representation of raw data now comprises

four rows. For the federated training process, we can consider two local data sites and one central

aggregator server as shown in our architecture in Fig. 5.1. Each of the data sites can have a portion

of this sanitized data. We divided the data horizontally into two parties for this example. As a result,

after the split, each party can have two rows, as shown in Table 4.3a & 4.3b.

Table 4.3: Example of Splitting data into Local Party

(a) After splitting data into Party 1

Education Age Noisy Count

Non-Post Secondary [17-33) 3

Post Secondary [17-33) 3

(b) After splitting data into Party 2

Education Age Noisy Count

Non-Post Secondary [33-70) 2

Post Secondary [33-70) 3

For each data site or party, the feature column for the model of classification algorithm is the

attribute {Education, Age} and can be referred to Xi
train and the classification label is the column
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Table 4.4: Sample Naive Bayes Model for Party 1

Income µ(Educ.) σ(Educ.) (µ)(Age) σ(Age)

>50k 5.4 0.0035 36 1.57

<=50k 6.2 0.0091 55 0.43

Noisy Count referring Y i
train for ith site. The model w is prepared as w ← {Xi

train, Y
i
train} for each

classification algorithm in each party.

As per Naive Bayes theorem, mean (mu) and variance (sigma) is calculated to prepare the

model data for the Naive Bayes classifier. Table 4.4 shows a sample model representation for the

above sample data. For the Random Forest classifier, a model is constructed using a combination of

decision trees with the above sample data. The data is used to generate a number of decision trees,

and the class with the most votes is chosen as the final solution for the classification problem. As

a result, for the aforementioned sample data, Fig. 4.3, displays the model of the Random Forest

classifier for this sample data of party 1, which shows a combination of multiple Decision trees.

Due to the fact that party 1’s Feature attribute age contains only 17-33 values, two decision trees are

created with the same root node. Similar models are constructed in each party for logistic regression

using the model parameters, and these models are then shared with the central server for training.

Age
[17-33)

>50k: 0 <=50k:3

Age
[17-33)

>50k: 3 <=50k:0

Education
Non-Post Secondary (Numeric: 5)

>50k: 3 <=50k:0

Education
Post Secondary (Numeric: 6)

>50k: 0 <=50k: 3

Figure 4.3: Sample Random Forest Model for Party 1 - Combination of Decision Trees

Finally, the model parameter w based on respective classification algorithm is prepared and

ready to be sent to the aggregator server through the SGD optimization process as mentioned in

Algorithm 1 for a round of iteration and continuous update. The process stops once the convergence
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criterion is met. Lastly, the aggregator server builds the final model and trains the ML classifier. It is

important that just the model representation displayed in Table 4.4 and Fig. 4.3 is conveyed during

this training phase. Here, the original data is covered up using generalisation and given an extra

layer of privacy protection by adding DP noise. Due to the use of a noisy count, there are extremely

few opportunities to recover data from this model. This protects against any form of membership

inference attacks during FL training and preserves privacy.

4.2.4 Aggregator Server Execution

The statistics required for the LR, Random Forest, and Naive Bayes are updated at the local sites

and then shared with the aggregator server for the continuous iteration to the final result. Finally,

the aggregator server updates the model to feed into the classification training, as described in

Algorithm 3. The training approach for each classification method begins with each participant in

the FL architecture sharing a model skeleton. After that, each local party modifies their local model

and updates to send it back to the central server. The iteration continues until the epoch, which is

the number of passes over the training data that must be made until the convergence condition is

reached. The global model is updated with all of the local models after the final iteration. The model

is aggregated with optimization to minimise the loss function on line 6 using the SGD approach:

wt+1 ← wt − η

P∑
p=1

∇Fp(wt) (4.1)

Finally, the model is given into the machine learning algorithm, which generates a classification

score. Privacy is protected throughout the training process: raw data is never exchanged with the

server from the client. Sanitized data also meets the ε-DP requirement using DP noise. As a result,

the entire federated training process strictly adheres to data privacy. Whether the server is honest-

but-curious, it will not be able to learn anything from the sanitised model data supplied by the

clients.
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Figure 4.4: AUC for Adult Dataset with Privacy Budget ε : 1 to 5
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Figure 4.5: AUC for MIMIC III Dataset with Privacy Budget ε : 1 to 5
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4.3 Results

The experimental outcome is described in this section. We test various privacy budget ε values

because the suggested solution is a broad data sharing mechanism for federated ML applications.

