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Abstract: This paper is concerned with simultaneous 
LQ optimal control design for discrete-time and sampled- 
data systems. First it is shown that discrete-time simul- 
taneous LQ design problem of a set of discrete-time sys- 
tems can be reduced to solving a set of coupled matrix 
inequalities. An iterative LMI algorithm is presented to 
solve the feasibility and the feedback gain. Then simulta- 
neous stabilization and simultaneous LQ optimal control 
of a set of LTI continuous-time systems is considered via 
piecewise constant output feedback. It is shown that the 
design of a periodic piecewise constant feedback gain si- 
multaneously minimizing a set of given continuous-time 
performance indexes for a set of LTI continuous-time sys- 
tems can be reduced to that of a constant feedback gain 
minimizing a set of equivalent discrete-time performance 
indexes for a set of LTI discrete-time systems. Explicit al- 
gorithms for computing the equivalent discrete-time sys- 
tems and performance indexes are derived. Examples 
are used to demonstrate the effectiveness of the proposed 
method. 

Key Words: simultaneous stabilization, optimal con- 
trol, periodic systems, piecewise constant output feed- 
back (COF). 

1. Introduction 
Recently, an iterativeclinear matrix inequality approach 
was proposed to obtain output feedback and state feed- 
back gain for a collection of continuous-time (CT) plants 
in [3]. Cao et al. [4] proved that a finite number of CT 
plants are simultaneously stabilizable via state feedback 
or static output feedback if and only if a set of coupled 
LQ control problems with some compatible cross terms 
in the cost functional is feasible and then it is reduced to 
a coupled algebraic Riccati inequalities (AMs) problem. 
An iterative LMI (ILMI) algorithm is presented to ob- 
tain a feasible solution. Lam and Cao [lo] addressed the 
linear-quadratic simultaneous optimal control design via 
static output feedback and state feedback using iterative 
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LMI approach for a set of CT systems. 
Recent work on linear time-varying control has demon- 

strated that simultaneous stability can be easily carried 
out by using a time-varying controller [8]. A multirate 
approach is presented in Khargonekar et  aZ. [8], where a 
simultaneously stabilizing control law based on periodic 
dynamic compensators is proposed. The basic idea is to 
divide an output sampling interval into as many subin- 
tervals as there are plants to be stabilized and to imple- 
ment a deadbeat controller for each plant. This problem 
is also studied in [7]. Although the approach employed 
is quite general, an issue that it does not address is the 
closed-loop performance. This is because excessive inter- 
sampling ripple may occur under the restriction of dead- 
beat control. As a consequence, the closed-loop system 
may exhibit large overshoot and sensitive to parameters 
in many cases. Here we measure the performance in an 
LQR sense: for each possible model we choose a standard 
LQR-type cost function, and then we show how to design 
a piecewise constant controller which not only simultane- 
ously stabilizes each model but also minimizes the sum 
of the performance indexes. 

In this paper, simultaneous optimal control design is 
first addressed using LMI technique for a set of discrete- 
time (DT) plants. We show that the design of simulta- 
neous stabilization optimal controller for a set DT plants 
can be reduced to an optimization problem subject to a 
set of coupled matrix inequalities. The guaranteed-cost 
performance design can also be treated using the ILMI 
algorithm. Simultaneous optimal design of a set of linear 
time-invariant systems using periodic piecewise COF is 
also considered. We show that the problem can be re- 
duced to the design of a COF gain minimizing a set of 
equivalent DT performance indexes for a set of LTI DT 
systems. Explicit algorithms for computing the equiva- 
lent DT systems and performance indexes are obtained. 

2. Simultaneous LQ Optimal Control for 
DT Systems 
Consider the following T DT systems: 

~ i ( k  + 1) = Aiz i (k )  + Biui(k),yi(k) = CZzi(k), (1) 
where xi E RnL is the state, ui E Rm the control, yz E RP 
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the output for i = 1,. . . , r .  Ai, Bi, and Ci in (1) are 
constant and with appropriate dimensions. We assume 
that the triple (Ai, Bi, Ci) is stabilizable and detectable. 
The problem considered here is the design of a static 
output feedback control 13;w 

ui(k) = F y i ( k ) ,  , (2) 

which minimizes an upper bound on the performance 
measures 

for i = 1 ,..., r ,  where Qi 2 0, Ri > 0 and Qi - 
SiRr'ST 2 0. In-(3), the expected values are used to 
take into account the dependence of Ji on the initial con- 
ditions. We shall assume that zi(0). is a random vari- 
able with zero mean and unit covariance, i.e. it satisfies 
E[zi(t)] =. 0 and €[zi(O)xT(O)] = I. We assume that all 
systems have (Ai ,  Bi) controllable and (Ai ,  Q!") observ- 
able. It is well known that the performance measures in 
(3) are given by 

