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Abstract 

A problem of great interest in the control of hybrid 
systems is the design of least restrictive controllers for 
reachability specifications. Controller design typically 
uses game theoretic methods to compute the region of 
the state space for which there exists a control such 
that for all disturbances, an unsafe set is not reached. 
In general, the computation of the controllers requires 
the steady state solution of a Hamilton-Jacobi partial 
differential equation which is very difficult to compute, 
if it exists. In this paper, we show that for special 
classes of hybrid systems where the continuous vec- 
tor fields are linear, the controller synthesis problem 
is semi-decidable: There exists a computational algo- 
rithm which, if it terminates in a finite number of 
steps, will exactly compute the least restrictive con- 
troller. This result is achieved by a very interesting 
interaction of results from mathematical logic and o p  
timal control. 

1 Introduction 

Reachability specifications for hybrid systems require 
that trajectories of a hybrid system avoid an undesir- 
able region of the state space. One of the most impor- 
tant problems in the control of hybrid systems is the de- 
sign of least restrictive controllers which satisfy reacha- 
bility specifications. This problem has been considered 
in the context of classical discrete automata [2, 121, 
timed automata [l], linear hybrid automata [16], and 
general hybrid systems [7]. The hamework presented 
in [7] has been applied to automated vehicles [6], and 
air traffic management systems [15]. 

Designing least restrictive controllers for reachability 
specifications requires computing the set of all initial 
states for which there exists a control such that for all 
disturbances, the system will avoid the undesirable re- 
gion. The least restrictive controller is then a static 
feedback controller which allows any control d u e  out- 

side this set of initial conditions while allowing all safe 
control values on the boundary of this set [7]. 

The computation of the safe set of initial states for 
general hybrid systems leads to game theoretic meth- 
ods, and in particular to the steady state solution of 
Hamilton-Jacobi equations (7, 141. In general, these 
partial differential equations are very difficult to solve. 
In addition, due to discontinuities in the optimal con- 
trol policy, steady state solutions, if they exist, may 
be discontinuous even if the initial problem data is 
continuous. Recent results in [8] provide a new for- 
mulation of the Hamilton- Jacobi partial differential 
equations for the Reach operator, and numerical tech- 
niques based on level set methods for it’s computa- 
tion. Despite the considerable progress in this area, 
there remain difficult issues that must be resolved: 
Existence and uniqueness of steady-state solutions to 
Hamilton- Jacobi equations, shocks (non-smooth solu- 
tions to smooth problems), convergence of numerical 
algorithms, and leaking-corners (points of discontinu- 
ity in the computed safe set where regardless of the 
control action the state can “leak” into the unsafe set). 

The above difficulties in the computation of least re- 
strictive controllers naturally raise the following ques- 
tion : Can we find classes of systems where the game 
theoretic approach does not require the solution of the 
Hamilton- Jacobi equation? Recently in [lo], we showed 
that for certain classes of continuous, normal linear 
control systems, the controller synthesis problem is de- 
cidable. That is, there exists an algorithm which in a 
finite number of steps will exactly compute the least 
restrictive controller. In this paper, we show that for 
classes of hybrid systems whose continuous dynamics 
are linear, normal, and the dynamic matrices are nilpo- 
tent or have real, rational eigenvalues, the controller 
synthesis problem is semi-decidable. Therefore there 
exists an algorithm which, if it terminates, will exactly 
compute the least restrictive controller. 

In optimal control theory [9], the normality condition 
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requires complete controllability from each input and 
disturbance. This condition ensures that the optimal 
control and disturbance are well defined, and unique. 
If in addition the dynamic matrix has real eigenval- 
ues, then normality also ensures that the optimal con- 
trol and disturbance have a finite number of switch- 
ings [9]. Our framework first applies Pontryagin's Max- 
imum Principle to synthesize the optimal control and 
worst disturbance. By combining the recent decicl- 
ability results in [4, 51, with the normality condition 
which guarantees finite number of switchings of piece- 
wise constant inputs [9], we show that the least re- 
strictive controller for this class of hybrid systems can 
be senii-decidably computed. This interesting interplay 
of results from mathematical logic and optimal control 
presents us with the first semi-decidable controller syn- 
thesis result for classes of hybrid systems which include 
linear control systems. 