To conduct the research, we used a number of machines in our lab as server-client settings.

4.3.1 Experimental Setup

To establish benchmark results, we first developed centralized learning models and FL models with-

out applying sanitization and privacy. Thereafter, we employ DP and our approach to make a proper

comparative evaluation. We used three classification algorithms, namely Naive Bayes, Logistic

Regression and Random Forest. To evaluate the models, prior to and after employing sanitization

and privacy-preserving mechanisms, we measure their utility in terms of Area Under Curve (AUC)

score. We used two datasets, Adult Census data from UCI repository and Medical Information

Mart for Intensive Care (MIMIC III) dataset [43], a publicly available benchmark data. According

to [44], we chose 17 physiological variables, including demographic information from MIMIC III

dataset.

An 80:20 split of the training data for the ML models were made at random, with 80% of

the data being used for training. The Area Under the Curve (AUC) values from each test set were

averaged after the training algorithm ran for ten epochs. For both datasets, we also tried out various

privacy budget ε values ranging from 1 to 5.

4.3.2 Accuracy

We plotted AUC within a defined privacy range, which depicts a binary classifier accurately because

it creates the curve using True Positive and False Positive rates (receiver operating characteristic).

In Fig. 5.2 and Fig. 4.5, we depict the relation within a fixed privacy budget (1 to 5). The red,

pink and blue boxes denote non-private central, non-private federated settings and our customized
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approach respectively. It demonstrates that as compared to the non-private centralised model, an

effective AUC value for classification is provided with a privacy budget of at least 5, which is close

to the baseline.

For the three classifiers, we first compared our solution to the Adult Census data in Fig. 5.2.

For all of the classifiers, the overall score was close to the range of 79% percent. We feel that

the score decline is the result of the data suppression provided by sanitization and DP noise in

our sanitized model. For MIMIC III data, the training was implemented similarly and the overall

score was recorded near the value of 76% for a budget of 5 or more. The maximum baseline score

for MIMIC data is 84% for Logistic Regression without any privacy protection in a central or FL

architecture. Fig. 4.5 shows the box plot depicting this.

In summary, our approach requires a minimum privacy budget to maintain an acceptable level

of accuracy for both datasets. We assume that this scenario occurred as a result of projected data

loss caused by noise disturbance and sanitization in the federated settings. This also generates the

discussion on how the privacy-utility trade-off is related in this setting. The predictive performance

of the federated models combined with the sanitised technique is plausible because our strategy

provides sufficient privacy while maintaining an acceptable amount of data utility. However, FL

suffers considerably more severely from performance reduction when using only ε-differential pri-

vacy. Therefore, further experiments on different datasets for different privacy budgets are our future

work direction.

4.4 Conclusion

Existing methods that use the federated learning model to analyse sensitive data typically do not

provide optimum performance and privacy protection. With a private data analysis framework being

built on federated learning, our method focuses on utility improvement. To ensure the best accuracy,
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we adopt data sanitization techniques with differential privacy mechanisms to minimise the use of

noise at every stage of the training process. Through experimental evaluation using two real-world

datasets and different parameter settings, we demonstrated that our technique offers good model

performance while providing a justifiable level of data privacy. To further strengthen the score with

a better privacy algorithm, we intend to incorporate vertically partitioned data analysis on different

datasets in a deep learning setting.



Chapter 5

Privacy Preserving Vertical Distributed

Learning

Federated learning is becoming a key tool for mining remote datasets where data owners are

unable to share raw data due to privacy concerns. Data is often analyzed using records from different

locations that are trained and combined into one central server. In this distributed setting, data

can be vertically and horizontally partitioned. In our approach, we choose the specific vertical

partition learning process in which the data is segmented by characteristics or columns for the same

record across all local sites. This framework can be called Vertical Distributed Learning (VDL) as

well as features distributed machine learning. Our design follows the Stochastic Gradient Descent

