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Abstract

In this paper, we study conflict resolution for multiple air-
craft encounter situations on a plane. First, the homo-
topy types of resolution maneuvers for n aircraft encounters
are classified according to their images in the joint space-
time coordinates, which are shown to bear a one-to-one cor-
respondence with the well-known pure braid group PB,,.
Energy is then proposed as the cost function for choosing
among all conflict-free maneuvers the optimal one. For two
aircraft encounters, analytic expressions of the optimal reso-
lution maneuvers are obtained, and for the multiple aircraft
case, convex optimization technique is used to find the opti-
mal two-legged resolution maneuver within each type. The
introduced solution, however, becomes computationally in-
tractable as the number of aircraft increases. The use of
the probabilistic resolution algorithm in [1] as “random type
chooser” is then suggested as a randomized solution to the
combinatorial optimization problem. Finally, simulation re-
sults are presented for some typical encounters.

1 Introduction

The current Air Traffic Management System (ATMS)
is characterized by a network-based architecture where
with few exceptions aircraft are forced to fly along
predefined jetways connecting navigation beacons, [2].
Supposedly this architecture can guarantee safety in
the sense that the aircraft encounter geometries and
the locations of the more critical areas in term of traf-
fic are known a priori. As a matter of fact, based on
such information, the airspace has been decomposed
into sectors. Each sector is managed by an Air Traffic
Controller (ATC), which ensures aircraft separation by
issuing appropriate trajectory specifications to the pi-
lots. On the other hand, in such a rigidly structured
architecture pilots are not allowed to choose direct or
wind favorable routes to their desired destinations to
optimize travel times and fuel consumption. Moreover,
the dramatically increasing demand for air travel ob-
served in recent years is likely to cause a degradation of
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not only the current ATMS performances, but also its
safety level due to the increased work load for human
operators supported by outdated tools.

One of the proposed innovations in future ATMS is the
realization of the free flight paradigm, where the totally
centralized, ground-based decision making of the cur-
rent ATMS is shifted to the air to individual aircraft,
with the exception of critical areas such as those over
airports. This should help to decrease travel times, un-
planned delays and fuel consumption. However, a set of
challenging issues also arise for the new ATMS regard-
ing its hierarchical, decentralized and hybrid nature, [3].
Among them guarantee of safety is the most important
one. Thus the development of a conflict avoidance sys-
tem is essential for the new ATMS.

In the context of ATMS, safety is typically character-
ized in terms of conflicts, i.e., situations where two air-
craft come closer than a minimal allowed distance. Con-
flict avoidance is typically decomposed into two sepa-
rate procedures: conflict detection and conflict resolu-
tion. In the conflict detection phase, potential conflict
situations are predicted based on the current aircraft
positions, headings and flight plans. This information
is then used in the resolution phase to re-plan the tra-
jectories of the aircraft involved in the conflict.

In this paper, we study the conflict resolution problem
for encounter situations involving multiple aircraft. Al-
though for the two aircraft case there are many contri-
butions in the literature both in deterministic and prob-
abilistic settings, the treatments of multiple aircraft
case are relatively rare and unsystematic. Among them,
we mention [4, 5], [6], and [7], respectively based on
potential field method, genetic algorithms and semidef-
inite programming. A survey of various approaches to
conflict detection and resolution is given in [8].

This paper is organized as follows. In Section 2, a for-
mal classification of conflict resolution maneuvers for
multiple aircraft encounters is presented. In Section 3,
the notion of energy of maneuvers is introduced and
resolution maneuvers with minimal energy are studied.
Various necessary conditions for optimality are derived
and, as a side result, the analytical expressions of the



optimal resolutions for two aircraft encounters are ob-
tained. As the number of aircraft increases, it is dif-
ficult, if not impossible, to get such an analytical ex-
pression. By focusing on those resolution maneuvers
specified by a set of waypoints, we are able to use con-
vex optimization to solve an approximation of the two-
legged optimal resolution problem for each resolution
type. Finally, in Section 4, the problem of choosing
from the vast number of resolution types is considered,
and a computationally efficient randomized optimiza-
tion algorithm is introduced.

2 Classification of Resolution Maneuvers

In this section, we introduce a classification of resolu-
tion maneuvers involving multiple aircraft into qualita-
tively different types. Roughly speaking, two resolution
maneuvers are classified as qualitatively identical — or
of the same type — if there exists a continuous conflict-
free deformation of one to the other. Hence switch-
ing between qualitatively different maneuvers cannot
be done smoothly without incurring situations of higher
risk of conflict. As a result, distinguishing between ma-
neuvers based on their type is useful, since it is prefer-
able for aircraft involved in an encounter situation to
negotiate a certain resolution type at an early stage,
and stick to it throughout the encounter.