Ji = trace(Pi), 

where each Pi 2 0 satisfies, for a given F ,  the Lyapunov 
equation 

ATp,Ai+ Qi + ( F c ~ ) ~ R ~ F c ~  =pi (4) 

for i = 1,. . . , r, where Ai = Ai + BiFCi, Qi = Qi + 
SiFCi + (SiFCi)T. 

Theorem 1 Consider systems (1) with weighting matri- 
ces (Qi, Ri,Si) for i = 1,. . . , r. The i th  system is stabi- 
lizable via static output feedback i f  and only i f  there exist 
matrices F and Gpi such that 

R : 1 2 ~ c i  + R ; 1 / 2 ( ~ T ~ i ~ i  + s7) = G ~ ~ ,  (>5) 

where Ri = Ri + BTPiBi, P, 2 0 is the solution of the 
algebmic Riccati equation 

A T P ~ A ~  - , ( A T P ~ B ~  + s ~ ) R ; ~ ( B ' P ~ A ~  + s?) 
+Qi + GzGpi = Pi. (6) 

In this case, the performance index takes the value Ji = 
trace(Pi). If there exist real matrices F and Gpi such 
that the Riccati equations (6) have solutions Pi 2 0 for 
i = 1, . . . , r,  then the feedback gain F simultaneously sta- 
bilizing the r systems and minimizing the performance 
indexes (3) for i = 1,. . . , r . 

Theorem 1 gives a necessary and sufficient condition 
for static output feedback stabilizability for a single DT 
system. When Gpi = 0, (6) is the standard Riccati equa- 
tion to construct state feedback control law minimizing 
the performance index (3). On the other hand, if Riccati 
equation (6) has a solution Pi 2 0 with Gpi = 0 and 
F can be selected to satisfy constraint (5), from optimal 

~ 
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is sought such that 

trace(Pi) 5 7, i = 1,. . . , r. 

3. ILMI Approach to Simultaneous 
timal Design 

control theory it is the optimal feedback gain via state 
feedback. Theorem 1 is an extension of the result of [9] for 
DT systems, where a similar necessary and sufficient con- 
dition on the static output feedback stabilizability was 
established for the CT systems with Qi = CTCi, Si = 0 
and Ri = I .  Since the concepts such as stabilizability and 
detectability are not explicitly employed in Theorem 1, 
the proof is much more transparent. Note that this result 
is also presented in [6]. 

For a feedback gain F, which simultaneously stabilizes 
the r systems, it generally does not minimize every per- 
formance index in (3) of the corresponding single plant, 
but there exist Pi 2 0 such that the following Lyapunov 
inequalities hold 

ATpi Ai+ Si + ( F c ~ ) ~ R ~ F c ~  < pi. (7) 

In general, the performance values trace(Pi) 2 trace(P?) 
for i = 1,. . . , r ,  where P," >_ 0 is the solution of Lyapunov 
equation (4). Therefore, we shall determine an output 
feedback gain to minimize the sum of the performance 
index (3), that is, 

T 

i=l 

where Pi 2 0 satisfying (7) for i = 1,. . . , r . 
In practical control design, it is always desirable to 

design a control system which is not only stable, but also 
guarantees an adequate level of performance ,for every 
possible operating condition. In this paper, the guaranteed- 
cost performance design will also be treated and a mini- 
mization of a bound on all the performance measures, y, 

(9) 

OP- 

Note that (7) is equivalent to 

where ri = [ Rf/'FCi R;'12BTPi ] , which is a quadratic 
matrix inequality. As a result of the negative sign in the 
-PiBiRi'BFPi term, (10) cannot be simplified to an 
LMI. To accommodate the -PiBiR:'BTPi term, we in- 
troduce an additional design variable Xi. Note that 

Therefore, we obtain a sufficient condition for the feasi- 
bility of the inequality (lo), given by 



where @(&,Xi) = XiBiRi'B'Pi + PiBiRi'BTXi - 
XiBiRi'BTXi. The following theorem can be established 
along a similar line as in [IO]. 