(SGD) approach for this scenario to collaboratively learn from each local site and merge the final

result into a central server. Throughout the training phase, no raw data or model are shared, only

local prediction results are shared for aggregation. However, sharing the local prediction raises

some privacy issues, which we address by introducing noise into the local results using Differential

Privacy (DP) algorithm. Thus, our ideas suggest a robust vertical distributed learning system that

respects user privacy. We conducted experiments using the sensitive healthcare data MIMIC-III

47
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for its four types of applications in this architecture and the publicly accessible Adult data with

deep learning. The findings of our experiment, which were compared to training only from local

features and a completely centralised architecture, showed accuracy that was almost as effective

as the centralised model. Therefore, our solution offers an effective federated learning solution

maintaining data locality and privacy while utilising vertically separated data.

5.1 Introduction

Machine learning (ML) research is becoming more prominent in the healthcare sector, and it has

the potential to save lives through case prediction in addition to providing useful healthcare ap-

plications. For instance, the development of medical diagnostic tools, the detection of disease risk

factors, or the assessment of gene sequence information for therapeutic purposes can all benefit from

learning from real-world healthcare data. Kwekha et al. [45] demonstrated how machine learning

may be used in healthcare and plans to investigate, predict, and discriminate among COVID-19 in-

stances to analyse and triage them. Choudhury et al. [34] used health data and a federated machine

learning algorithm to examine the effectiveness of the application for anticipating adverse drug re-

actions (ADR) in patients. Numerous other studies have already shown that ML is capable of doing

important healthcare jobs including disease diagnosis.

Data distribution is the main challenge in healthcare machine learning (ML) research since

most clinics are unwilling to share their raw Electronic Health Records (EHR) due to various health-

care privacy regulations. Due to this, a patient’s data is not confined to a central repository, rather

distributed through several sites or clinics. This data can be distributed or separated in two ways,

horizontally or vertically. When each client has a unique collection of records, yet their data has

features in common is known as horizontally partitioned data silos. In general, horizontal partition-

ing typically maintains a table’s rows across several database clusters. Many current contexts, such
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as healthcare, demand processing data across numerous sites for the same set of records on various

sets of attributes, in contrast to the horizontally partitioned arrangement. Vertical partitioning is a

sort of data distribution where the same set of records can have distinctively different attributes on

each site. As an illustration, one clinic might have patient data with the following attributes: name,

age, and disease code, whereas another clinic might have data with the following attributes: name,

age, and timestamp of ICU stays for the same group of patients. The case of training on horizon-

tally partitioned data is considered in most current ML research. The vertically partitioned data has

received little attention in this regard. ML training on this vertically partitioned data distribution for

the healthcare industry is the focus of our research. A healthcare organisation may use this type of

data segregation if it wants to evaluate the patient’s health using clinical data from various locations.

Central machine learning architecture is not a workable solution to distributed data silos. Fed-

erated Learning (FL) [46,47] is a distributed machine-learning approach that addresses this problem.

FL permits several data owners to jointly develop and make use of a shared prediction model while

maintaining the privacy of all local training data. This method iteratively improves model accuracy

by allowing each site to update its local model and exchange locally computed gradients or model

parameters with a central server. The entire procedure points to a strategy to lessen the requirement

to send raw data outside of the facility. ML is trained using distributed data stored across multiple

sites rather than delivering raw data to a centralised server. Raw data will remain with local data

providers, and will only be shared with locally constructed ML models. The sharing of model data

in distributed learning creates several privacy concerns as well. An attacker may be able to replicate

sensitive data from the shared information [3, 4]. As a result, the FL method needs an additional

layer of privacy to protect it further.

In a horizontal setting, most recent approaches use data anonymization or differential privacy

algorithm to add the privacy layer. Choudhury et al. [2, 20] showed how customized k-anonymity

or differential privacy can be utilized in FL setting to preserve privacy with an acceptable utility.
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They chose the healthcare data to predict mortality rates based on patients’ ICU stays. In a similar

way, the majority of the current research in this area discussed how to integrate appropriate privacy

algorithms into this federated learning to conform to healthcare regulatory policies. Our earlier

research [7] also suggested a framework that only communicates model data after sufficient data

sanitization to protect the privacy of the patients with data utility. For vertically separated data, the

FL setting differs from the reasonably well-researched horizontal FL configuration in that it has its

special characteristics and challenges. Local models in vertical FL need the data from the models at

the other sites to learn about all the features and jointly train the ML model. The existing methods

[30, 32] mostly rely on encrypted multiparty communication to learn about each other’s features.

