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Une caractérisation de la
Condition de Rang d’une Algébre de Lie
4 base de fonctions périodiques transverses

Résumé : La Condition de Rang d’une Algebre de Lie —Lie Algebra Rank Condition (LARC),
en anglais— joue un roéle central dans la théorie de la commande des systémes non-linéaires. Il est
montré dans ce rapport que la satisfaction de cette condition par un jeu de champs de vecteurs
réguliers équivaut & l'existence de fonctions périodiques transverses. La preuve est constructive
et fournit une méthode explicite pour la synthése de telles fonctions.

Mots-clés : systéme non linéaire, systéme homogene, algebre de Lie



A characterization of LARC 3

1 Introduction

The main result of the present study is a theorem which basically states that smooth vector
fields Xi,...,X,, on a finite-dimensional manifold M satisfy the classical Lie Algebra Rank
Condition at a point p € M (LARC(p)) if and only if there exist an integer 72(> m) and, for any
neighborhood U, of p, a smooth function f : a — f(a) from R*~™ to U, which, for every a, is
(maximally) “transversal” to the subspace spanned at f(«) by these vector fields.

The authors believe that the proposed theorem could become instrumental, and a unifying
tool, for the development of new solutions to various problems involving nonlinear control systems.
Direct application of the theorem concerns, in the first place, “practical” feedback stabilization
of either driftless control systems —such as nonholonomic systems—, in relation to time-varying
feedback methods, or systems subjected to a non-vanishing drift vector field, in relation to “hybrid”
open-loop/feedback control solutions based on the use of “highly oscillatory” terms and averag-
ing techniques. Other applications are also envisioned in the context of nonholonomic motion
planning, again in relation to oscillatory open-loop control techniques which have been proposed
to approximate arbitrary trajectories in the state space, and —a more tentative guess— in the
domain of state estimation and nonlinear observer design. Results in some of these directions
have already been obtained and will be reported in forthcoming publications.

The following notation is used throughout the paper.

e For manifolds M and N, M, denotes the tangent space of M at p, and for F' € C*(M;N),
T,F denotes the tangent mapping of F' at p.

T*, with k € N, denotes the k-dimensional torus.

B, (0,6) denotes the closed ball in R™ centered at zero, and of radius 6.

For h € C*(R™;R™), and g € C*°(R"*;R) with g(x) # 0 for z # 0, we write h = 0(g) when
|h(z)|/1g(x)] — 0 as & — 0.

d denotes the exterior derivative.

2 Main result

Theorem 1 Let X1,...,X,, denote smooth vector fields on a smooth n-dimensional manifold
M, such that the accessibility distribution A(p) 2 Span {X(p) : X € Lie(X1,...,Xm)} is of
constant dimension ng in a neighborhood of pg. Then, the following properties are equivalent:

1. ng = n, i.e. the Lie Algebra Rank Condition at py, LARC (py), is satisfied for the vector
fields X1,... , Xp.

2. There exist n € N and, for any neighborhood U of py, a function F € C®(T"~™;U) such
that:

V8 € T*"™, Mg = Span {X1(F(6)), ... , Xm(F(0))} + TyF(T; ™). (1)

Remark 1 Relation (1) is reminiscent of the transversality property for functions —see e.g. [1,
Sec. 3.5] for a definition.

RR n°® 3873



4 Morin & Samson

We next rephrase this theorem by considering a system of local coordinates = = (x1,... ,zy)
on M which maps pg to 0 € R*. Throughout the paper, we also denote by a = (m1,.-. ,5) &
system of local coordinates on T"~™.

Theorem 2 Let g1,... ,gm, resp. f, denote the local representatives on R* of X1,..., X, resp.
of ', in Theorem 1. Then, the following properties are equivalent:

1. LARC(0): the system
S : T = Zuzgl(x)
=1

satisfies the Lie Algebra Rank Condition at the origin.

2. TC(0): there exist n € N and a family (fe)eso of functions fo € C°(T™ ™; B,(0,€)) such
that, for any € > 0, the following Transversality Condition holds:

ofe

80ém_|_1

Ofe

8aﬁ

(6)

V6 € T™,  Rank (gl(few)) L am(70) <9>)=n. @)

3 Proof of Theorem 2

3.1 TC(0) = LARC(0)

We assume that LARC(0) is not satisfied, and show that 77C/(0) cannot be satisfied either. By
assumption, the accessibility distribution is of constant dimension ng in a neighborhood of the
origin. Therefore, if ng < n, the Frobenius theorem guarantees the existence of local coordinates
y = ¢(x) such that y, is constant along the trajectories of S, i.e. for some neighborhood U of the
origin,

On,
ox

Now assume that T'C'(0) is satisfied, and choose any f. satisfying (2) and such that B, (0,¢) C U.
By the compacity of T"~™, the smooth function § — ¢, (fe(f)) from T"~™ to R reaches its
upper bound for some 6, i.e.

Vi=1,...,m, Ve el

(z)gi(x) =0 . 3)

O0n , , ;7\ Ofe

Vi=m+1,...7, %(fe(e))aai(é):o. (4)

From (4), and (3) evaluated at x = f.(f), we obtain

26
ox

(£.(0)) (gl<fe<é>> @) M@y . Y <9>)=o,

which is in contradiction with 7°C/(0). |

INRIA



A characterization of LARC 5

3.2 LARC(O) — TC(O)
3.2.1 Notation and recalls

Prior to addressing the proof itself, we specify some complementary notation and recall a few
basic definitions and results —some of which are well known while others are less classical— that
are extensively used in the sequel. These recalls are about homogeneity on one hand, and free Lie
algebras on the other hand. For a more complete survey about these issues, we refer the reader
to [2, 3], as for the properties associated with homogeneity, and to [4, 7] as for the role of free Lie
algebras in control theory.

About homogeneity

Given p > 0 and a weight vector r = (r1,... ,75) (r; > 0 Vi), a dilation A}, on R" is a map from
R"® to R* defined by Vz = (z1,... ,2n) € R*, Al2 2 (W™ 21y ey W™ 20).

A function f € C°(R™;R) is homogeneous of degree | with respect to the family of dilations (AL u>0,
or more concisely A"-homogeneous of degree [, if Vi > 0, f(ALz) = ulf(2).

A A"-homogeneous norm is defined as a positive definite function on R"*, A"-homogeneous of
degree one.

A smooth vector field X on R" is A"-homogeneous of degree d if, for all i = 1,... ,n, the function
x — X;(x) is A"-homogeneous of degree d + ;.
The system
m
Sep:  E=Y_ bi(2)u; (5)
i=1

is a A"-homogeneous approrimation of S if there exists a change of coordinates ¢ :  —— z which
transforms S into

m

= (bi2) + hi(2) s, (6)

i=1
where b; is A"-homogeneous of degree —1, and h; denotes higher-order terms, i.e. for any j, the
J-th component h; ; of h; satisfies h; ; = o(p"i~1), where p is any A'-homogeneous norm.
The main motivation for introducing such approximations comes from the following result.