Theorem 2 There exists a solution (Pi > 0 ,  F )  satisfy- 
ing matrix inequality (10) i f  and only if there exist ma- 
trices F, Pi > 0 and Xi > 0 satisfying matrk  inequality 
(11) f o r i  = I , .  . . ,r . 
Using the Schur complement, inequality (11) is equivalent 
to the following matrix inequality 

* I  Qi -8 AT Pi 
PiAi -Pi - @(Pi,Xi) * < 0. (12) [ -  R:/~Fc~ R ; ~ I ~ B T ~ ~  -I 

This matrix inequality points to an iterative approach to 
solve for F and Pi, namely, if Xi is fixed in (12), then 
it reduces to an LMI problem on the unknown F and 
Pi. The LMI problem is convex and can be solved if a 
feasible solution exists. - 

When Xi is fixed, however, LMI (12) is only a suf- 
ficient condition for the feasibility of (10). In fact, if 
we find a solution of LMI (12), then we find a solution 
of (10). But, in general, it has no solution for a k e d  
Xi. On the other hand, we can solve the optimal out- 
put feedback problem repeatedly for modified systems 
with the pair (Ai, Bi, Ci) replaced by scaled pairs of the 
form (Ai/pj, Bi/pj, Ci), where pj 2 1. This means that 
we can first determine a solution Fj such that p(Ai + 
BiFjCi) < pi, that is, the closed-loop system matrices 
Ai + BiFjCi have eigenvalues in the ,@-circle of in the 
complex s-plane. From the above derivation we can ob- 
tain a necessary condition for the feasibility of (lo), i.e., 
(10) has a solution (Pi > 0, F )  then there exist a real 
number p 2 1 and a matrix Xi > 0 such that 

-I * I  (13) 

Qi -Pi A'R 
&Ai -P2R-PiBiR;lBTPi * C O .  [ FC~ R,1i2BTPi 

Based on the idea that all eigenvalues of Ai + BiFCi are 
reduced progressively towards the unit circle through the 
reduction of P, we may close in on the feasibility of (10). 
In other words, a stabilizing output gain will be found 
once p 5 1. This technique can even be used to achieve 
a prescribed stability degree for the closed-loop system. 

The following algorithm is an extension of the algo- 
rithm proposed in [lo]. 
ILMI Algorithm for DT systems 

Step 1. SET j = 1, and SOLVE the following DT alge- 
braic Riccati equation for 

Step 2 ,  SOLVE the following optimization problem for 
Pi", Fj, and pj. 
OP1: Minimize pj subject to the following LMI 
constraints: 

-I 
(14) 
(15) 

* I  Qa -Pij ATFf 
PIAi -(pj)2Pj - @(P{,X!) * < 0, 

R:/~Fc~ ~ ; ' / ~ ~ ; p i j  

P . > o ,  i = l ,  ..., r. 

[ 
Denote B j  as the minimized value of Pi. 

~ t e p . 3 .  IF ,& 5 1, SET pj = 1, ELSE SET pj = @. 
Step 4.. SOLVE the following optimization problem for 

Pl and-Fj. 

OP2: .Minimize xi==, trace(P!) subject to the above 
LMI constraints (14) and (15). 
Denote Pf and F j  as respectively the solutions Pij 
and Fj of OP2. 

Step 5. IF E:='=, lltrace(X~-p~)ll  < 6, apre-determined 
tolerance, GOTO Step 6, ELSE GOTO Step 7. 

Step 6. IF pj = 1, obtain the optimal solution PzOPt = 
Fiji, Fopt  = F j .  STOP 

ELSE this algorithm cannot get a feasible solution. 
STOP 

Step 7. SET j = j + 1 and X i  = p/- ' .  IF pj-' = 1, 
GOTO Step 4, ELSE GOTO Step 2. 

For the guaranteed-cost design, only the linear in- 
equality constraints trace(P:) < y, i = I , . . . , r  are 
required to be added in OP1 and OP2. When compared 
with the previous approaches, the present technique uses 
F as a free design variable in the LMI optimization frame- 
work. Moreover, with F = [fijlmXp, the controller gain 
can be constrained element-by-element in the following 
form 

(pZJ < fiJ < +zJ, Z = 1 ,... ,m, j = 1, .. . , p .  (16) 

These constraints are linear and hence can also be incor- 
porated naturally in the optimization process. 