However, these cryptographic techniques reduce privacy concerns at the expense of computational

overhead. Our layout lessens the necessity to learn about the features of other sites for training. No

model or feature sets, just local prediction is exchanged with the server for score aggregation.

In our vertical architecture, models are trained locally based on the available features. Only

local prediction from each site is shared with the central server. The server merely serves as an ag-

gregator for the total predictions; it does not perform any training. Using a mini-batched stochastic

gradient descent (SGD) technique carried out in the sense of distributed computation, the full model

is trained from beginning to end. The final result is shared when local training is complete. Differ-

ent parties are permitted to execute different iterations of parameter updates, which asynchronously

simulate our design. The local feature set is mapped to a local prediction for classification us-

ing Logistic Regression (LR) and long short-term memory (LSTM) neural networks, and the local

predictions are shared for aggregating the final prediction in the central server.

Examples of how feature sets can be dispersed for the same patients are presented in Tables 5.1a

and 5.1b. A group of patients’ ICU stays are listed in the first table as P1(ID, InT ime,OutT ime),

and their disease codes are listed in the second table as P2(ID,Age,DiseaseCode). Each site

locally determines the prediction of the mortality rate or probability of a particular acute disease
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respectively and shares the result with the server. On the server side, no model parameters are

exchanged; instead, only local predictions are exchanged, as indicated in Table 5.3. The server

determines the final prediction for each classification process using a weighted feature approach.

There is still a privacy concern as attackers can still regain original data using only model predictions

[26,48]. Therefore, privacy attacks may still occur if the direct prediction is shared. We use the well-

known privacy method Differential Privacy (DP) [6] to perturb the local prediction before sharing

to mitigate this concern. To determine the final prediction, the server only receives the perturbed

prediction. In this way, we still have a robust vertical distributed learning framework with data

privacy even though we lose some accuracy owing to DP noise addition.

Maintaining privacy and an efficient level of accuracy without incurring a substantial commu-

nication overhead is the major challenge in vertical distributed learning. Our approach maintains

data privacy with very low communication overhead through sharing prediction results only. Af-

ter sending each local prediction to the central server, we apply a weighted feature approach to

use in order to build its final accuracy. Hu et al. [33] suggested a comparable feature distributed

collaborative learning technique using a continuously differentiable function to aggregate local in-

termediate predictions as a weight parameter similar to nonlinear transformations. Our contribution

follows in a similar way to randomly shuffle and weight local prediction which effectively influences

the ultimate score. For instance, if a local prediction has a feature set x1 and x2 that can contribute

greater accuracy if it is trained in a central architecture with all the feature sets, our weighted feature

algorithm will give it more weight. Sample weighted matrix is shown in Table 5.2.

Contributions. The contributions can be summarized as follows:

• We demonstrated a vertical partitioned FL framework maintaining proper privacy.

• We targeted the healthcare sector with four different types of applications.

• We demonstrated the effectiveness of the proposed technique by experimenting with Adult
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and MIMIC-III datasets with LR and LSTM-based deep neural networks and compared them

with the baseline centralized model. Our approach achieves accuracy almost near to the

baseline model with privacy. For Mimic-III dataset, our solution acquires up to 80% and

82% accuracy and for Adult dataset, 90.3% and 90.4% accuracy, for LR and LSTM methods

respectively. In summary, our model loses at most 5% of accuracy due to noise addition in a

distributed learning framework.

