
* corresponding author - jkim72@kent.edu

Revolutionizing Mental Health Care through

LangChain: A Journey with a Large Language

Model
Aditi Singh

 Computer Science

 Cleveland State University

 a.singh22@csuohio.edu

Abul Ehtesham

The Davey Tree Expert

Company

abul.ehtesham@davey.com

Saifuddin Mahmud

Computer Science &

Information Systems

 Bradley University

smahmud@bradley.edu

Jong-Hoon Kim*

 Computer Science,

Kent State University,

jkim72@kent.edu

Abstract— Mental health challenges are on the rise in our

modern society, and the imperative to address mental disorders,

especially regarding anxiety, depression, and suicidal thoughts,

underscores the need for effective interventions. This paper

delves into the application of recent advancements in pretrained

contextualized language models to introduce MindGuide, an

innovative chatbot serving as a mental health assistant for

individuals seeking guidance and support in these critical areas.

MindGuide leverages the capabilities of LangChain and its

ChatModels, specifically ChatOpenAI, as the bedrock of its

reasoning engine. The system incorporates key features such as

LangChain's ChatPrompt Template, HumanMessage Prompt

Template, ConversationBufferMemory, and LLMChain,

creating an advanced solution for early detection and

comprehensive support within the field of mental health.

Additionally, the paper discusses the implementation of

Streamlit to enhance the user experience and interaction with

the chatbot. This novel approach holds great promise for

proactive mental health intervention and assistance.

Keywords —Large Language models, LangChain, Chatbot,

Pretrained models, Mental health, Mental health support.

I. INTRODUCTION

The issue of mental health is an international situation,
affecting people in each particularly developed nations and
emerging markets. According to the World Health
Organization's Mental Health Action Plan (2013-2020), it's far
estimated that around one in four humans international face
numerous kinds of mental disorders. This statistic underscores
the vast nature of mental health demanding situations
throughout extraordinary demographic businesses and areas.

However, what makes this situation even extra complex is
the concerning truth that three out of each four people dealing
with severe intellectual disorders do no longer have get entry
to the necessary remedy they require. This remedy gap
intensifies the weight of intellectual health troubles, leaving a
sizable part of the populace without the assist and care needed
to efficiently address their intellectual health issues.

Furthermore, periods like the recent global pandemic, the
effect of mental health issues becomes even more said. The
COVID-19 pandemic, in particular, has highlighted how
public health crises can extensively have an effect on mental
properly-being. During such hard instances, a widespread part
of the population faces extended problems in having access to
mental fitness professionals. This emphasizes the urgent want
for progressed intellectual health offerings and support
structures. It underscores the urgency of addressing the mental
health disaster and developing complete answers to make
certain that people global have the means to successfully deal
with their mental fitness challenges..

In studies [1], it's pretty clear that there's a deep connection
between mental troubles and the chances of someone taking
their own life. And when you look at the big picture, it's quite
shocking - nearly a million people across the globe end their
lives every year, especially the young ones, making it the
second biggest reason for their passing. It's intriguing that
when someone attempts suicide, they often grapple with
mental challenges. It's like shifting from struggling with
difficult thoughts to considering ending everything. This shift
is observable in how people express themselves and
interact[2].

One practical approach to addressing mental illness and
preventing suicidal ideation is early identification. Recent
advancements in deep learning have facilitated the
development of effective early detection methods [3]. A
notable trend in natural language processing (NLP) involves
the use of contextualized pretrained language models [4],
which have garnered substantial attention for their
effectiveness in various text processing tasks.

This paper delves into the application of these recent
advancements in pretrained contextualized large language
models to introduce MindGuide, an innovative chatbot
designed to function as a mental health assistant for
individuals in need of guidance and support in these critical
areas. MindGuide relies on the capabilities of LangChain and
its ChatModels [5], specifically ChatOpenAI [6], as the
foundation of its reasoning engine. The system incorporates
key components such as LangChain’s ChatPrompt Template
[7], HumanMessage, PromptTemplate, ConversationBuffer
Memory, and LLMChain [8], creating an advanced solution
for early detection and comprehensive support within the field
of mental health. Additionally, the paper discusses the
implementation of Streamlit to enhance the user experience
and interaction with the chatbot.