Proposition 1 [2, 6] For any system S of smooth v.f. which satisfies LARC(0), there erists a
A"-homogeneous approzimation Sap which also satisfies LARC(0).

Finally, we say that a set {b1,...,b,} of v.f., or the associated system (5), is nilpotent of order
d + 1 if any Lie bracket of these v.f. of length larger than, or equal to, d + 1 is identically zero.
It is simple to verify that any set {b1,...,b,} of smooth v.f. with the b;’s A"-homogeneous of
degree —1 , is nilpotent of order 1 + Max{r;:i=1,... ,n}.

About free Lie algebras

Let us consider a finite set of indeterminates X1, ... , X;,, and denote by £(X) the free Lie algebra
over R generated by the X;’s. We also denote by F(X) the set of formal brackets in the X;’s.
For any set {b1,...,bn} of smooth v.f., and any B € F(X), we denote by Ev(B){b1,...,bn} the
evaluation map , i.e. Ev(X;){b1,... ,bm} = b;, and

Ev([Bx, By)){b1,--- s bm} = [Ev(BA){b1,- - b}, EV(B){b1, .. b}

RR n°® 3873



6 Morin & Samson

The definition of a (generalized) P. Hall basis of £(X) is recalled below.
Definition 1 A P. Hall basis B of L(X) is a totally ordered subset of F(X) such that
1. Each X; belongs to B.

2. If B = [B), B,) € F with B),B, € F, then B € B if and only if B\, B, € B with By < B,,
and either (i) B, is one of the X;’s or (ii) B, = [Bx,, B,2| with By, < B.
3. If B € B is a bracket of length {(B) > 2, i.e. B = [B), B,|, with By, B, € B, then B\ < B.

In order to simplify the forthcoming analysis we choose a specific P. Hall basis B obtained by
specifying the total order associated with it. It is well known (see e.g. [5, Ch. 4]) that the chosen
ordering is compatible with the definition of a P. Hall basis.

Specific order:

{(B)<{B')Y= B< B
Xi<Xj<:>i<j (7)
For {(B) = {(B') >1,B < B' <= B\ < B}, or By = B} and B, < B,

We denote by
B={Bi,Bs,...,By,...}, BiI< By <...<Bg<... (8)

the P. Hall basis associated with the total order (7), and also by £(i) the length of any bracket B;
of this basis. From (7) and the definition of a P. Hall basis,

Vi=1,....m, Bi=X;. (9)
Note that, for any ¢ > m + 1, there exist unique integers A(7) and p(i) such that
B; = [Bygy, Byl - (10)

Moreover, i = k (> m+1) if and only if A\(z) = A(k) and p(i) = p(k). Also, it directly follows from
(7) and the definition of a P. Hall basis that A(i) < p(i) < i. By extension of the above notation,
and whenever this will make sense, we will use the symbols A\2(i), A\p(i), p%(i),... to index the
elements of B. For instance, if {(p(i)) > 2, we can write B,y = [Bxy(), By2(s)]-

Let 0 < d € N, we denote by L£4(X) the subspace of £(X) generated by brackets of length at
most equal to d. Then, the subset of B composed of all brackets B; such that £(j) < d is a basis
of L4(X) denoted as By. Let n(d) denote the dimension of L£4(X), so that

Bd = {Bl, e 7Bn(d)} and ﬂ(n(d)) =d.

One can associate the following free system with the basis By.

’

.Ci'l = U
Jmo T tme (11)
Tm+1 =  Tx(m+1)Tp(m+1)
( Tn(d) = Tx(n(d)Tp(n(d)) -

INRIA



A characterization of LARC 7
It is straightforward to verify that (11) defines a control-affine driftless system:
S(d) = iuibl(x) (12)
i=1
where the components b; ; (j =1,... ,n(d)) of the v.f. b; are defined by
i@ ={ 2 e &

(with 65 standing for the Kronecker delta).

The following properties of free systems will be used in the sequel. While the first two prop-
erties are well known (see [4]), we are not aware of a reference for the last two ones. For this

reason, proofs of these properties are given in the appendix.

Lemma 1 Fori=m+1,... ,n(d), let b; denote the vector field Ev(B;){b1,... ,bm}. Then, the

following properties hold.

1. For anyi=1,...,n(d) and any z € R*D  b(z) = a;0/0x; + > j>ibij()0/0x; for some

non-zero constant a;, so that S(d) satisfies LARC () for any = € RM%.

2. The vector fields b; are A-homogeneous of degree —{(i) with A, (1 > 0) the dilation defined

by
A,ux = (ﬂz(l)xlv <o nu/Z(n(d))‘Tn(d)) ?

so that S(d) is nilpotent of order d + 1.

(14)

3. For any p € C®(R™Y;R), A-homogeneous of degree d' < d, and any j € {1,... ,m}, there

ezists ¢ € C®°(R™Y;R), A-homogeneous of degree d' + 1, such that

ox

j L
Vi=1,...,m, Vz € R*D %(x)bl(x) — { p(z) ifi=

0 otherwise .

(15)

4. For any i € {1,... ,n(d)}, and any p € C°(R"Y;R), A-homogeneous of degree d' — £(7)
—uwith d' < d—, there exist h1 and hyj, in C“(R"(d);]R), A-homogeneous of degree d' and

d — ((j) respectively, such that

pleyde; =dhy+ D hoy() (day — zrgydz ) -

Jii<e(g)<d

(16)

Remark 2 1. Although the proof of Property 4 given in the appendix uses the other properties
(Property 3, in particular) of the free system (11), Property 4 is not, properly speaking, a
property of this system but rather a property of the total order chosen for the P. Hall basis.

2. The functions p, ¢/, hy and ha j in Properties 3 and 4 are polynomial in x, because they are

smooth and homogeneous.

RR n°® 3873



8 Morin & Samson

3. Since the smooth functions ¢/ in Property 8 is homogeneous of degree d' + 1, it can only
depend on the n(d' + 1) first components of x.

After these preliminary recalls, we can now proceed with the proof of Theorem 2. It is composed
of three steps which are summarized in the following three propositions.

Proposition 2 If T'C(0) holds for a homogeneous approzimation Sap, of a system S, then T'C(0)
holds for S also.

Proposition 3 If, for any d € N—{0}, TC(0) holds for the free system S(d) with i = n(d), then
TC(0) holds for any smooth driftless system Spom which satisfies LARC(0) and whose control
vector fields are A"-homogeneous of degree —1 for some dilation Aj,.

Proposition 4 For any d € N—{0}, T'C(0) holds for the free system S(d) with 7 = n(d).

From Proposition 1, if S satisfies LARC(0), it has an homogeneous approximation which also
satisfies LARC(0). This property, combined with the three propositions above, clearly implies
that LARC(0) = T'C(0). There remains to prove these three propositions.