(a) Raw Data At Site 1 (ICU Stays)

Patient Id In Time Out Time

901 2155-02-25 2155-02-27

902 2157-12-02 2173-12-31

903 2157-12-02 2173-12-31

904 2173-12-31 2173-12-31

905 2173-12-31 2174-01-14

906 2129-03-21 2164-02-06

907 2129-03-21 2164-02-06

908 2129-03-21 2164-02-06

(b) Raw Data At Site 2

Patient Id Age Disease Code

901 34 110

902 70 380

903 33 14

904 55 28

905 47 483

906 67 109

907 77 107

908 58 486

Table 5.1: Feature Distribution over sites and Server Data Representation

5.2 Methods

This section will explain the proposed approach for training a model using vertically separated data

and privacy-preserving procedures.
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Table 5.2: Weighted Feature Matrix

Prediction Task In Time Out Time Age Dis.Code

Mortality Rate 0.85 0.85 0.25 0.40

Acute Disease 0.15 0.15 0.86 0.85

Table 5.3: Data Available In Central Server

Classification Site 1 (Prediction) Site 2 (Prediction) Final Prediction

Logistic Regression 0.67 0.75 0.84

LSTM 0.56 0.70 0.86

5.2.1 Problem Overview

In the proposed vertical federated learning (VFL) architecture, as shown in Fig. 5.1, models are

trained locally based on the features available at each site. The central server serves as an aggre-

gator for the overall predictions but does not perform any training. The training of the complete

model is carried out using mini-batched stochastic gradient descent (SGD) [27,28,34] at each local

party. After local training is completed, the final results are shared with the central server. Logistic

Regression (LR) and long short-term memory (LSTM) neural networks are used to classify the local

feature set into a local prediction, which is then aggregated by the central server to produce the final

prediction. To determine the final score, an appropriate feature weight is required for each feature,

which is calculated using Logistic Regression with the SGD technique. This weight matrix, along

with the local prediction results, is aggregated by the central server. This design eliminates the need

for communication between each party and reduces the risk of data exposure. The local predictions

are also perturbed with differential privacy (DP) noise to provide a more robust privacy-preserving

model, although this may result in a slight loss of accuracy in the final result.

We will evaluate the performance of the model using an evaluation metric and aim to minimize
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Figure 5.1: Multiple Data Owners are training a model collaboratively using distributed feature

learning

the error between the predicted outputs and the true labels. Our objective is to build a model that

generalizes well to unseen data and can be deployed in a real-world setting to solve the healthcare

problem.

5.2.2 Local Prediction Calculation

In our model, each data source or site contains a unique feature set, therefore, we train our model

based on the available local features only in this step. Hu et al. [33] use LR and CNN approaches

in mobile app datasets for similar settings. We use both logistic regression and Long Short-Term

Memory (LSTM) models for local feature-based training to improve the utility using health care

data. Logistic regression is a simple, yet powerful linear model that is often used for classification

tasks. It works by using a linear combination of the input features to predict the probability of a
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given example belonging to a particular class. On the other hand, LSTM is a type of recurrent neural

network (RNN) that is particularly well-suited for modelling sequential data, such as time series or

natural language. LSTMs can capture long-term dependencies in data by using gating mechanisms

to control the flow of information through the network.

To use logistic regression for local feature-based training, we define a set of local features,

compute the local feature representation for each feature vector, and then use these local features as

input to train a logistic regression model.

Suppose we have a set of training data, (x1, y1), (x2, y2), . . . , (xn, yn), where each xi is a

feature vector and yi is the corresponding label. To train a model based on local features, we first

need to define a set of local features f1, f2, . . . , fm that we will use to represent each feature vector

xi.

Then, for each feature vector xi, we can compute its local feature representation zi as:

zi = [f1(xi), f2(xi), . . . , fm(xi)]

Once we have computed the local feature representation for each feature vector in the training

data, we can train the LR model using these local features as input and the corresponding labels yi

as output.

On the other hand, to use LSTM for local feature-based training, we follow a similar process,

however, we need to reformat the local feature representation as a sequence that can be processed

by the LSTM. For the same set of local features f1, f2, . . . , fm and for each feature vector xi, we

create a sequence of length by concatenating the local features. Then, we use this sequence as input

to an LSTM model following the equations described in the Background section.