Consider n aircraft (numbered from 1 to n) flying at
the same altitude, where each aircraft, say i, flies from
position a; € R2, at time tg, to position b; € R?, at
time ¢y. Denote with P; the space of all continuous
maneuvers in R? which start from a; at time ¢, and
end at b; at time t;, e, P; £ {a; € C(Th,R?) :
a;(to) = ai, ai(ty) = b}, where C(Ty,, R?) denotes the
set of all continuous maps from T, £ [to,ts] to R2.
Set P = [[i~, P;. Each element @ € P is called a
(joint) maneuver for the n aircraft encounter, or an
n-maneuver. The minimum separation over encounter
(MSE) for an n-maneuver « is defined as:

A . . i o X
Afe) 2 min il flau(t) = o (0)]|

The set of conflict-free maneuvers is then given by
P(R) £ {a € P:A(a) > R},

where R is the prescribed horizontal safe distance. We
distinguish different classes of maneuvers in P(R) ac-
cording to the following equivalence relation:

Definition 1 (R-Homotopy) Two maneuvers « and
B in P(R) are said to be R-homotopic if there ewists

H = (Hy, -+ ,H,), where H; : [0,1] x T}, — R?, i =
1,---,n, are continuous maps, such that

1. H(Ov) = (H1(0,-), -+, Hn(0,")) = (o1, , o)

2. H(1,") = (H1(1,+), -+, Hno(1,-)) = (B1, -+, Bn);

3. For any s € [0,1], H(s,-) € P(R).

Figure 1: A 3-maneuver and its braid representation.

In other words, two maneuvers o and § in P(R) are
R-homotopic if there exists a continuous conflict-free
deformation of a to (. It is easily verified that the
R-homotopy relation is indeed an equivalence relation,
hence it induces a partition of P(R) into equivalence
classes. The objective of this section is to characterize
the structure of these equivalence classes.

Set a= (ay, -+ ,a,) and b = (by,--- ,by).

Definition 2 (Braids & Pure Braids) An n-braid
joining a to b is a set of n mon-intersecting curves
{71, v} in R? x Ty, C R? satisfying:

1. Each point (a;,to) is joined by exactly one curve to
one of the points (bj,ts) for some j, 1 < j <mn;

2. The horizontal plane t = t1 intersects each curve
exactly once if t1 € [to,t;] and never otherwise.

The set of all such braids is denoted with B(a,b). If i
and j are required to be identical in the first condition,
the resulting braid is called pure. The set of all pure
braids joining a to b is denoted with PB(a,b).

There is a simple equivalence relation defined on
B(a,b), and hence on PB(a, b) as well ([9]).

Definition 3 (String Isotopy) Two braids are said
to be string isotopic if there exists a continuous defor-
mation of one to the other satisfying all the conditions
in Definition 2 throughout the deformation.

The reason we introduce the notion of braids is
that there exists a very natural one-to-one correspon-
dence between maneuvers in P(0) and pure braids in
PB(a,b). For each n-maneuver o = (g, -+ ,ap) €
P(0), let v; be the curve in R? x T}, determined by
the image of map ¢ — («y(t),t), t € Ty, which joins
point (a;,to) to point (b;,tr). Then, it is clear from the
definition of P(0) that the set of n curves {71, -+, v}
is indeed a pure braid in PB(a, b), which we shall de-
note as &. Figure 1 shows a 3-maneuver and its braid
representation.

The map a — & can be verified to be a bijection be-
tween P(0) and PB(a, b). Furthermore it is clear from
the definitions that the following result holds.

Proposition 1 Two manewvers «,3 € P(0) are 0-
homotopic if and only if & and B are string isotopic.



Therefore by Proposition 1, there is a one-to-one corre-
spondence between the 0-homotopy classes of P(0) and
the string isotopy classes of PB(a,b).

A product operation on the set of all braids is defined
as follows. For each & € B(a,b) and 3 € B(b,c), the
product 4 = @ - 3 is the braid in B(a,¢) obtained by
concatenating the n curves of B with those of & and
then renormalizing the ¢ axis such that the resultant
n curves connect {(a;,to)}r; to {(ci,ty) ;. It can
be checked that this product operation preserves string
isotopy, hence it induces a product operation on the
string isotopy classes of braids. Under this operation
the isotopy classes of braids with the same starting and
ending points, say B(a,a), forms a group. We denote
this group as B,,. Similarly, the isotopy classes of pure
braids PB(a,a) forms under the same product oper-
ation a group, which we denote as PB,,. The inter-
ested reader is referred to [1] and the references therein
on braid theory for a detailed derivation of the above
claims and the characterization of PB,,.