3.2.2 Proof of Proposition 2

S rewrites, in some coordinates z = ¢(x), as

= Em: s (?)i(z) n h,-(z)) (17)

=1
where the b;’s, A”-homogeneous of degree —1 (for some dilation A"), are the v.f. of the homoge-
neous approximation Sgp, and h; denotes higher-order terms, i.e.

hij = O(prj_l) , (18)

),

with p denoting any A"-homogeneous norm. We want to show that if 7C'(0) holds for Sg,, then
it also holds for S. Since T'C(0) is independent of the system of coordinates, it is sufficient to
show that T'C'(0) holds in the coordinates z. Let 7 and (fc)e>o denote the integer and family
of functions involved in the definition (see Theorem 2) of T'C/(0) for the approximation Sg,. We
show below that S satisfies TC'(0) by considering the same integer 7 and the family of functions
(fe)e>o defined by

fe(e) = Az(e)fl(e)a (19)

with u(e) denoting a strictly positive number which is i) smaller than some adequately chosen
po > 0, and ii) such that supgepa-m \A;(e)f1(0)| < e. Note that u(e) always exists because
f1(T"~™) is a compact set so that limy, .o supgera—m [A] f1(0)| = 0.
With z denoting a vector in R™, one deduces from (18) that
hi,j(A}2) hij(A}2)

lim ———— = lim —=———— = 0.
”li)% prj_l(ALZ) ”li)% urj—lprj_l(z)

INRIA



A characterization of LARC 9

Therefore,

hij(A72) = cij(p, 2)u" ™!
where |c; j(i, z)| tends to zero as p tends to zero. Moreover, the convergence is uniform with
respect to the z variable when z € B,(0,1). The above equation can also be written in vectorial
form as

hi(AL2) = u A, 2) (20)

with ¢; = (¢i1,... ,Cin)-
Let us now evaluate the rank of the matrix

A0 2 (b B)EO) o Gt ) (100D O () ... Bﬂw))-

aCVWL—I—I

Using (19), (20), and the fact that each b; is homogeneous of degree —1,

A(e,0) = A(e,0) D(p(e))

with
- ~ ~ 17, 0
A(e, 0) 2 (Az(e)bl(fl @) ... AL(E)bm(fl (@) ;(C)T:;l(e) . AL(E)£(0)>
+ (AL(G)Cl(N(G)a f(0)) ... AL(G)Cm(M(G)a f1(6)) 0 ... 0) )
and

D(u(e)) 2 diag{1/u(e),... ,1/u(e),1,... 1}

Since D(p(e)) is non singular, it readily follows that

Rank A(e,f) = Rank (i’l(fl(e))+CI(U(€)af1(9)) oo b 1(0)) + em(ule), £1(0)) o)
Oh (g ... %(90

0m+1 oo

Now, by assumption,

Vo€ T"™  Rank (Bl(fl(e)) a2 %(e)):n. (22)

O +1 ooy,

In view of (21) and (22), and using the facts that fi(6) € B,(0,1) and that |¢; j(u, 2)| tends
uniformly (w.r.t. z € B,(0,1)) to zero as p tends to zero, there exists a strictly positive number
io such that

(u(e) < po) = (VO € T"™™ | Rank A(e,0) = n) .
This concludes the proof of Proposition 2. |

Remark 3 The previous analysis implies —by setting Vi, h; = 0 in (17)—, that for a homoge-
neous system, if a function f € C*°(T"™;R") satisfies (2) then, for any p > 0, A, f also satisfies
(2). Therefore, TC(0) is satisfied for this homogeneous system with the functions fe 2 Ay f,
where p(e) is any strictly positive value such that supgera-m |Aye f(0)] < €.

RR n°® 3873



10 Morin & Samson

3.2.3 Proof of Proposition 3

Consider a smooth driftless system

Shom : = bi(z)vi . (23)

=1

whose v.f. b; (i =1,...,m) are A"-homogeneous of degree -1 for some dilation AJ,, and satisty
LARC(0). Since Spom is nilpotent of some order d + 1, it can be associated with the free system
S(d) whose vector fields b; are defined in (13). We show below that any family (f¢)eso which
satisfies T'C(0) for the free system S(d) induces a family (f.)eso which satisfies TC/(0) for Spom.
In fact, from Remark 3 above, we only need to show the existence of a single function f e
C® (T”(d)*m; R™) which satisfies the transversality condition (2) for Shom.

Let f denote any of the functions f. associated with S(d). From Property 1 of Lemma

1, the vectors b1(z),... ,by(a)(x) are linearly independent at any z € R4, Therefore, in the
neighborhood of any 6 € T4~ there exist (unique) smooth functions u;; such that
of n(d)
Vji=m+1,...,n(d), V0 € Dom(a),  -(0) =Y uf;(0)bi(£(0)), (24)
Baj 1 ’

with Dom(«) denoting the domain of the local coordinates c. Also, using the fact that f satisfies
the transversality condition (2) for S(d),

V6 € Dom(a),  DetU%(6) £0 with U*(0) 2 (ug (0

z,]( ))i,j:m—i—l,...,n(d) ’ (25)

Let us now define the function f . To this purpose, let us pick an arbitrary couple (6y, zg) €
(T~ x R"), and consider an element 6 of T™¥~™. Consider also a smooth path g : ¢ €
[0,1] — ~9(t) € T~ which connects fy to 6, i.e. such that 4(0) = g, and (1) = 0. Let
2+, (t) denote the solution, for ¢ € [0,1], of

n(d)

=) UP(w() al() bi(z)  2(0) = 20, (26)
=1

where U = (ug, 1, - - ,uf‘n(d)), and for i = m+1,... ,n(d), b; 2 Ev(B;){b1,... ,bm}. Note that
2+, (t) is well defined for ¢ € [0, 1]. Indeed, finite-time escape is not possible because the v f. b; are
homogeneous of negative degree (by assumption). Note also that z,,(t) does not depend on the
system of local coordinates chosen to parameterize T~ Indeed, if o and 3 are two systems

of local coordinates around a point ~y(tg), one easily verifies from (24) that in the neighborhood
of ty, where 7y(t) € Dom(a)) N Dom(f) ,

U (70(t)) &(vo(t)) = UL (v(t)) B0 (1)) -

Let us show that z,,(1) is independent of the the path 7y chosen to connect 6y to 6. To this
purpose, consider two paths 7} (i = 1,2) which map 0 to fy and 1 to §. We must show that the
solution 2! (1) of (26) at t = 1 with ng = 75 is the same as the solution 22 (1) of (26) at ¢ = 1
with v9 = 73. To show this, we will use the results stated in the following lemma, whose proof is

given in the appendix.