To simulate our methodology in the healthcare industry, we train the model with a sensitive

MIMIC-III dataset. Before beginning training, we divide the whole dataset into two independent

sets with the same records but different attributes, as shown in Fig. 5.1. We cut the full dataset
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into two separate sets with the same records but different features to mimic the VFL scenario. The

model training is then run in two distinct clients to compute the local prediction result for both LR

and LSTM. In this scenario, we can assume one party is Hospital and another party is a local health

insurance provider. After proper preprocessing of the data, For the same set of records, two parties

could have had different features. As an example in Fig. 5.1, a hospital has features x1, X2, X3

and a health insurance provider has features x1, X4, X5, therefore only one feature x1 as the unique

one. For benchmarking, we use the tasks defined by Harutyunyan et al. [49] as below:

In-hospital Mortality/IHM

This is a binary classification problem that predicts in-hospital mortality based on the first 48 hours

of an ICU stay. Our LSTM model takes as input a sequence of vital signs and other patient data

collected over time and predicts the probability of death within the hospital.

Forecasting length of stay/LOS

The benchmark is defined as a multiclass classification issue prediction of bucketed remaining ICU

stay. The remaining ICU stay duration is divided into ten classes/buckets (< 1, 1 − 2, 2 − 3, 3 −

4, 4−5, 5−6, 6−7, 7−13, > 14). This is only done for individuals who did not die in the intensive

care unit.

phenotype classification/PH

Phenotyping is a collection of 25 discrete binary classification tasks that determine which of 25

acute care conditions exist in a specific patient’s ICU stay record.
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Decompensation/DC

The goal is to identify patients who are physically deteriorating. Decompensation is characterised

as a sequential prediction job in which the model must forecast after each hour in the ICU. The goal

at each hour is to anticipate the patient’s mortality within a 24-hour time frame.

To prepare the model within the local feature set, with time series observations we capture

patient’s length of ICU stay of T hours, with xt at each time step t (1-hour interval). To model the

time series observations, we define the feature as [xt]Tt=1 where previous hidden state a<t−1> and

current hidden state a<t>. According to the LSTM equation mentioned in Background section, the

model equation for all the above fours task will be as follows:

ˆIHM = σ(Wo[a
<48>, x<48>] + bo) (5.1)

ˆLOS = σ(Wo[a
<t−1>, x<t>] + bo) (5.2)

D̂C = σ(Wo[a
<t−1>, x<t>] + bo) (5.3)

ˆPH = σ(Wo[a
<t−1>, x<t>] + bo) (5.4)

Where o is a binary label at t = 48 hours for in-hospital mortality, and t = 5 . . . T for the other

three tasks. It is worth noting that in-hospital death is predicted at the end of 48 hours, whereas

decompensation, phenotyping, and LOS tasks are anticipated at each time step after the first four

hours of ICU stay, as benchmarked in [49]. We trained our LSTM model using the Adam optimizer

with a learning rate of D and a batch size of E. We used a categorical cross-entropy loss function

and evaluated the model’s performance on the validation set at the end of each epoch. We trained

the model for a maximum of 20 epochs and selected the best model based on the validation loss.
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Similarly, along with the MIMIC-III dataset, we performed the training on the Adult dataset

to benchmark and compare the performance. In this dataset, the dependent variable for the ML

classification training is the Income attribute, which has values of either > 50k or <= 50k. We

split the full dataset into two separate sets with the same records but different features to mimic the

VFL scenario. Then we performed the same model training as described above for the MIMIC-III

dataset. We also compared the performance of our LSTM model to a baseline logistic regression

model and found that the LSTM model outperformed the logistic regression model for both datasets,

which will be described in the Experiment section.

5.2.3 Feature Weight Mechanism

In machine learning, feature weights are values that are learned during the training process of a

model to predict the target variable. These weights indicate the importance of each feature, or input,

in the model’s prediction. For example, if a model is trained to predict the mortality rate of patients

in the ICU based on length of stay, drug history, and age, the feature weights could indicate that

the length of stay is the most important factor, followed by the age, and then the drug history. In

vertical federated learning, a weighted feature algorithm is used to determine the importance of

each feature in the final prediction. Each party locally trains a logistic regression model on their

own set of features and labels by randomly shuffling them. The coefficients of each feature in the

logistic regression model are calculated and sent to the central server. The central server combines

the coefficients received from each party and uses them to train a new logistic regression model on

the complete set of features. The coefficients obtained from the trained logistic regression model

are used as the feature weights. By using the feature weights, the central server can aggregate the

local predictions without needing to share the raw feature data among the parties, thereby preserving

privacy.