Now, if we fix a braid 3 in PB(b,a), for each & €
PB(a,b), &- 3 is a braid in PB(a,a). It is casily ver-
ified that this map preserves string isotopy and actu-
ally maps the isotopy classes of PB(a, b) bijectively to
the isotopy classes of PB(a,a), i.c., the elements of
PB,,. This fact combined with the result in Proposi-
tion 1 implies that there exists a bijection between the
0-homotopy classes of P(0) and the elements of PB,,.

A little thought reveals that the above considerations
still hold for arbitrary R. Therefore,

Theorem 1 (Classification of n-Maneuvers) The
R-homotopy classes of n-maneuvers in P(R) have a
one-to-one correspondence with the elements of the
group of pure n-braids PB,,.

The group PB,, is described by a set of generators to-
gether with a set of relations defined on them. There-
fore, Theorem 1 completely characterizes the structure
of the homotopy types of resolution maneuvers for n
aircraft encounters. On the other hand, the description
is unsatisfactory in practical terms, since in general the
exact expression of PB,, is very complicated. However,
when n is small, the result in Theorem 1 can have sim-
ple interpretations. Refer to [1] for further details.

3 Optimal Resolution

3.1 Cost Function

Two resolution maneuvers are of the same type if and
only if there exists a continuous conflict-free deforma-
tion from one to the other. However, they may not be
the same in terms of practical aspects such as travel
distance, time delay, fuel consumption, etc.. Then, a

question that naturally arises is: among all the repre-
sentatives of a given type of maneuvers, which one is
the “best”?

The answer to this question depends obviously on the
evaluation criterion one chooses. Before we propose our
cost function, let us re-define some notations. As in
Section 2, we consider n aircraft flying at the same al-
titude, with starting positions a; € R%,i=1,--- ,n, at
time to and destination positions b; € R%, i =1,--- ,n,
at time ¢y. In this section, the set of maneuvers for air-
craft i, P;, is redefined to be the set of all continuous
and piecewise smooth paths in R? which start from a;
at time ¢¢ and end at b; at time ¢;. P(R) is redefined to
be the set of all n-maneuvers with a MSE greater than
or equal to R. This modification is made to ensure that
P(R) is a closed set, so that for the optimization prob-
lems we encounter later, the optimal value is in fact
attained by some maneuver in P(R).

Various cost functions can be proposed as performance
index of a resolution maneuver. For example, given
an n-maneuver « = (aq, -+ ,a,) € P, one could con-
sider the total length of the curves ay, - - - , a,, with the
length of a; defined by: L(a;) = f;}f || (t)|| dt. How-
ever, since L is a function only of the image of «;, a
reparameterization of «; yields a curve with the same
cost. This is undesirable since in the context of air
travel, maneuvers with less speed variation should be
preferred. For this purpose, we propose as cost function
the energy of an n-maneuver «, which is defined as

J(a) £ Z J(ai)a

where J(a;) = [/ |l (t)][2dt, =1, n.
It can be proved ([10]) that if one ignores the presence
of other aircraft, the J-minimal maneuver for aircraft
¢ is the constant speed motion along the line segment
joining a; to b;. This serves perfectly for our purpose
since this cost function favors maneuver with less travel
distance and less speed variance at the same time.

Finally, we can formulate the constrained optimization
problem we shall deal with as follows:

Minimize J(«) subject to o € P(R). (1)

3.2 Necessary Conditions for Optimality

As a first step, we shall derive various necessary con-
ditions for an m-maneuver o* = (af, -+ ,al) € P(R)
to be a solution to problem (1). The machinery em-
ployed here is that of variational analysis, namely, if
«a* is optimal, a local perturbation along any direction
will not decrease the cost. A major obstacle to the
application of the classic calculus of variations tech-
nique to this problem is the presence of the MSE con-
straint. One has to consider only perturbations that
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Figure 2: Tilt operation 7, on braids.

will lead to resolution maneuvers, i.e., to maneuvers in
P(R), which is not guaranteed in general. It turns out
that the braid representation of maneuvers introduced
in Section 2 is useful in this respect, since it makes quite
intuitive some transformations of resolution maneuvers
which leave the MSE invariant. These transformations
can then be used to generate legitimate perturbations
to a® and derive necessary conditions for optimality.