INRIA



A characterization of LARC 11

Lemma 2 Consider any P. Hall basis B = {By,...,B;,...} of L(X1,...,Xy). Then, there
exist mappings (T,u) — c;(T,w) such that, for any set {g1,...,9m} of v.f. nilpotent of order
d+1, and any u € C=([0,T); R™Y), the solution at time T of

n(d)
i= 3w, o) =z (27)
i=1
n(d)
2(T) = ] exp (ci(T,u) i) xo (28)

=1

where g; 2 Ev(Bi){g1,--- ,gm} (i = m+1,... ,n(d)). Furthermore, if g1,... ,gm are the con-
trol v.f. of the —n(d)-dimensional— free system S(d), then for any zo € R™Y  the mapping
n(d)

(c1y--+ s Cpay) — H exp (¢; gi) o, from RMD to RMD s one-to-one.
=1

Applying the first result stated in the lemma to equation (26) yields

n(d)
V=12 25 1) =] e (a (LU OHa0OH) bi) 2. (29)
=1

Consider now the following equation —compare with (26)—

n(d)

= UM t) (1) bi(x)  x(0) = f(6o). (30)
=1

Applying the first result stated in the lemma to this equation, using (24) and the fact that
f(0) = f((1)) for k = 1,2 —since y5(1) = 6—,

n(d) n(d)
1T exp (e (1L,U*(v)é(79)) bi) £(00) = [] exp (i (1,U*(3)é(33)) bi) f(6o)
i=1 i=1

The second result stated in the lemma then implies that

Vi=1,...,n(d), ¢ (1,U%p)ay)) =c(L,U3)a07)) (31)
and it follows, in view of (29), that 2l (1) = 22 (1). This in turn establishes that the mapping

(0,79) — 24, (1) is a function of @ solely. This is the function f which we were looking for.

At this point, it only remains to verify that the function f so defined satisfies the transversality
condition (2) for Spom. Recalling that f(6) is obtained as the solution of (26) at ¢t = 1, and that
this solution does not depend on the path vp(.) which passes thru 6 at time ¢ = 1, one deduces
that along any smooth curve 6(.) the mapping t — f(6(t)) is differentiable with

n(d)
% F0) = S UR(8() a(6(1) bi(F(B(1))).
=1

RR n°® 3873



12 Morin & Samson

This in turn implies that f is smooth and satisfies

n(d)—m af « @ T (F
Vo eT ; 8741-(9) = ; i (6) bi(f(0)) - (32)

Finally, by using (25) and the fact that Shom satisfies LARC(0) —and therefore, by homogeneity,
LARC(z) for any © € R"—, one easily deduces from (32) that f satisfies the transversality
condition (2) for Shom.- |

3.2.4 Proof of Proposition 4

From Remark 3, and Property 2 of Lemma 1, it is sufficient to prove the existence of a single
function f € C®(RHD—™: R4 for which the transversality condition (2) is satisfied. For free
systems, it is possible to rewrite this condition in a more explicit fashion.

Lemma 3 For a free system S(d), f € C°(T™D—m. R4 satisfies Condition (2) if and only if
_ O fk Of ok
Vo € D= Det (—(e) — Fam () =22 (0) £0. (33)
9a; O 9, kj=m+1,...,n(d)

J J
This lemma is proved in the appendix.

We next rewrite condition (33) in the formalism of differential forms. The analysis could
be carried out in the same way without this formalism, but at the price of more complicated
notations. We thus rewrite (33) as'

VO € T (W1 A Awnqay) (0) # 0 (34)
with w; the differential one-form on T4~ defined by

wi = dfi — fa@dfog) - (35)

The function f which we are trying to construct is obtained by setting f 2 ™4 with the
function f™@ denoting the last function obtained via a recursive construction which starts with
some function f™*!. For each k = m+1,... ,n(d), the function f* € C(T+=™; R™?) is required
to verify the following property:

VO = (Brsn,. .. ,0) € TE™, (w,’;ﬂ A /\w,’g) (0%) £ 0, (36)
with w¥ the differential one-form on T*~™ defined by
wf = dff = fYpafl - (37)

A possible choice for f™*! is as follows:

Sin 0,41 fori=A(m+1)
€08 O t1 fori = p(m+1)
0,01 =< 1 38
7 Ome) Zsin20m+1 fort=m+1 (38)
0 otherwise.
1AS this is customary, we write (wm+1 AN... AN wn(d)) (9) for (wm+1 AN...N\ wn(d)) (8/6am+1, ... ,6/8an(d))(0)
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A characterization of LARC 13

Indeed, it readily follows from this definition that?

8fm+1 fm+1
m+l o m+1/gm+1 m+l  pmel p(m—+1) m+ly _ =
Vo S wm—|—1(9 ) (aam+1 f)\(m—f—l) da il (6 )

Assume now that, for some k—1 € {m+1,... ,n(d)—1}, a function f*~1 € ¢°(Tk 1-m, RU%)
which verifies the property (36) for £ — 1 has been obtained. We show below how to construct
from this function a new function f* € C°(T*—™; R™%)) which verifies the property (36). The
existence of a suitable function f* is guaranteed by the following lemma.

Lemma 4 Let (s, c, f) denote an element of Rx Rx R™%) | and let Aﬁ (1 > 0) denote the dilation
defined by

Ak(s, e, f) = (W OEs, yeENe AL f), (39)

where A, is defined by (14). Let p¥ (i = 1,... ,n(d)) be the functions defined by

pF(s,c) = 56; AE) cép(k) + 2k scoF (40)
where mﬁ s defined via
. { (1) 10) < L)) or M) # AGK) "
! + mp(z) otherwise.
Then, there exist functions q € C®(RYMLR) (i =1,...,n(d), j =1,...,jix), which are A*-

homogeneous of degree £(i) — ]E(A(k)), and such that, for n larger than some positive value 19, the
function
g’n“ 2 0% — (nf ) sin By, ) cos By, FEL(OFT))

- ok o Jik ' 42
=1 gy wi fik;(s,c,f)'—>fi+pf(370)+28]qzj(f) ()

=1

jix 2 max{j : €G) — jEA®R)) 2 0},
verifies the property (36).

Remark: It is simple to verify that each function fik in (42) is polynomial in its arguments, and
AF-homogeneous of degree £(i) w.r.t. the dilation defined by (39). The proof of the lemma much
relies on this property.

Proof: It is composed of two parts. In the first one (step 1), functions qi"i ; which induce adequate

properties are defined. In the second part (step 2), one shows that the function f*, defined in the
lemma from the functions qﬁ ;» verifies the property (36).

*We implicitly identify o(f) =~ 0 € R.
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14 Morin & Samson

Step 1. Let
Vi=m+1,... .k  wF=dff - fiadfk, . (43)

Our objective is to define functions qﬁj such that, for any ¢ = 1,... ,n(d), the two following
properties are verified.
P1(i): Each function qf’j is A*-homogeneous of degree £(i) — j£(A(k)), as specified in Lemma, 4.
P2(i): Ifie {m+1,... ,k},
i1
wf = (dfz‘ S OL IO +7§°) + > tisls,f) (dfj — fagydfog) + %k) (44)
j=m+1
where the t; ;’s are smooth functions, and 5¥ is a differential one-form on R x R x R
k _

3§ =7f1ds + 7f,de

with 7; 1, 72, AF-homogeneous of degree £(i) — £(A(k)) and £(i) — £(p(k)) respectively, and

Y1=0 ifi < A(k) V=0 if i < p(k)

T =1 if i = A(k) Ty =1 if i = p(k)

E1(s,¢,0) =0 if A(k) <i<k y(s,¢,0) =0 ifp(k) <i<k  (45)
—k mﬁ : _k m’,z .