In Section 2 we introduce the notation and defini- 
tions of the hybrid system model. In Section 3 we 
briefly review the definitions and the controller syn- 
thesis methodology proposed in [7]. In Section 4 we 
present the main result of the paper. Finally in Sec- 
tion 5 we give concluding remarks and directions for 
future research. 

2 Hybrid System Model 

Here we briefly review the definitions of a hybrid system 
following [7, 141. For a finite collection V of variables, 
let V denote the set of valuations of these variables, 
i.e. the set of all possible assignments of the variables 
in V. For example if x is a state variables taking values 
in R" we write X = { x }  with X = R". 

Definition 2.1 (Hybrid system) A hybrid system 
H is a collection ( X ,  V, I ,  f ,  E ,  $), with: 

0 State and input variables: X and V are dis- 
joint  collections of state and input variables. W e  
assume that X = XD U X c  and V = VD U Vc, 
where X C  and Vc contain continuous, and XD 
and VD discrete variables. W e  refer to valuations 
x E X and U E V as the state and the input of the 
hybrid system. To fix notation, we have Xc = R". 

0 Initial states: I C X is a set of initial valuations 

0 Continuous evolution: f : X x V -+ T X c  is a 

0 Discrete transitions: E E X x V x X is a set 

0 Admissible inputs: $ : X --+ 2v gives the set of 

of the state variables. 

vector field. 

of discrete transitions. 

admissible inputs at a given state x E X. 

By abuse of notation, we sometimes use ( q , x )  = 
(xlxD , xIxc) E X. The meaning of the variable x will 
be clear from the context. 

Definition 2.2 (Hybrid time trajectory) A hy- 
brid time trajectory r ,  is a finite or  infinite sequence 
of intervals T = {I,} of the real line, starting with Io 
and satisfying: 

0 I ,  is closed unless r is  a finite sequence and Ia is 
the last interval, in which case it is left closed but 
can be right open. 

Then fo r  all i 7% 5 r,' and for  
i > o,r, = 

0 Let I ,  = [r,, r,']. 

We denote by 7 the set of all hybrid time trajectories. 

Definition 2.3 (Execution) An execution of a hy- 
brid system H is a collection ( r , x , v )  with r E I ,  
x : r -+ X and v : T 3 V whach satisfies: 

Initial condition: x(r0) E I .  
0 Discrete evolution : X ( T ~ _ ~ ,  V ( T , ' - ~ ) ,  ~ ( 7 % ) )  E E 

for  all i .  
0 Continuous evolution: for all i with ra < r,', 

x is  continuous and v is piecewise continuous in 
[r,, r,'] and for all t E [r,, r,'), (x ( t ) ,  v( t ) ,  x ( t ) )  E E .  
Moreover, f o r  all t E [T,, r:'] where v is  continuous 
W l X c  = f Mt) ,  v(t>>. 

0 Input constraints: f o r  all t E r, v( t )  E q5(x(t)). 

We use x to denote and execution of H ,  and 3-1 to 
denote the set of all executions of H .  A property P of 
a hybrid system H is a map P : 7-l --+ {True, False}. An 
execution x E 3-1 satisfies property P if P ( x )  = True, 
and the hybrid system satisfies property P if P ( x )  = 
True for all x E 3-1. Given a set F C X we define a 
safety property, denoted by OF, by: 

True 
False otherwise. 

if Vt  E r , x ( t )  E F 

3 Controller Synthesis for Hybrid Systems 

Given a hybrid system H ,  we are asked to control it 
using its input variables so that its executions satisfy 
certain properties. The input variables of the hybrid 
system are partitioned into two classes: controls and 
disturbances. We have V = U U D where U and D are 
the control and disturbance variables. The controls can 
be influenced using a controller to guide the system, 
while the disturbances are determined by the environ- 
ment, which may included uncertainties and modeling 
errors. In this paper, we concentrate on the controller 

1835 



synthesis problem ( H ,  OF): the problem of synthesiz- 
ing a feedback controller g : X -+ 2u such that for 
some safe set F all closed loop trajectories of the hy- 
brid system H satisfy the property OF. 