The remainder of the paper is arranged accordingly. In
Section II, LangChain and its important components are
introduced. The proposed methodology for developing the
whole architecture is described in Section III. Section IV
provides an overview of Streamlit. Section V provides an
illustration of sequential interaction of MindGuide chatbot
and human. The conclusion is drawn in Section V.

II. LANGCHAIN

LangChain, with its open-source essence, emerges as a
promising solution, aiming to simplify the complex process of
developing applications powered by large language models
(LLMs). This framework though the rapid delivery of building
blocks and pre-built chains for building large language model
applications shows the easy way developers can do it.

LangChain helps us to unlock the ability to harness the
LLM’s immense potential in tasks such as document analysis,
chatbot development, code analysis, and countless other
applications. Whether your desire is to unlock deeper natural
language understanding, enhance data, or circumvent
language barriers through translation, LangChain is ready to
provide the tools and programming support you need to do
without it that it is not only difficult but also fresh for you. Its
core functionalities encompass:

1. Context-Aware Capabilities: LangChain facilitates the
development of applications that are inherently
context-aware. This means that these applications can
connect to a language model and draw from various
sources of context, such as prompt instructions, a few-
shot examples, or existing content, to ground their
responses effectively.

2. Reasoning Abilities: LangChain equips applications
with the capacity to reason effectively. By relying on a
language model, these applications can make informed
decisions about how to respond based on the provided
context and determine the appropriate actions to take.

LangChain offers several key value propositions:

Modular Components: It provides abstractions that
simplify working with language models, along with a
comprehensive collection of implementations for each
abstraction. These components are designed to be modular
and user-friendly, making them useful whether you are
utilizing the entire LangChain framework or not.

Off-the-Shelf Chains: LangChain offers pre-configured
chains, which are structured assemblies of components
tailored to accomplish specific high-level tasks. These pre-
defined chains streamline the initial setup process and serve as
an ideal starting point for your projects. The MindGuide Bot
uses below components from LangChain.

A. ChatModel

Within LangChain, a ChatModel is a specific kind of
language model crafted to manage conversational
interactions. Unlike traditional language models that take one
string as input and generate a single string as output,
ChatModels operate with a list of messages as input,
generating a message as output.

Each message in the list has two parts: the content and the
role. The content is the actual text or substance of the message,
while the role denotes the role or source of the message (such
as "User," "Assistant," "System," etc.).

This approach with ChatModels opens the door to more
dynamic and interactive conversations with the language
model. It empowers the creation of chatbot applications,
customer support systems, or any other application involving
multi-turn conversations. We utilized the ChatOpenAI
ChatModel to create MindGuide chatbots specifically
designed to function as mental health therapists. In our
interaction with OpenAI, we opted for an OpenAI API key to
engage with the ChatGpt3 turbo model and utilized a
temperature value of 0.5. The steps to create an OpenAI API
key are outlined [9].

B. Message

In the context of LangChain, messages [10] refer to a list of

messages that are used as input when interacting with a

ChatModel. Each message in the list represents a specific turn

or exchange in a conversation. Each message in the messages

list typically consists of two components:

• content: This represents the actual text or content of

the message. It can be a user query, a system

instruction, or any other relevant information.

• role: This represents the role or source of the

message. It defines who is speaking or generating

the message. Common roles include "User",

"Assistant", "System", or any other custom role you

define.
The chat model interface is based around messages rather

than raw text. The types of messages supported in LangChain
are SystenMessage, HumanMessage, and AIMessage.
SystemMessage is the ChatMessage coming from the system
in its LangChain template as illustrated in Figure 1. Human
Message is a ChatMessage coming from a human/user.
AIMessage is a ChatMessage coming from an AI/assistant as
illustrated in Figure 2.