%‘,1(&070):7 fori =k ia(s,¢,0) == fori=k.

Let us start the construction of an adequate set of functions qi"i ;- We distinguish three cases.
Case 1: 1 <i < Max{m,A(k)}. We let
Vie{l,...,Maz{m, A(k)}}, Vj € {1,... jix}, af;=0 (46)

so that P1(i) is clearly verified for these values of 7. If i < m, P2(i) is irrelevant. If m +1 < i <
A(k), it readily follows from (40), (42), (43), and (46) that

of =dfi = fodfly +3F (47)
where 4F = 0 if i < A(k), and 4¥ = ds if i = A(k). Therefore, P2(i) is also verified.
Case 2: Maxz{m,\(k)} <i < k. We first let

{ g1 =0 if A\(7) < A\(k)

48
¢ (f) =mbfa i AG) = Ak). (48)

which is consistent with P1(i). To define the other functions ¢ ;j» we consider a construction

which is recursive in the index i. More precisely, let us assume that functions qf FT qukq, ; have
been defined so that P1(1), ..., P1(i-1) and P2(1), ..., P2(i-1) are verified. We show below
how to obtain functions qu ; so that P1(i) and P2(i) are also verified.

INRIA



A characterization of LARC 15

We first note that
M) < p(k) . (49)

Assume on the contrary that A(i) > p(k). Then, from the definition of a P. Hall basis, A\(i) < p(i).
This implies that

£(@) = LA@) + £p(2)) > 2L(p(k)) > L(k).

If £(i) > {(k), then ¢ > k, and this contradicts the assumption. Otherwise, £(i) = {(k), and we
also get i > k because of (7) and the fact that A(i) > p(k) > A(k).

We introduce the following definitions for the sake of simplifying some aspects of the forth-
coming analysis.

Definition 2 A differential one-form r = rgds + r.dec+ Z;idl) rjdf;, with rs,r.,7; homogeneous

of degree (i) — L(\(k)), £(i) — L(p(k)), and £(i) — £(j) respectively, is said to be of
e Type 1ifr; =0 for each j, and both rs and r. are identically zero at f = 0.
e Type 2ifr. =1; =0 for each j, and v, = as” witha € R and 1 <k € N.

o Type 3 if rs = 1. =0 and, for each j, r;(s,c, f) is in the form rj(s,c, f) = 32+“ir;-(f) with
Kj € N.

An upper-left index i for a one-form will indicate its type, e.q. *r indicates that >r is of Type 2.

Next, we develop @* and examine the terms involved in this development. From (42) and
(43), we have

Jik
of = d| fi+pf+)_ sdl;
j=1
IAG),k ' Jp(3),k ' '
D+ D Sk | | Ao +dpie + D (357 g s + 7daly )
Jj=1 j=1
(50)
and, by rearranging the terms in the right-hand side of this equality
Ji,k
of =df; - Iy dfou) +d Zsjqﬁj ‘o taztazttr i3y (51)
=2
with
a1 = dpf = Py dppi)
_ k k k k
ay = sdg;y — Sq}\(i),ldfp(i) - SfA(i)dqp(i),l - p)\(i)dfp(i)
YOR (52)
k |k
a3 = _82dpp(i) Z qu)‘(i)aj :
i=2
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16 Morin & Samson

In (51), 'r, 2r, and 3r just correspond to terms which do not need to be explicited further and are
of Type 1, 2, and 3, following Definition 2. In order to obtain (51), we have used the following two
arguments: (i) each function qﬁ 1 (7 < ©) vanishes at the origin —if j < Maxz{m, A(k)} this follows
from (46); otherwise, if A\(j) < A(k) this follows from (48), and if A(j) > A(k), this follows from
the induction hypothesis P1(j) which implies that q;?yl is A*-homogeneous of positive degree—,
(ii) from (49), A(7) < p(k) so that (40) implies that p’f\(i)(s, c) is either s or zero. Note also that the
homogeneity properties of the components of 'r, 2r, and 3r follow directly from the homogeneity
of fF (see the remark after Lemma 4).

Let us now focus our attention on the terms «; which are specified in (52). We first note that

a3 = 0. (53)

Indeed, assume on the contrary that as is not the null function. Then, in view of (46), it
is necessary that A(i) > A(k) (otherwise q’;(i)’j, and thus ag, would be equal to zero). Since
(%) < p(i) —from the definition of a P. Hall basis—, we also have p(i) > p(k) (otherwise p’;(i),
and thus a3 would be equal to zero). This implies that ¢ > k, which is in contradiction with the
assumption.

We now consider the term as in (52). We have
A(i) < Mk) = aa =0. (54)

This follows from (40), (46), and (48), after noticing that either ¢(p(i)) = 1, so that q’;(i) L =0,
or {(p(i)) > 1 and A(p(7)) < A7) < A(k) (from the definition of a P. Hall basis), so that we still
obtain q’;(z.) 1 =0. Then,

Up(i)) < LA(K))
A(i) = M(k) with  or = a3 =0. (55)
Ap(i) < A(k)

Indeed, if the left-hand side of the above implication holds, then (40), (41), and (48) imply that

Qa9 = 8§ (mfdfp(z) — f)\(l)dqﬁ(i),l — dfp(z)) =S5 (mfdfp(z) — dfp(z)) =0 (56)
From the definition of a P. Hall basis, Ap(i) < A(7), so that the case where A\(i) = A(k) with
Ap(i) > A(k) cannot happen. Therefore, if A(i) = A(k), the last possible case is Ap(i) = A(k). We
have

()\(2) = Ak) and \p(i) = A(k)) = ay = smfj(i) (dfoi) — Fromydf2e)) (57)

Indeed, from (41), (48), and (46),

ar = s (mbdfy) — i1 — dfu) = 5 (mdfy = Py d S — dhu)

and (57) follows. Concerning g, there only remains to examine the case where (i) > A(k). In
this case p’;(i) = 0 —since, by (49), A(i) < p(k)—, so that

oy = s (dgfy = a1 dfo0) — I dafiy ) - o9
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A characterization of LARC 17

Each term within the above parenthesis is a sum of terms p; ;( f)d f; where each p; ; is homogeneous
of degree £(i) — £(A(k)) — £(j). By applying Property 4 in Lemma 1 to the term q')f(z.) 1d Sy +
fA(i)dq’;(z.) 1» and by replacing z with f in Lemma 1, we obtain

ay=s|dgf, —dhy + > ha i (f) (Af — Faydfoiy)
1<€(5)<€(2)—L(A(k))

for some functions hy and hs ; AF-homogeneous of degree £(i) — £(A(k)) and £(i) — L(A(k)) — £(j)
respectively. Furthermore, by choosing

¢y =h1  when \(i) > A(k), (59)

—this choice is clearly consistent with P1(i)—, we get

ay=s > hai(F) (df; = Faiydfoii) - (60)

1<l(5)<(i)—L(A(k))
From what precedes, we finally obtain

min{s,p(k)}—1 min{s,p(k)}—1

ol X ) (4 = hoydfon +7) =5 D hag(ff i<k
- j=m+1 j=m+1
sy (dfw = Froodfoon) +The) ) = 5 M The ifi=k.