We now review the controller synthesis methodology 
for general hybrid systems as presented in [7, 13, 141. 
A set W C X is controlled invariant if the controller 
synthesis problem ( H ,  O W )  can be solved when I = 
W .  In [7], it was shown that the controller synthesis 
problem ( H ,  OF) can be solved iff there exists a unique 
maximal controlled invariant subset W* C F .  Once 
the maximal controlled invariant set W* is found the 
goal is to find the unique least restrictive controller g 
that renders W* invariant. 

For any input v = (u,d) E V define the set: 

For a state x E X and input v = (u,d) define: 

(2) 
E X I (x,v,y) E E }  if E 4(x) 

if v $ +(x). Next(x, v) = { 
Inv(v) is the set of states from which continuous evo- 
lution is possible under input'v, while Neb(x,  U) is the 
set of states that can be reached from x under input v 
through a discrete transition. For any set K X and 
input v = ( U ,  d )  the successor of K under v is given by: 

Next(K, U) = U Nezt(x, w )  (3) 
x E K  

For any set K X define the controllable predecessor 
of K ,  Pre,(K), and the uncontrollable predecessor of 
K ,  Pred(K), by: 

Pre,(K) = {x E X I 

Pred(K) = {x E X I 

3u E U Vd E D x $ h ( w )  
A Ned(K,v)  K }  fl K 
Vu E U 3d E D Next(K,v) 
nKC # 0) U KC.  

(4) 

where v = (u,d). Pre,(K) contains all states in K for 
which U can force a transition back into K .  Pred(K) 
contains all states outside K together with those states 
for which it is possible to transition outside K regard- 
less of the action of U .  As discussed in [14], it is direct 
to see that for any set K ,  Pre,(K) n Pred(K) = 0. 

Whereas Pre, and Pred capture information about re- 
gions of the state space we can reach using discrete 
transitions of the system, the following operator cap- 
tures continuous reachability information. 

Definition 3.1 (Reach-Avoid [14]) For two dis- 
joint sets K ,  G c X, the Reach-Avoid operator Reach : 
2x x 2x -+ 2x is defined as: 

(5) 
Reach(K, G )  = {xo I Vu E U 3d E 2) 3t 2 0 : 

. 

x( t )  E K AV's E [ O , t ]  x ( s )  '$ G } .  

Here U, 2) denote the set of piecewise continuous func- 
tions from the R to U , D  respectively, and x(.) is the 
unique state trajectory starting from initial condition 
x(0) = xo under the input ( U ,  d ) .  The set Reach(K, G) 
contains the states from which for all controls there ex- 
ists a disturbance such that the state trajectory can be 
driven to K while avoiding the escape set G. 

The following algorithm uses the Reach operator to 
compute the maximal controlled invariant subset of F 
( s e  ~ 4 1 ) .  

Algorithm 3.2 (Max Controlled Invariant Set) 
initialize 

W o = F  

i = o  

Wi-' = W z  \ Reach(Pred(W'), Pre,(Wa)) 
i = i - 1  

W- '= 0 

while W a  # Wa-l 

end while 

Algorithm 3.2 iteratively removes from the safe set F 
all states for which there is a disturbance which either 
through continuous evolution or discrete transition can 
bring the system outside F regardless of the control 
action. In general one can not expect the algorithm to 
converge in a finite number of iterations. However, if 
the algorithm terminates, then the algorithm computes 
the unique maximal controlled invariant set W* C F .  