Finally, the weight matrix is built as shown in the example in Table 5.2. For calculating the
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mortality of hospital patients, the length of stay has a greater effect on the classification than Age or

Disease Code. That is why In Time and Out Time have a weight of 85%, while Age and Disease Code

have weights of 25% and 40%, respectively. On the other hand, for phenotyping acute diseases,

staying in the hospital has very little effect, whereas Disease Code has more effect. That is why,

in this scenario, In Time and Out Time have a weight of 15%, while Age and Disease Code have

weights of more than 85

5.2.4 Aggregator Server Execution

The LR and LSTM local predictions are calculated at the local locations and then shared with the

aggregator server for the final aggregation. After each client has shared its results, the aggregator

server applies the weight matrix to calculate the final output, as explained in Algorithm 3. The score

is then aggregated, as illustrated in Table 5.3.

For a number of parties P = 1, 2, ..., p, we can simplify the calculation of the final score as

follows:

Y = δ

 P∑
p=1

wpy(xp)

 (5.5)

While only the local predictions y(xp) are shared to produce the final prediction with the

weight matrix wp for each party. Here, δ : R→ R is a continuously differentiable function used to

aggregate local predictions weighted by wp.

Note that the server does not perform any ML classifications; rather, it only calculates the

aggregation based on the provided local predictions and weight matrix.

For example, for the LR training, the local score from site 1 and site 2 is 0.67 and 0.75, respec-

tively, as shown in Table 5.3. Now, after applying the weight matrix from Table 5.2, multiplication

and aggregation are performed, and finally, the score is returned as 0.84, which is above the value

of each local party as well as below the value of the training that could be performed in a central
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architecture. This is due to the noise addition and weight multiplication in the calculation process.

Algorithm 3: Algorithm for Aggregator Server
Input : Total number of data parties P, Local Predictions Y, Weight Matrix W

Output: Updated Score

1 Initialize Score Y;

// for each round of training

2 for p ∈ P do

3 Y ← (wpy(xp));

4 Y ← δ
(∑P

p=1w
py(xp)

)
)

5 return Y

5.2.5 Privacy Mechanism

One of the most important concerns in our design is maintaining the privacy of local data. Only the

local prediction results are transferred, which are formed from the local data and features. As a re-

sult, if these data are exchanged in raw format, the original functionality may be revealed to curious

servers or other parties. By perturbing the local predictions to be uploaded, we apply differential

privacy algorithm to better protect the feature data at each party from hostile servers and parties.

Differential privacy [6, 27, 50] is a generally accepted norm for ensuring the privacy of algorithms

that works with aggregated data. To ensure the anonymity of all feature characteristics, we add

laplacian noise to the local prediction result y(xp) at party p. Therefore, the shared prediction with

DP noise becomes y(xp) + ε to be aligned with privacy.
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5.3 Results

This section describes the experimental results. To benchmark and compare the results, we tested

with MIMIC-III and Adult datasets in various settings. We specified a fixed privacy budget of DP

algorithm as ε: 1-5 for each instance of the experiment. To perform the study, we employed multiple

computers in our lab to imitate multi-client environments.

5.3.1 Experimental Setup

For our tests, we first used the Medical Information Mart for Intensive Care (MIMIC III) dataset

and followed Harutyunyan et al. [49] benchmark configuration for processing time series signals

from ICU devices. We used the same test set as in the benchmark and 15% of the remaining data

as the validation set. We performed all four benchmarking tasks as discussed in the methodology

section. Only patients hospitalized in the ICU for at least 48 hours are considered for the in-hospital

mortality task. However, we removed all clinical notes that did not have a chart time linked with
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them, as well as any patients who did not have any notes. We employed 64 hidden units in LSTM

for decompensation and LOS prediction. We used a mix of 25 distinct binary classification tasks

based on ICU phenotypic data for phenotyping classification.

We also tested on another public dataset, Adult, a traditional census dataset in which the pre-

diction objective is to assess whether a person earns more than $50,000 per year. There are 48,842

samples with 124 characteristics apiece.

We ran the experiment with LR and LSTM in four distinct situations for these two datasets. Our

test arrangement included a central server and two clients. For benchmarking, we first examined

the prediction in a central architecture, where entire datasets with all attributes are available in a

single location. The forecast was then calculated independently by the local clients for two of them.