(61)

The second equation is a consequence of (57), when Ap(k) = A(k), and of (41) and (55) otherwise.
As for the first equation, we argue as follows. If A(i) < A(k), the result follows directly from (54)
— with hy ; = 0. If \(¢) = A(k), so that p(i) < p(k), the result follows from (55) or (57). Finally, if
A(i) > A(k), then, by (7) and the assumption — i < k—, £(i) < £(k) = £(i) — LA (k)) < L(p(k)),
and the result follows from (60).

Let us now consider the term 37 in (51). From Definition 2, 3r is a sum of one-forms s+ ridf;,

where each r;- is a polynomial function of f, AF-homogeneous of degree

(@) = £(G) = 2+ rj)A(R)) < min{£(2), £(p(k))} -

By applying Property 4 in Lemma 1 to each one-form r;-d fi, we get

min{i,p(k)}—1 min{i,o(k)}—1
3p = 52 Z S”jdhl,j + Z hgyj(s,f) (dfj — f)\(j)dfp(j) + ’7}/;“) — Z héyj(s,f)’%k
j j=m+1 j=m+1

(62)
where the functions h ; are A*-homogeneous of non-negative degree and therefore vanish at the

origin. If the degree of homogeneity is zero, so that hy; is constant, we may as well choose
hl,j = 0.
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18 Morin & Samson

We can now define the functions qi"i ;- Let us note that qfi , has already been defined: by (48)
if A(i) < A(k), and by (59) otherwise. For the definition of qf, ; with j > 1, we distinguish two
cases, according to whether ¢ is smaller than or equal to k.

If i < k, by using (53), (61), and (62), relation (51) can be rewritten in the form (44), with

Jik min{i,p(k)}—1
= (Yol | e et Y (g hat) (3 YR (69
j=2 Jj=m+1 J

and smooth functions ¢; ; which we do not need to specify further. The functions ks ; and sh'27 s
involved in the above expression of 5, are polynomial in s and f. Also, from (45), 7§ = 7%,ds
—because j < p(k)—, where ”y]’?’ , depends on s and f only. As a consequence, we have

min{i,p(k)}—1
—s Z (haj + shi ;) (s,f)'_ygC = sh/(s, f)ds = ags™ ds + h"ds (64)
j=m-+1

with ag € R, 1 < k' € N, b/ and h” functions of s and f only, and k" identically zero when f = 0.
From Definition 2, (64) can be rewritten as

mini,p(k)} -1
—s D (haytshh) (s, A = (65)
Jj=m+1

From (40), (52), and the fact that ¢ < k implies that either A(¢) # A(k) or p(i) # p(k), we deduce
that a; = dp¥. Therefore, by using (65) in (63)

Jisk
yE=d | S s9gk; | +dpt 41" + das? 4 Y sPidhy (66)
=2 J

where we have used the fact that any function of Type 2 is the differential of a polynomial as?
with ¢ > 2. From there, the functions qf’ ; (j > 1) are uniquely defined by setting

Jik

Z sjqfij 2 _gs?tr Z s*Tihy (67)
J=2 J

It is simple to check that P1(i) is verified with this choice. This yields, in view of (66)

,%k: — dpf +1 Pl — Zhl,jd (824—5]-) — dpf +1 s
J

where the last equality comes from the fact that h; ;(0) = 0, as mentioned after Eq. (62). By
using the definition of one-forms of Type 1, it follows that (45) is satisfied and thus that P2(i) is
verified —note that, if 'r"” = r,ds + r.dc and i < p(k), then r. is homogeneous of non-positive
degree so that it is necessarily a constant, which in fact is equal to zero since r. vanishes at f = 0.
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A characterization of LARC 19

For the last case, i = k, we proceed similarly. By using (53), (61), and (62), relation (51) can
again be rewritten in the form (44), with this time

Jiok . min{i,p(k)}—1
dodabi | o —smbpar HrHir=s" Y hai(s, )T+ )T dAM
j= j=m-+1 J

(68)

instead of (63). From from (40), (41), (52), and the induction hypothesis P2(p(k)) if p(k) > m,

komk k ko <k

L= S My Ty = 01— SMygyde = smyg Ty ds
mb ko ok (69)

= (cds —sdc) — S0 V()1 48

where the last equality comes from (40) and (41). Therefore, (68) rewrites as
Jisk ' mk min{z,p(k)}—1
F=d Zs]qf’j +7k(cds—sdc) R Z hg,j(s,f)ﬁ]’-c

7J=2 j=m+1 (70)

k ~k 24K
= 8106 Vo), 1 48 + Z s*tridhy
J

From here, we proceed as for the previous case in order to rewrite the above equation as —compare
with (66)—

]zk

mk
z sjq” —k(cds — sdc) +1 " + das?TF — Z s*Tridhy ;. (71)

Using the same relation (67) to define the functions qf’ ; yields

k
7k = %(cds — sdc) +1 "

and it is simple to check that the one-form 7¥ satisfies (45), so that P2(i) is verified. This ends
the study of Case 2.

Case 3: k£ < i < n(d). We simply let qﬁj = 0 for each j = 1,...,j;, so that both P1(i) and
P2(i) are readily verified. This ends the first step.

Step 2. Since f*¥ = fFo g’,;, we deduce from (37) and (44) that, fori € {m+1,... ,k},

wf = wFodgt
7—1
= (W fdar) + Y tig(s ) (W 4 okday ) 72)
j=m+1
where
_ _ anz()‘(k)) sin _ 3 anl(P(k)) cOS
VE(OF) = AF1 (g8 (0%) —————(6k) + 72 (g (0%) ———— (%) - (73)

day, Oay,
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20 Morin & Samson

By skew-symmetry of the wedge product, it follows from (72) that

Since each wf_l is a one-form on T*~™~1, we deduce from the above equation (using multi-linearity
and skew-symmetry of the wedge product) that

k k k( k=1 k—1
Wit N - Awg = Z Vi (wm+1/\---/\w /\dak/\wz_i_l/\ A wy ) (74)
i=m+1

From (39) and (42),
’71'1(97];(0’“)) = %1(A (sm9k,cos¢9k,A1/nfk L(gk=1Y))
= pli- e(’\(k))V (Slnek,COSQk,Al/T,f’“ L(gk-1))

— 5(2) e(’\(k)) k (sln Ok, cos O, 0) + Z njlgil,j(ek)
3<E(i)—E((k))

(75)

where ,6’1 denotes smooth functions on T¥~™. The second equality in the above equation comes
from the fact that %',1 is A*-homogeneous of degree £(i) — £(\(k)), and the third one from the
fact that Wf’l(s, ¢, f) is polynomial in s, ¢, and f. A similar calculation yields