In order to implement Algorithm 3.2, one needs to 
encode sets of states, perform set intersection, union, 
test for emptiness, and exactly compute Reach(., a ) .  If 
all these conditions hold for a class of systems, then 
the problem is semi-decidable for that class of systems. 
Even though there is no guarantee of termination, if 
the algorithm terminates, then it exactly computes the 
maximal controlled invariant set W*. If in addition, 
Algorithm 3.2 is guaranteed to terminate after a finite 
number of iterations, then we say the problem is decid- 
able. 

The main difficulty in the implementation of the above 
algorithm is the computation of the Reach operator. 
For general nonlinear hybrid system, the computation 
of Reach relies on the numerical solution of a pair 
of coupled Hamilton- Jacobi partial differential equa- 
tions [14]. Recent results in [8] provide a new formula- 
tion of the Hamilton-Jacobi PDEs and level set meth- 
ods for the approximate computation of Reach. These 
new results have improved the state of the art in com- 
putation for hybrid systems, however there remain very 
difficult issues that must be resolved: Existence and 
uniqueness of such solutions, shocks (non-smooth so- 
lutions to smooth problems), convergence of numerical 

. 
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algorithms, and leaking-corners (points of discontinu- 
ity in the computed safe set where regardless of the 
control action the state can "leak" into the unsafe set). 

In the following section, we extend the results on d e  
cidable controller synthesis for linear systems in [lo] to 
introduce a semi-decision procedure for controller syn- 
thesis for classes of linear hybrid systems where the 
solution of the Hamilton-Jacobi PDE is not necessary. 

4 Semidecidable Controller Synthesis 

The controller synthesis Algorithm 3.2 requires meth- 
ods to represent sets, perform unions, intersections, 
complements, check emptiness of sets, and compute 
Pre,, Pred, and Reach. A natural platform for solv- 
ing these computational issues is provided by first or- 
der logic where sets would be represented as quanti- 
fier free formulas. By restricting ourselves to the t h c  
ory of reals (R, <, +, -, ., 0 , l )  which is known to ad- 
mit quantifier elimination [ll], we can represent semi- 
algebraic sets (boolean combinations of sets of the form 
{ x  E R" I f ( x )  < 0) and { x  E lRn I g ( 2 )  = 0 )  where 
f,g E ()[XI,.. .,.,I). In this setting, the computa- 
tion of intersection, union, and tests for emptiness is 
provided by mathematical logic and quantifier elimina- 
tion [Ill. 

For a linear system i = Ax + Bu, the pair ( A , B )  is 
called normal if for each column bi of B,  the pair (A, bi) 
is completely controllable. This motivates the following 
definition. 

Definition 4.1 (Normal Linear Hybrid System) 
Hybrid system H = ( X ,  V, I ,  f ,  E ,  4) is  called a normal 
linear hybrid system i f  Vq E XD the set of feasible 
inputs q5(q,rc)lvc = U, x D, where U, and D, are 
compact rectangles with rational vertices, the reset 
relation E X x V x X is  semi-algebraic, and the 
vector field i s  given by f (q ,  x ,  U ,  d )  = A,x + B,U + E,d, 
where A,, B,, E,, have rational coefficients and the 
pairs (A,, Bq) and (A,, E,) are normal. 

As we will see, the normality condition and the struc- 
ture of the feasible inputs are necessary for proving the 
computability of the Reach operator. 

The semi-algebraic condition on the discrete transi- 
tion relation E is used in proving computability of 
the Pre,, Pred operators. In fact, by defining the sets 
I n v ( v )  and Ned(., v) as first-order formulas in the the- 
ory of reals, one can see that the following lemma is a 
result of the decidability of quantifier elimination on 
first order formula in (R, <, +, -, ., 0 , l ) .  

Lemma 4.2 (Computable Discrete Transitions) 
Given a normal linear hybrid system H ,  for any semi- 
algebraic set K C X operators Pre,(K) and P r e d ( K )  
given in equation (4) are computable. 