 Figure 1. A System Message illustration

You are a compassionate and experienced mental
health therapist with a proven track record of
helping patients overcome anxiety and other mental
health challenges. Your primary objective is to
support the patient in addressing their concerns
and guiding them towards positive change. In this
interactive therapy session, you will engage with
the patient by asking open-ended questions,
actively listening to their responses, and providing
empathetic feedback. Your approach is
collaborative, and you strive to create a safe and
non-judgmental space for the patient to share their
thoughts and feelings.

As the patient shares their struggles, you will
provide insightful guidance and evidence-based
strategies tailored to their unique needs. You may
also offer practical exercises or resources to help
them manage their symptoms and improve their
mental wellbeing. When necessary, you will gently
redirect the conversation back to the patient's
primary concerns related to anxiety, mental health,
or family issues. This ensures that each session is
productive and focused on addressing the most
pressing issues. Throughout the session, you
remain mindful of the patient's emotional state and
adjust your approach accordingly.

You recognize that everyone's journey is
different, and that progress can be incremental.

By building trust and fostering a strong
therapeutic relationship, you empower the patient
to take ownership of their growth and development.
At the end of the session, you will summarize key
points from your discussion, highlighting the
patient's strengths and areas for improvement.

Together, you will set achievable goals for future
sessions, reinforcing a sense of hope and

motivation. Your ultimate goal is to equip the

patient with the tools and skills needed to navigate

life's challenges with confidence and resilience.

Figure 2. An AIMessage illustration

C. Prompt Template

Prompt templates [10] allow you to structure input for LLMs.

They provide a convenient way to format user inputs and

provide instructions to generate responses. Prompt templates

help ensure that the LLM understands the desired context and

produces relevant outputs.
The prompt template classes in LangChain are built to

make constructing prompts with dynamic inputs easier. Of
these classes, the simplest is the PromptTemplate.

D. Chain

Chains [11] in LangChain refer to the combination of

multiple components to achieve specific tasks. They provide

a structured and modular approach to building language

model applications. By combining different components, you

can create chains that address various use cases and

requirements. Here are some advantages of using chains:

• Modularity: Chains allow you to break down

complex tasks into smaller, manageable

components. Each component can be developed and

tested independently, making it easier to maintain

and update the application.

• Simplification: By combining components into a

chain, you can simplify the overall implementation

of your application. Chains abstract away the

complexity of working with individual components,

providing a higher-level interface for developers.

• Debugging: When an issue arises in your

application, chains can help pinpoint the

problematic component. By isolating the chain and

testing each component individually, you can

identify and troubleshoot any errors or unexpected

behavior.

• Maintenance: Chains make it easier to update or

replace specific components without affecting the

entire application. If a new version of a component

becomes available or if you want to switch to a

differ.

To build a chain, you simply combine the desired components

in the order they should be executed. Each component in the

chain takes the output of the previous component as input,

allowing for a seamless flow of data and interaction with the

language model.

E. Memory

The ability to remember prior exchanges conversation is

referred to as memory [12]. LangChain includes several

programs for increasing system memory. These utilities can

be used independently or as a part of a chain. We call this

ability to store information about past interactions "memory".

LangChain provides a lot of utilities for adding memory to a

system. These utilities can be used by themselves or

incorporated seamlessly into a chain.

A memory system must support two fundamental

actions: reading and writing. Remember that each chain has

some fundamental execution mechanism that requires

specific inputs. Some of these inputs are provided directly by

the user, while others may be retrieved from memory. In a

single run, a chain will interact with its memory system twice.
1. A chain will READ from its memory system and

augment the user inputs AFTER receiving the initial
user inputs but BEFORE performing the core logic.

2. After running the basic logic but before providing the
solution, a chain will WRITE the current run's inputs
and outputs to memory so that they may be referred
to in subsequent runs.

Any memory system's two primary design decisions are:

1. How state is stored ?

Storing: List of chat messages: A history of all chat

exchanges is behind each memory. Even if not all of

these are immediately used, they must be preserved

in some manner. A series of integrations for storing

these conversation messages, ranging from in-

memory lists to persistent databases, is a significant

component of the LangChain memory module.
2. How state is queried ?

Querying: Data structures and algorithms on top of

chat messages: Keeping track of chat messages is a

simple task. What is less obvious are the data

structures and algorithms built on top of chat

conversations to provide the most usable view of

those chats.