752@71;(919)) O~ Lp(k)) 5k i2(sin O, cos O, 0) + Z ﬂjﬁil,j(ek) (76)
J<€(i)—L(p(k))

From (45), (73), (75), and (76),

n'®) Lk £y iB(6F) ifi=k

k gk 2 1 z;k: 7

7H(0") = g | (77)
Z 17’ Bi,;(0%) otherwise

1<j<t(k)

for some smooth functions 3; ; on T*~™. In view of (74) and (77),

k k) (k) — e(k)m_i k—1 (01 igl (6%)
Wyt N Awi ) (8%) =1 5 W A Awy Z 1 B 4
1<g<L(k)

for some other smooth functions 3, ; on Tk=™. By the compacity of T¥~™ and the induction
hypothesis, (36) follows when 7 is larger than some 79 > 0. |

Appendix

Proof of Lemma 1

We begin with the proof of Property 3. Consider the system

T = Zuzbz(ﬁb) T = (xla cee 7xn(d’+l)) (78)
z = p(:c)uj je{l,... ,m}
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where the sub-system with the state z is obtained by considering the first n(d’ + 1) equations of
S(d). This sub-system is simply the free system S(d’ + 1). Since p is homogeneous of degree d’
with respect to the dilation (14), it can only depend on the variables z; of weight £(i) < d' <
{(n(d’'+1)) = d'+1. Therefore, p is also A®-homogeneous of degree d with the dilation Af, defined
by

AS(1, e Tngargr) 2) = (MZUJxlj--'7Ml@(dukn)$n0ﬂ+l),ﬂlﬁﬂdukn)z) : (79)
and the control vector fields b (i = 1,... ,m) of system (78) are A®-homogeneous of degree —1.

This implies, in particular, that every Lie bracket of length at least equal to d’ + 2 is homogeneous
of degree at most equal to —(d’ + 2) and must be identically zero. Therefore, at each point (z, z),
the involutive closure of the distribution generated by the vector fields b is of dimension n(d'+1)
at most —which is the dimension of the basis By 1 of Lg11(X)—, and it is precisely n(d’ + 1)
because the free system S(d’ + 1) is controllable. By application of the Frobenius theorem, we
deduce the existence of a function ¢ € C*°(U;R), with U a neighborhood of (0,0) € R*%+1) x R,
such that

¢(07 O) =0, 7(07 0) #0 (80)

and ¢ is constant along the solutions of (78), i.e.

9¢
Nz, 2)

Vi=1,... ,m, Y(z,2) €U (z,2)b5(x,2) =0. (81)

By means of a Taylor expansion in the neighborhood of the origin, we expand ¢ as

d'+1

=Y ¢i+0"(p) (82)

=1

where ¢; is a polynomial function, A®-homogeneous of degree ¢, and p is any A®-homogeneous
norm. First, we note that

¢1E...E¢dl:0.

Indeed, by homogeneity, these functions cannot depend on z which has weight d’' + 1. Then, the
polynomials (0¢1/0z)b§(x, z), which are homogeneous of degree zero and thus constant, must be
equal to zero since otherwise (9¢/d(x, 2))bs(0,0) = (9¢1/0z)bs(0,0) would not be equal to zero,
in contradiction with (81). Therefore the homogeneous function ¢; is constant along the solutions
of (78). Due to the controllability of the free system involved in (78), this is possible only if ¢;
is a constant function which must be identically zero since ¢ is homogeneous of positive degree.
Using similar arguments, one can show that ¢o,... ,¢s are also identically zero. Then, we claim
that @411 can not be identically zero. Indeed, by homogeneity, the derivative of od'“(p) in (82)
at the origin must be zero. Therefore, from (80),

OPar+1
Az, z)

(0,0) #0.
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22 Morin & Samson

Furthermore,

0¢q 41

4L (0) £ 0

since otherwise the homogeneous polynomial function ¢4 would not depend on z, so that we
would again obtain that ¢ 1 is identically zero, in contradiction with (80). Therefore

$ai(z,2) =c(z =) (c#0)

for some polynomial function ¢’ homogeneous of degree d' + 1 . The fact that ¢, is constant
along the solutions of (78), i.e

Opar11

=1,...
Vi yeueymy, Y(z,2) €U z.2)

(z,2)b5(x) =0. (83)

yields (15) for x in a neighborhood of the origin, and this extends to = € R™4) gince ¢ar4+1 and
the b§’s are homogeneous.

We now proceed with the proof of Property 4. We assume that ¢ € {1,... ,m}, since otherwise
a simple algebraic manipulation yields
dlEi = (d561 - ZL‘)\(z)dl'p(,L)) + Z CC)\(,L')SC)\/,(,L') P ZI?)\pr—l(,L') (d.’l?pr(z) - CC)\pr(i)dlEpr+1)
r=1
+ YOEIVORER .fL')‘pF(l')d.’L'pF+1(,L’)

where 7 is the smallest integer such that p"*t! € {1,... ,m}. Property 3 in Lemma 1 guarantees
the existence of a polynomial function hy, A-homogeneous of degree = d’' — £(i) + 1 = d’ since
i € {1,...,m}, and such that

p(z)dz; = % (Z d;b;( ) . (84)

We rewrite (84) as

oh oh
p(:z:)dx,': o 1( )dz; — 8:51 (d:c] Zdl‘z i ( )
n(d)

Bhl
=dh; — ag; (dxj de,” )

j=1

To conclude the proof, it is sufficient to prove that for any j, there exist functions «;,, A-
homogeneous of degree £(j) — {(p), such that

A m
wj =dz; — Z dz;b; j(z) = Z ajp(x)(dzp — TrpdTp(p)) - (86)
=1 1<t(p)<L(j)
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We prove (86) by induction on £(j). If £(j) = 1, it follows from (13) that w; is zero. The property
is thus trivially verified with o;, = 0. We then assume that this property holds for £(j) < k.
Now, let £(j) = k + 1. We have

wj = (dzj — 2x(ydzy(j)) + 2r) e ) — Y dwibi j(x)
=1

= (dzj — zryde,) +Tagy | D dmibi,y(@) + D (@) (e, — 2y dT )
i=1 1<(p)<t(p(4))

— Z dx;b; j(x)
=1
= (daj —madap) o) D, ) p(@)(dTy — 2 dT,p)

1<l(p)<(p(5))

where the last equality comes from (13). From here, (86) readily follows. |

Proof of Lemma 2

Let us first show that the solution at time 7" of (27) can be expressed as (28). The proof is based
on Sussmann’s product expansion for the Chen series [7]. In order to avoid reintroducing the
algebraic machinery used in this reference, we will borrow the notation of |7].