Since the discrete state remains constant along 
continuous evolution, in Algorithm 3.2 the set 
Reach(Pred(WZ), P r e u ( W i ) )  can be computed sepa- 
rately for each discrete state. Hence, for each discrete 
location we need to solve a continuous controller syn- 
thesis problem to solve for all states such that the dis- 
turbance can drive the system to a bad state while 
avoiding an escape set regardless of the actions of the 
controller. The following theorem, which is a general- 
ization of the main result in [lo], provides conditions on 
when the above continuous controller synthesis prob- 
lem is decidable. 

Theorem 4.3 (Computable Reach) Consider the 
linear diflerential game 

li: = Ax + Bu+ E d  

with controls U E U and disturbances d E D,  which 
satisfies the following properties: 

e A E Q""", B E QnXnqL,  E E Q n X n d ,  

e the pairs ( A ,  B) ,  (A, E )  are normal, 
e the sets U,  D are compact rectangles with rational 

vertices. 

If A is nilpotent or diagonalizable with real ratio- 
nal eigenvalues, then given disjoint semi-algebraic sets 
K ,  G C R", the set Reach(K,  G )  is a computable semi- 
algebraic set. 

Proof: We provide a sketch of the proof due to space 
limitations. From the definition of Reach it is direct to 
check that Reach(UiKi,  G) = UiReach(Ki ,  G).  Hence 
it is sufficient to show that Reach(K,  G) is computable 
if K is a basic semi-algebraic set of the form 

K = {. E Rn I fi(.) < 0,.  . . , fp ( . )  < 0, 
91(.> = 0 , .  . .g,(.) = O), 

and the escape set is a general semi-algebraic set de- 
fined by G = {. E R" I $(.)}. 

1. Construct the Hamiltonian: 

H ( p ,  X ,  U ,  d )  = pTA. + p T B u  + p T E d .  

The state and co-state dynamics are given by: 

. a H T  p =  -- = -ATp. . aH .=- 
aP ' d. 
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X = A z  + B E +  Ed 
p = -,4=p 

X = AX + B X +  ~; i  
p = -ATp 

p = -ATp 

\ ((pTB > 0)  A (pTE < O j  k p T B  > 0)  A (pTE > O$ 

X = O  
p = 0  

@ ( x )  z True 

Figure 1: The hybrid system constructed for Reach com- 
putation for a linear differential game with one 
input U E [u,G], one disturbance d E [&z] and 
an escape set G = {z I $(z)}. 

Apply the Pontryagin Maximum Principle [9] to 
obtain the saddle solution of optimal (U* ,  d*) :  

U* = arg maxpTBu, d* = arg minpTEd 
UEU d E D  

By the normality condition, the Maximum Prin- 
ciple provides that the optimal controls and dis- 
turbances are unique and switch on the vertices 
of the feasible control and disturbance sets. Since 
the matrix A has purely real eigenvalues, the Max- 
imum principle provides that there exists a uni- 
form upper bound on the number of switchings of 
( U * ,  d*) .  

Construct a hybrid system from the switching logic 
of (U*, d*). The continuous state of the hybrid 
system consists of ( z , ~ ) ~  E RZn. Add a "stop" 
discrete state which stops the computation when 
the condition z @ G is violated (see Definition 3.1 
and Figure 1). The hybrid system constructed 
for Reach computation of a system has 2 discrete 
states for each input and disturbance plus the stop- 
ping state, yielding a total of 2"iL+"d + 1 discrete 
states. Please refer to [lo] for details on the con- 
struction of this hybrid system. 

Each discrete state of the hybrid system has a lin- 
ear vector field with a constant input. Propo- 
sition 4 in [lo], which is builds on the results 
in [3, 4, 51, provides that for a linear system with 
constant input, if the dynamic matrix A is nilpo- 
tent or diagonalizable with real rational eigenval- 
ues, then the problem of computing the set of 
states which can reach a semi-algebraic set is de- 
cidable. 