The above algorithm can also be used to compute a 
decentralized feedback gain, i.e., the gain with zero non- 
diagonal blocks. The state feedback optimal design cor- 
responds to the special case where C, = I. With &, = 0 
and R, = I ,  the proposed algorithm then determines the 
simultaneous stabilizability of T DT plants via static out- 
put feedback. 

4. Simultaneous LQ Design for Multirate 
I 

P, = A~P,A,-(A~P,B,+s,)~~~(BTP,A,+s,T)+Q,,  SD Systems 
To make a distinction, CT signals will be represented by 
(.) around an independent variable, whereas DT signals 
will be represented by bracket [.] in the following. 

SET X," = P, as the initial guess of the solution of 
(11), for i = 1,. . . , T .  
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It is interesting to explore the possibility to simulta- 
neously stabilize a collection of linear time-invariant sys- 
tems using periodic time-varying output feedback gains. 
A trivial necessary condition that the optimal multi-model 
constant/static output feedback problem has a solution 
for a time-invariant multi-model system of the form (1) 
is that there exists a stabilizing output feedback gain 
which simultaneously stabilizes all the systems. It is well 
known that not all systems are stabilizable by static out- 
put feedback thus the approach proposed in above sec- 
tion is not generally applicable. However, analogous to 
the single model case we can try to employ periodic static 
output feedback for the control of linear time-invariant 
systems which are not stabilizable via static output feed- 
back. From [l, 5,8], it is known that provided the period 
N is chosen sufficiently high every time-invariant system 
can be stabilized by using periodic COF. Moreover, not 
only can each model of the multi-model system be stabi- 
lized by a periodic COF but an arbitrary fast dynamics 
can also be achieved simultaneously for all the models. 
The increased stabilization potential of the periodic out- 
put feedback applied to multi-models has been shown in 
[2, 7, 81. Thus, periodic static output feedback control 
could be a very promising approach for practical multi- 
model applications. 

Consider the following LTI CT systems 

&(t) = Azzz(t) + B,u(t), %(t )  = Czzz(t), (17) 

where i = 1,. . . , T.  The objective is to design, if possible, 
a controller which performs well for each of these models. 
Assume that the sampling period is ho, where ho is to be 
chosen such that (eAaho , (7,) is detectable for i = 1, . . . , T.  

The output measurements are taken at time instants t = 
kho, k = 0,1,2, .  . . . The periodic output feedback control 
law is given by 

u(t)  = F(t )y (kho) ,  for kho 5 t < ( k  + l)ho, 

where F ( t  + ho) = F ( t ) ,  which simultaneously minimizes 
the following CT performance index 

(18) 
for i = 1, .  . . , T .  

We consider a controller which samples all the plant 
outputs with the same period ho, and changes the i-th 
plant input with shorter period hi (and keeps it constant 
over the time interval of hi), where hi = ho/Ni, and Ni 
are some positive integers. ho is called frame period, and 
Ni input multiplicity. This means that each component is 
fed into the system by means of the following zero-order 
hold mechanism 

uz(t) = U i ( j h Z ) ,  t E [jhi, ( j  + 1)hi) (19) 

As in [l, 71, the control law is assumed to be piecewise 
constant, i.e. it is given by 

uz(kh0 + j h i )  = f i j (k)Y(khO),  (20) 

where f i j ( k )  is a row vector denoting the time-varying 
feedback gain for i = 1,. . . , m, j = 0,. . . , Ni - 1. This 
type of controller is called multirate input COF con- 
troller. Let N be the least-common multiple of the entries 
of {Nili = 1,.  . . ,m} and h = ho/N, ni = N/Ni.  In the 
following, we will also denote 

u[kN + j] = Fj(k)y[kN], (21) 

Fj(k> = [ fij,(k)' . . *  fmj,(k)' 1 ' 1  

for j = 0,. . . , N - 1, ji = 0,. . . , Ni - 1. For simplicity, 
we first consider the following single C T  system 

k( t )  = Az(t) + B u ( ~ ) ,  y(t) = Cz(t). (22) 

It is assumed that (All?) and (A,C) are assumed to be 
controllable and observable, respectively. Let (Ad, Bd, C )  
denote the DT system of (22) at  rate l /h ,  i.e., Ad = 
exp(Ah), Bd = Jt exp(As)B(s)ds. The discretized sys- 
tem of (22) at  rate l / h  is as follows 

~ [ l  + 11 = Ad~[ l ]  + B d ~ [ l ] ,  ~ [ l ]  = Cz[l] (23) 
h Denote ai = so * exp(As)b&, i = l , . .  . , m, where bi is 

the ith column of the matrix B. Define 

whereb,(j) ERnxN2,  j=O, . . . ,N  bedefinedas 

& ( O )  = 0, 

&z(w2) = [ B,(V,) 0 0 ] , 

&,((Nz - l)nt + w,) = 

h2(n2 +w,) = [ A;& 6 , ( ~ , )  0 0 1 ,  
... 