Let X = {X1,... ,Xn}and X = {X1,... , X, Xiny1,... X,yg)} denote two sets of indeter-
minates, and consider the formal power series —or Chen series—

S,(T) = Z (/OT u5> Xsn

g

where the sum is over all multi-indices & with value in {1,... ,n(d)}. It is well known that the
solution at time 7T of (27) is given by S, (T’) after identifying each X; to g;, applying the differential
operator so obtained to the identity function, and evaluating at © = x¢. The formal power series
S,(T) is also the solution at time T’ of

. n(d)

St =85t | Y w®X |, S0 =1.
=1
It is known that S,(7T) is an ezponential Lie series, i.e.
$u(T) = exp(y_ 5)) (87)
J
where

i) for all j, 5‘])-_( € L£(X) the Lie algebra generated by the X;’s,

ii) the series ) ; S’JX is convergent, i.e. V&, #{j : SJ‘-’?& # 0} < oo where # denotes the

cardinal, and 5]{(5 is the coefficient of X5 in S‘JX , le.

55 =25,
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Now, consider the series S, (T'), solution at time T of

n(d)

Zul )X + Z wi(t)B; | S(0)=1,

1=m+1

where the B;’s are the formal brackets of the P. Hall basis B of £(X), identified to the corre-
sponding element in £(X). Since S(¢) can be obtained from S(t) by substituting X1, ... , X, for
X1,...,Xm and Bimy1,... , By for Xpmy1,... , Xpa), it follows from (87) that

T)= exp(z SJX)

where

SX = 575 with Proj(X) = (X1, s Xins Bust1s--- » Bua)) (88)

We claim that S,(T") is an exponential Lie series (in the indeterminates Xi,...,X,,). To
prove this, we must show that i) for all j, SJX € L(X), and ii) >_; SJX is convergent. Firstly i)

follows from (88) and the fact that SJX € L£(X). Indeed,
X _ &Proj(X) SN\
S5 =5; I e L(Proj(X)) = L(X)

since each B; (i = m + 1,... ,n(d)) belongs to £L(X). Secondly, let us show that ii) is satisfied
too. From (88), we have

&:[Proj(X)|s=Xo
#4435« ([Proj(X)ls = X, and §77%) £.0) }

Z #{j Proy(X)?éO}

F:[Proj(X)]s=X

IA

IN

Each number in the last sum is finite because ), SJX is convergent, and
#{5 : [Proj(X)]s = Xy}
is also finite because
[Proj(X)]s = X, = |o] < |o]

where |.| here denotes the length of the multi-index. Therefore, the sum ) j S]X is convergent.
Then, it follows from [7, Lemmal, and from the fact that B is a P. Hall basis for £(X), that
there exists a sequence {c;(T,u)} such that

Su(T) = [ exp(ci(T,u)B;)
BieB
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Identifying each indeterminates X; in the above equality with the v.f. g;, and using the fact that
the family {g1,...,gm} is nilpotent of order d+1, gives (28). The first result stated in the lemma
is thus proved.

There remains to show that, when the g;’s are the v.f. of the free system S(d), the mapping
(c1,--+ s Cpay) — H?g) exp(c; gi)xo is one-to-one for any xg. Firstly, for any i = 1,... ,n(d),

€Xp (C’ng) xi = Ii + (05 s ’07 aiciap::—f—l(mziJ s "’L‘:LL:’ Ci)a s ,p;(d)(l"i; s 7mi(d)_17 C’L)) (89)

for some polynomial functions pz. This formula can be obtained as follows. The Chen-Fliess
series expansion gives

) ) ) k .
exp (¢;igi) " = ' + ¢;g;(x*) + Z % L’;iid(:ﬂ’) (90)
E>2

where ¢d is the identity function. Each component (Lgiid)j of L’;iid is homogeneous of degree
£(j) — kL(i). This implies that the first ¢ components of L’;iid are identically zero, and that
(L’;iid)j cannot depend on the variables x;, ... , (). From this, and the fact that (see Property
1 in Lemma 1)

gi(x) = a;0/0z; + Zgi,j(a:)a/a:cj ,
j>t
one easily shows that (90) rewrites as (89).
Secondly, using (89), a direct induction on k —for decreasing k = n(d),... ,1— yields
n(d)

H exp (cigi) xo = To+ (0, ey 0, apcry g1kt + g (Cky T0)s - -
i=k

Un(d)Cr(d) + Un(ay (Chs -+ » Cn(a)=1» wo))
so that

n(d)

H €xXp (Clgl) To = 2o + (alcla ascy + Q%(Clﬂ -730)7 .. aan(d)cn(d) + q'}b(d)(ch s acn(d)—lv ‘Z‘O))
i=1

n(d)
Since each a; is different from zero, the map ¢ —— H exp (¢;g;) xo is clearly one-to-one. |

=1

Proof of Lemma 3

It is clearly sufficient to find a function f € C%°(T™®~™; R™4) such that

vo € T, Det (uf;(0)); s n(a) #O (91)
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with the functions v;'; uniquely defined by

30,0 = > ug;(0)b:(£(6)) - (92)
&) =1
For any i > m+1and j =1,... ,m, one has b; ; = 0 because, from Property 1 in Lemma 1,

b; j is a homogeneous function of strictly negative degree 1 — £(i). Using this fact and (13), one
readily obtains

sz

and (92) rewrites as
m n(d)
of of; B o
5a; @)~ 2 50, O @) = 1:%1“ Libi(£(0)). (94)
Therefore,
0 = 0fi T
(% — ai_@',k(f)) = (bk,i(f)> (Uzg) (95)
7 i=1 7 kj=m+1,... n(d) ki=m+1,...,n(d) t,j=m+1,... ,;n(d)

From Property 1 in Lemma 1, the square matrix (b ;(f)) in the above relation is, for any f, non-
singular —since it is lower triangular with non-zero constant terms on the diagonal. Therefore,
(91) is equivalent to

m

Vo € THD=™  Det (af’“ ))) £0. (96)
1 k,j=m+1,...,n(d)

We claim that there exist an invertible lower-triangular matrix 7', with 1’s on the diagonal, such
that

0 af; 0
(ﬂ _ —fbi,k(f)) =T(f) (% — F) Fotk)
k,j=m+1,...,n(d) J

o 1 da; Do )k,j:m+1,...,n(d)

(97)

which is clearly sufficient to conclude the proof. This can be proved by induction on /(k). For
{(k) = 2 —there is no k such that ¢(k) = 1, since k > m + 1—, we have {(p(k)) = 1, so that (13)
and (93) yield

Of <= Ofi

o ox

i=1

i - S

O

OJk 0
o ’

Oaj

fA(k) io(k)(f) = — )

This is consistent with (97). Now, assume that the equality in (97) holds for all the lines with
index k such that (k) < p (p > 2), we show below that it also holds for the lines with index &

INRIA



A characterization of LARC 27

such that (k) = p + 1. We have

87‘1'_2— 9o b k(f) = Za fA(k) bi iy (f)
3f1c f(k:) Of o)y = Ofi
— I ®) 5g, T YO 8%04]- - 2 B, bi,p(k)(f)
Ofk Ao of of (
= B fA(>(9 > tp<k>,q< L= o gn
m+1<q<p(k)

where the last equality comes from the induction hypothesis. This concludes the proof. |
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