A simple memory system may only return the most

recent messages on each iteration. A slightly more

complicated memory system may return a brief summary of

the last K messages. A more complex system might extract

entities from stored messages and only return information

about entities that have been referenced in the current run.
There are numerous sorts of memories. Each has its own set
of parameters and return types and is helpful in a variety of
situations.

Memory Types:

• ConversationBufferMemory allows for saving
messages and then extracts the messages in a
variable.

• ConversationBufferWindowMemory keeps a list of
the interactions of the conversation over time. It only
uses the last K interactions. This can be useful for
keeping a sliding window of the most recent
interactions, so the buffer does not get too large.

The MindGuide chatbot uses conversation buffer memory.
This memory allows for storing messages and then extracts
the messages in a variable.

III. ARCHITETURE

In crafting the architecture of the MindGuide app, each
step is meticulously designed to create a seamless and
effective user experience for those seeking mental health
support. The user interface, built on Streamlit, sets the tone
with a friendly and safe welcome. Users can jump in by typing

Welcome! to your therapy session. I'm here to listen,

support, and guide you through any mental health

challenges or concerns you may have. Please feel free
to share what's on your mind, and we'll work together

to address your needs. Remember, this is a safe and

confidential space for you to express yourself. Let's

begin when you're ready.

their mental health questions, kicking off a series of
interactions with the LangChain framework. This is where the
magic happens – LangChain acts as the brain behind the
chatbot, working through various components like chat
message templates and a memory concept to create a
personalized and responsive support system. Each step is
broken down.

Step 1. User Interface: Developed using the Streamlit
framework, the user interface welcomes users with a
message explaining the role of the chatbot in providing
mental health support. It assures users of a safe and
confidential space to express their concerns.

Step 2. User Input - Prompt: Users can input mental health-
related questions or seek advice by typing their queries
into the input box integrated into the Streamlit interface.

Step 3. Data Transfer to LangChain: Implement the
functionality that sends the user's input (question) as a
chat prompt template to the LangChain framework. This
input serves as the "human message prompt" template.

Step 4. LangChain Framework: In this phase, the LangChain
framework serves as the backbone of the chatbot, where
all the foundational components and building blocks are
meticulously orchestrated. Here's a deeper dive into the
critical elements of LangChain Processing:

• ChatMessage and Prompt Templates: Within
LangChain, the chatbot's core communication
infrastructure is established by creating
ChatMessage and prompt templates for optimal
chatbot engagement.

• LLMChain and LLM Model Interaction: To
facilitate interactions with the large language
model (LLM), a specialized component called
LLMChain is constructed. The LLMChain acts
as a conduit for managing the flow of
conversation between the chatbot and the LLM
model, in this case, GPT-4.

• The LLMChain handles both the user's queries
and the chatbot's responses, allowing for a
dynamic and coherent conversation flow.

• Chatmodel Class of LangChain: The LangChain
framework leverages the Chatmodel class, a
critical component for interfacing with the
OpenAI model (GPT-4) for making requests to
the language model and processing its
responses, ensuring seamless communication
between the chatbot and the AI model.

• Memory Concept: To enhance the chatbot's
conversational capabilities and provide context-
aware responses, LangChain incorporates a
memory concept that allows the chatbot to retain
and access information from past interactions
within a session. The memory function enhances
conversations by retaining user queries,
preferences, and contextual details, thereby
contributing to a more effective and
personalized interaction. This way, it tailors
responses based on the user's history throughout
the session.

Step 5. Utilize the user's question as input to construct a
chain of prompts that the large language model (in this
case, GPT-4) will process.

Step 6. Model Response: Dispatch the constructed input
chain to the GPT-4 model for natural language
understanding and generation. The GPT-4 model
generates a response based on the input and context.

Step 7. Response to Streamlit: Receive the response
generated by the GPT-4 model and transmit it back to
the Streamlit framework for display to the user.

Step 8. User Response Delivery: Present the model-
generated response to the user, thereby delivering the
mental health advice or information they sought.