[ A$Nt-2)nz+11*& . . . A:t+V*t;, A'Jnb a,( ] d 2 

where &(wz) = l:hexp(As)bzds, w, = 1, .  . . , n,. Obvi- 
ously, &(n,) = 6,  and 

It is easy to find that 
From (22), we have 

z(kh0 + j h )  = 
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kho+jh 

kho+%,h, + J exp[A(kho + jh - t)lb2fZ,At3 (k)dt ,  

where A,., is a integer satisfying iiz.,n2 I j < (A2., + l)n,. 
Obviously 0 5 ii,., 5 N, for all j .  Note that f , , (k)  is a 
constant vector. We can find that K(j , i )  = 6,(j).f,(k), 
where v, = j - Azjnz.  Hence 

m 

z(kho + j h )  = A$z(kho) + C&(j ) . fZ (k )y (kho)  
z=1 

= Aiz(kh0) + B(j)i i(kho),  (29) 
u(kh0) = FkY(khO), 

where ii(t) is an augmented input and maintains constant 
on the interval [kho, (k + 1)ho). The discrete formula of 

. above equations are 

z [ k N  + j ]  = A i z [ k N ]  + B ( j ) G [ k N ] ,  (30) 
G[kN]  = F’ky(kN), 

where i i[kN+j]  will maintain constant for j = 0,. . . , N -  
1. It is not difficult to find that 

Z [ ( k  + 1)N] = AZ[kN] + BGi[kN], (31) 

which is the discretized state equation of CT system (22) 
with sampling time ho. With (30), we can easily compute 
the discretized state response with sampling time h. 

If the multirate controller (20) is assumed to be peri- 
odic piecewise constant, the transition matrix (for period 
ho) of the closed-loop system becomes [l]  @ = A + BEG‘, 

(31), we can easily obtain the above transition matrix. It 
is shown in 111 that for almost every ho, the matrix BF 
can be assigned an arbitrary value by suitable choice of 

if ( A ,  B )  is controllable and if N, 2 v2,z = 1,. . . , m, 
where 21, is a locally minimum controllability index of 
( A , B )  because B has rank n in such case. If ( C , A )  is 
observable, then the eigenvalues of Qj can be assigned ar- 
bitrarily for almost every ho by suitable choice of F .  

It is well known that a controller designed in this way 
and applied to a linear system will achieve the desired 
closed loop behavior in the output sampling instants, but 
is likely to result in strong oscillation between sampling 
instants. An effective approach to improving intersample 
behavior is to compute a hold function which minimizes 
a quadratic performance index 

whereP=  [ f c o  ... f 1 , N 1 - l  T ... f;fl,N,-l 1‘. From 

min { J = lm [ zT( t )Qz ( t )  + uT(t)Ri(t)] d t }  (32) 
4 4  

where R > 0 and Q ’2 0 are constant. The sampling of 
the performance index (32) at rate l / h  yields the equiv- 
alent DT weights R d  = $(RT(t)QR(t) + R)d t ,  Qd = 

Sgh(eAt)TQeAtdt, and s d  = [:(eAt)TQ&!(t)dt, where a(t) 
s,” eAsBds. Then the sampled-data optimal control prob- 
lem becomes finding a multirate feedback control law (20) 
to minimize the following DT performance index 

m 

J = j = O  [ 3 3 1 1  uT[Z] ] [ 2; 2 ] [ ] (33) 

with the piecewise COF u[Z] at rate l /h .  We can rewrite 
(31) as the following LTI system 

SN[k  + 11 = AzN[k]  + B u N [ k ] ,  (34) 
YN[k] = c z N [ k ] ,  (35) 
UN[k] = FkyN[k],  (36) 

which can be seen as the sampling of system (23) at 

G [ k N ] ,  k 2 0, with initial condition zN[o] = 401. The 
input u[kN + j ]  in (23) and (33) can be written as 