Compute the Usable Part and the co-Usable Part 
of K :  

5. 

UP !i { x  E dK 13d E D VUE U :  
AEl[(fi(.) = 0) + ( F ) T ( A x  + Bu + E d )  < 01. 
&[(gj(x) = O ) A ( @ ) T ( A z + B u + E d )  = 0 ]  
v[3j : g j ( z )  = 0 A ( W ) T ( A ~  + BU + E d )  # 01). 

UP is the subset of d K  for which an input exists 
that can instantaneously drive x into KO. For each 
x E UP, coUP(z) is the set of vectors such that if 
the system were to flow along any of these direc- 
tions the state would instantaneously enter KC. 

Initialize the hybrid system for Pre computation: 
- 
UP = { ( q p )  E IRZn 12 E UP,p  E coUP(z)} 
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Proposition 3 in [lo] can be applied here to show that 
the constructed hybrid system is non-blocking, deter- 
ministic, and non-Zeno. Since in each discrete state of 
the hybrid system, the input is constant we can apply 
Proposition 4 in [lo] to decidably compute the set of 
states that can reach 6P. The predecessor operator of 
the discrete jumps of the hybrid system is trivial since 
the reset map of the jumps is the identity map. Since 
the dynamic matrix A has real eigenvalues, there is a 
finite number of switcJhings of the optimal control uni- 
formly in ( z , p )  E UP. Hence, after a finite number 
of jumps of the hybrid system, we may apply Proposi- 
tion 4 in [lo] one last time. 

For the constructed hybrid systKm, let M C RZn be the 
set of all points that can reach UP. The computation of 
M requires a finite number of discrete transitions, and 
for each discrete state the continuous predecessor is 
computable. Hence ii4 is a computable semi-algebraic 
set. Then we have R e a c h ( K , G )  = {x E R" I ( 3 p  : 
( z , p )  E M )  V II: E K } .  

The following corollary is a direct result of Lemma 4.2 
. and Theorem 4.3. 

Corollary 4.4 Given a normal linear hybrid system 
H and a semi-algebraic set F ,  i f  the dynamic matri- 
ces in the linear vector fields A, are either nilpotent or 
diagonalizable with real rational eigenvalues, then each 
iteration of Algorithm 3.2 is computable. Hence hence 
for normal linear hybrid systems, problems of comput- 
ing the maximum controlled invariant set W* C F is  
semidecidable. 



Having computed the maximum controlled invariant 
set W* C F ,  the following lemma computes the 
least restrictive controller which renders W* invariant. 
Computability of the least restrictive controller comes 
directly from the fact that the theory of reals admits 
quantifier elimination. 

Lemma 4.5 (Least Restrictive Controller) 
Given the normal linear hybrid system H and a 
semi-algebraic maximal controlled invariant set 

the least restrictive controller g(x) : X -+ ZU that ren- 
ders W* invariant is  computable and i s  given by: 

Corollary 4.4 and 4.5 together give us the main result: 

Theorem 4.6' (Semidecidable Synthesis) Given a 
normal linear hybrid system H and a semi-algebraic set 
F ,  i f  the dynamic matrices in the linear vector fields A, 
are either nilpotent or diagonalizable with real rational 
eigenvalues, the controller synthesis problem ( H ,  0 F )  
i s  semi-decidable. 

_ .  ~ ' 

5 Conclusions 

In this paper we have shown that controller synthesis 
for classes of linear hybrid systems with semi-algebraic 
reachability specifications is semi-decidable. In fur- 
ther research, we will investigate conditions for semi- 
decidability in the absence of the normality condition, 
and the case where the dynamic matrices have purely 
imaginary eigenvalues. In the case of purely imagi- 
nary eigenvalues, the problem becomes quickly unde- 
cidable unless one remains in a compact region of the 
state space. The observation along with the results of 
this paper have a clear and natural connection with o- 
minimal theories of the reals from mathematical logic. 
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