Finally, as the VDL architecture, we simulated distributed learning with two clients and a central

server. We used the Linux Cut command to split the data columns-wise for the identical set of

records in order to separate the whole dataset by feature.

5.3.2 Evaluation

We used the Area Under Precision-Recall (AUC) measure for in-hospital mortality, phenotyping,

and decompensation tasks in the MIMIC dataset. To assess LOS, we used Cohen’s linear weighted

kappa, which evaluates the correlation between anticipated and real multi-class buckets, as proposed

by Harutyunyan et al. [49]. In each chart, we box-plotted the comparison for both LR and LSTM,

with red, pink, blue, and yellow boxes denoting non-private central, vertical distributed learning

(VDL), and local prediction for parties 1 and 2, respectively. Figs. 5.3a, 5.3b, and 5.3d show

the AUC values with the central scenario, vertically distributed learning scenario with privacy, and

local scenario for two parties for the three tasks of the MIMIC dataset. It is observed that the central

design performs best in all circumstances since it is the benchmarking reference with a full dataset

accessible with all characteristics and no privacy. However, compared to the central design, Local
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1 or Local 2 have relatively low scores. This is due to the training being conducted on only the

available local features rather than categorizing using all available features.

5.4 Conclusion

We proposed a distributed machine learning framework while guaranteeing privacy on vertically

segregated data. In our method, each client uses LR and LSTM neural networks to make local

predictions based solely on local features. Then, to offer an extra layer of privacy, a certain amount

of noise is added to the prediction results using the DP algorithm. In addition, the weighted feature

function, which is computed based on local feature sets, is applied to the final prediction. The

central server then receives the perturbed scores along with a proper weight to calculate the final

prediction. No raw data, features or model parameters are shared in any phase of the training.

In this way, our method mitigates the exposure of sensitive records in any form maintaining an

effective utility with the localization of the data. To demonstrate the application of our system in the

healthcare sector, we apply our technique to publicly available health data: MIMIC-III and Adult

data from US-Census. Comparison with other health data using a more effective weighted feature

can be the future direction of this research.



Chapter 6

Conclusion

In this study, we present three approaches for conducting a secure analysis of sensitive health-

care data that is distributed among various participants. These frameworks are designed to perform

ML classification in both horizontally and vertically partitioned data with an adequate level of utility

while maintaining privacy.

The first two frameworks employ horizontal federated learning with differential privacy to

strike a balance between privacy and utility. In contrast, the third approach is based on vertical

distributed learning and is applied to real-life health data to establish a secure healthcare application.

6.1 Summary

The first approach involves reducing the whole data dimension through feature selection in horizon-

tal federated learning, which minimizes the noise added by differential privacy while maintaining

efficient scores. This model provides efficient data utility with a moderated privacy budget.

The second approach involves generalizing the full dataset by records and applying differential

privacy techniques to summarized count-based statistical data in horizontal federated learning. By

65
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reducing noise in every level of data, this model offers efficient data utility with a moderated privacy

budget.

The third approach is a privacy-preserving distributed ML technique for vertically partitioned

data. This approach uses a generalized weighted feature algorithm in the server to aggregate local

clients’ results, avoiding the need to share feature information and offering a secure healthcare

framework that preserves data privacy and utility.

In conclusion, the main contribution of this thesis is the secure, efficient, and privacy-preserving

federated machine learning on healthcare data considering different data distributions.

6.2 Future Work

There are several potential research directions in federated learning with different privacy algorithms

to balance the privacy-utility trade-off. Some of the possibilities include:

• Enhancing the effectiveness and expandability of federated learning with differential privacy.

It could entail creating innovative methods for communication and distributed optimization

that are tailored to the limitations brought about by differential privacy.

• Developing new privacy-preserving techniques for federated learning. This could include

exploring new forms of differential privacy, such as zeroth-order [51] or R’enyi differential

privacy [52], or developing new methods for composing different forms of privacy to achieve

stronger guarantees.

• Examining the compromises between privacy, utility, and stability in federated learning. This

may involve exploring the impact of various privacy techniques on the precision and broad

applicability of federated models, as well as examining their resistance to malicious attacks.
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