N ,  where z N [ k ]  = X [ k N ] ,  gN[k] = y [ k N ] ,  UN[k] 

u [ k N  + j ]  = F j ( k ) y [ k N ]  = w ~ + l U N [ k ] ,  (37) 

E RmxN, j = for j = 0 ,..., N - 1, where W., = 

1 , .  . . , N ,  are defined as 

y m  1, Z = N, + A,, + 1 2 = 1,.  . . 
= 0, Otherwise ’ z =  1, ..., N 

(38) 
The time-invariant system (34) can be seen as a state- 

sampled representation of system (23), feeding by an aug- 
mented input vector (36) and producing an augmented 
output vector (35). It is easy to find that system (34) is 
stable if and only if system (23) is asymptotically stable. 

So, with initial condition z N [ o ]  = z[O], (33) can be 
rewritten as 

{ 

where Q ,  S and R are time-invariant matrices 

N-1  

Q = C(A:)~Q~A;, (40) 
j=O 

N-1 N-1  

fi W,T+,Rdwj+1+ ( B ( j ) T Q d B ( j )  
,=O 3=1 

+ ( j ) Sd w, + 1 + w; 1 sz B ( j ) ) , (41) 

3 = C ( A Y S ~ W ~ + ~  + 3=1 C ( A Y Q ~ B ( ~ ) .  (42) 
N -  1 N-1  

j=0 

Theorem 3 Assume the CT system (22) is given. The 
optimal design of piecewise output feedback control law 
(20) minimizing (32) can be reduced to that of a COF 
control law F minimizing (39). 
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The discrete time-invariant system (34) has the state 
z ~ [ k ]  = z [ k N ] .  From (37), any output feedback con- 
trol law t 9 ~ [ k ]  = F z ~ [ k c ]  can be written as u[kN + j ]  = 
W j + 1 ~ z [ k N ] ,  j = 0,. . . , N - 1, where Wj are defined 
as in (38). 

The above derivation for single plant can be easily 
extended to simultaneous LQ optimal design for r CT 
systems (17) by the same piecewise COF controller (20). 
From last subsection, the CT system model (17) and the 
periodic piecewise COF control law (20) can be reduced 
to the following DT system models 

~ i , N [ k  + 11 = A i ~ i , N [ k ]  + Biui,N[IC], (43) 

(44) 

where Ai, Bi is defined by (24) and (25), respectively. 

Theorem 4 Assume that the r CT systems (1 7) are given. 
The simultaneous optimal design of piecewise output feed- 
back control law (20) minimizing (18) can be reduced to 
that of a COF control law F minimizing 

for the LTI systems (43, 44), where Q i ,  Ri and can 
be determined as an (do), (41) and (42) respectively for  
i = l ,  ..., r .  

Based on the above theorem, after selecting the frame 
period ho and the input multiplicities Ni, Algorithm 1 of 
Section 3 can be used to solve the feedback gain E .  

5.  Examples 
Consider two plants 

1 as + 1 
G ~ ( s )  = - s + 1 ' G2(s)  = (s + l)(s - 1) ' 

where a is a real constant with a # 1. It is not difficult 
to find when a < -1, they are not simultaneously stabi- 
lizable by an LTI controller. Now we use the presented 
approach to find a simultaneous stabilizing periodic con- 
troller for a = -2. Let the sampling time be T = 1. When 
N = 1, the ILMI algorithm cannot obtain a feasible se- 
lution, but when we select N = 2, after 25 iterations we 
get the following result 

[ 45.6598 -0.0004 ] 
-0.0004 0.0010 ' F = [ 7.493 -4.484 J ,Pi = 

1 720.151 5 -668.5406 -0.3663 
p2= [ -668.5406 657.4452 0.3294 . 

-0.3663 0.3294 0.0922 

This means that the above two plants can be simultane- 
ously stabilizable by a 2-periodic piecewise COF gain. 

6. Conclusion 
In this paper, simultaneous piecewise output feedback 
LQ optimal control is addressed using ILMI approach 
for multiple LTI CT systems. It is shown that the de- 
sign of the simultaneous LQ optimal feedback gain can 
be reduced to a set of coupled matrix inequalities. An 
iterative LMI algorithm is proposed to solve the feasibil- 
ity. From numerical experience, the algorithm leads to 
a feasible solution of the simultaneous LQ optimal con- 
trol problem whenever a controller exists. However, even 
if a simultaneous stabilizing controller exists, it remains 
to be established that the ILMI algorithm would always 
give a feasible solution. 
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