Figure 3. MindGuide Chatbot Architecture

IV. STREAMLIT

Streamlit [13] is a faster way to build and share data apps.
Streamlit turns data scripts into shareable web apps in
minutes. Streamlit is an open-source Python library that
simplifies the process of designing and sharing visually
appealing web applications, particularly well-suited for
applications involving machine learning and data science.
Leveraging Streamlit's Python-based development approach,
you can harness the power of Python to build a responsive and
dynamic web application. This is advantageous for developers
familiar with Python, as it allows for quick and efficient
development.

V. MINDGUIDE CHATBOT INTERACTION

The MindGuide Bot interaction is illustrated in Fig. 4,
depicting the following key elements:

• Welcome screen interface with AI message and
the initial human interaction with MindGuide
Chatbot (Fig. 4a).

• MindGuide Chatbot's AI response to the human
message, followed by the human's mental health
question (Fig. 4b).

• MindGuide Chatbot's AI response to the
subsequent human message, followed by another
mental health question from the human (Fig. 4c).

• MindGuide Chatbot's AI response after
analyzing the latest human message (Fig. 4d).

 s

 (a) (b)

 (c) (d)

Figure 4. Sequential Interaction with MindGuide Chatbot - (a) Welcome screen and initial AI message, (b) AI response to the first human message and

mental health question, (c) Subsequent AI response and continued interaction with another human mental health question, (d) AI response after analyzing the

latest human message.

VI. CONCLUSION

This paper employs the OpenAI chat model GPT-4 with a
temperature setting of 0.5 to serve as an initial therapist,
providing support for patients dealing with mental health
issues such as depression and anxiety. MindGuide relies on
the ChatOpenAI model from LangChain as its foundation,

incorporating innovative features like ChatPrompt Template,
Human Message Prompt Template, Conversation Buffer
Memory, and LLMChain to proactively identify issues and
deliver comprehensive assistance. In the next phase, we plan
to enhance this chatbot further by implementing Retrieval-
Augmented Generation (RAG) and incorporating embedding
vectors for frequently asked questions related to mental health.

REFERENCES

[1] K. Windfuhr and N. Kapur, "Suicide and mental illness: a clinical
review of 15 years findings from the UK National Confidential Inquiry
into Suicide," British medical bulletin, vol. 100, pp. 101-121, 2011.

[2] M. D. Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M.
Kumar, "Discovering shifts to suicidal ideation from mental health
content in social media," in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, 2016, pp. 2098-2110.

[3] S. Ji, C. P. Yu, S. F. Fung, S. Pan, and G. Long, "Supervised learning
for suicidal ideation detection in online user content," Complex, 2018.

[4] LangChain, https://www.langchain.com/ (accessed Nov. 29, 2023).

[5] LangChain ChatModels, https://blog.langchain.dev/chat-models/
(accessed Nov. 29, 2023).

[6] LangChain with OpenAI Chat Model,
https://python.langchain.com/docs/integrations/chat/openai/ (accessed
Nov. 29, 2023).

[7] LangChain’s Prompt, https://python.langchain.com/docs/modules
/model_io/prompts/ (accessed Nov. 29, 2023).

[8] LangChain’s Chains, https://python.langchain.com/docs/modules

/chains (accessed Nov. 29, 2023).

[9] OpenAI, https://platform.openai.com/docs/quickstart?context=python
(accessed Nov. 29, 2023).

[10] LangChain’s Message Prompt Template,
https://python.langchain.com/docs/modules/model_io/prompts/messa
ge_prompts (accessed Nov. 29, 2023).

[11] LangChain’s Large Language Model Chain,
https://python.langchain.com/docs/modules/chains/foundational/llm_c
hain (accessed Nov. 29, 2023).

[12] Streamlit, https://streamlit.io/ (accessed Nov. 29, 2023).

	I. Introduction
	II. Langchain
	A. ChatModel
	B. Message
	C. Prompt Template
	D. Chain
	E. Memory

	III. Architeture
	IV. Streamlit
	V. MindGuide Chatbot Interaction
	VI. Conclusion
	References