Let us introduce some notations for convenience. Given
the set of starting and destination positions of n air-
craft a = (a1, - ,a,) and b = (b1, - ,b,), we use
P(R,a,b) and P(a,b) to highlight the dependence of
P(R) and P on a,b. This is useful when there is more
than one set of starting or destination positions. A
transformation on PB(a, b) preserving the MSE is the
tilt operation. Let w € R? be an arbitrary vector. De-
note by b + w the n-tuple (b1 +w,--- , b, +w).

Definition 4 (Tilt Operator 7,,) The tilt operator
Ty : P(R,a,b) — P(R,a,b + w) maps each a €
P(R,a,b) to 0 = T,(a) € P(R,a,b+ w) such that
t—to

ty —to

w, teT,, i=1,-,n.

Bi(t) = ay(t) +

Note that this definition is consistent since [ indeed
satisfies A(B) > R (actually |la;(t) — o (t)]| = ||Bi(t) —
B;(t)]| for all i, j and t). Figure 2 plots the tilt operation
on the braid representation of some 2-maneuver.

It is easily checked that 7, is a bijection. Furthermore,

Proposition 2 Suppose o* is an optimal solution to
problem (1) in P(R,a,b). Then, f* = T,(a*) is an
optimal solution to problem (1) in P(R,a,b+ w).

Proof: For any a € P(R,a,b) let 5 = 7, (a), then
J(B) — J(a) = V2T b =20, 4t ),
tr —to
which is a constant independent of a. n

Consider arbitrary starting and destination positions a
and b, and set b’ £ b+ w where w = 2 3" | (a; — b;).
Then, a and b’ are aligned in the sense that they have
the same centroid, i.e., 3" a; = L3 b By
Proposition 2, solving problem (1) for aligned a and b’
is equivalent to solving (1) for general a and b.

The next operation we introduce is the drift operation.
Let «v : T;, — R? be a continuous and piecewise smooth
map such that y(to) = y(ty) = 0.

Definition 5 (Drift Operator D,) The drift opera-
tor D, : P(R,a,b) — P(R,a,b) is a map such that for
any « € P(R,a,b), 3 =D,(a) € P(R,a,b) satisfies

Bi(t) = ai(t) +4(t), t€Th, i=1,---,n.

It is easily seen that D, is a bijection. In the braid

representation, braid ( is obtained by drifting braid &
according to ~y(t).

Assume that a,b are aligned and a* is the optimal
solution to problem (1) in P(R,a,b). For each A € R,
define 3(\) £ Dy, (a*). Then B(0) = a* and

AT 2 J(B)) = J(a)
ZW/ ' ||f'y(t)||2dt+2>\/ f"y(t)TZo}z‘(t) dt .

to to i=1

Since a* is optimal, AJ is nonnegative for all A. Hence

W A(t)T Sy @ (t)dt = 0. But this should hold for
any choice of y such that v(to) = v(t5) = 0, say, v(t) =
Yo ar(t) — > a;, Therefore >0, af(t) = 0 for

almost all ¢ € T},. Integrating, we get

Proposition 3 Assume that a,b are aligned and o* is
an optimal solution to problem (1) in P(R,a,b). Then

1 n 1 n 1 n
EZaf(t):EZaZ:EZbZ, vtETh
i=1 =1 =1

This optimality condition is sufficient to derive the ana-
lytical expression of the optimal maneuver for two air-
craft encounters situations. Assume a = (a1, a2) and
b = (b1, b2) are aligned, i.e., (a1 +a2)/2 = (b1+b2)/2 =
¢, for some ¢ € R2 If o* = (af,a}) is an opti-
mal solution to problem (1), then by Proposition 3,
[a3(t) + ab(t)]/2 = ¢ throughout Ty. So to find a*, we
need only to focus on those elements a € P satisfying
[a1(t) + aa(t)]/2 = ¢, t € Ty, and the MSE constraint
becomes infier, ||of(t) — ¢|| > R/2. For such maneu-
vers J(a1) = J(ag), since dq(t) = —do(t) for all t € Ty,
and therefore problem (1) translates into

Minimize J(aq), with oy € Py, a3 : T, — B(c, R/2),
(2)

where B(c, R/2)¢ denotes the complement in R? of the
open disk B(c, R/2) of radius R/2 centered in c.

Figure 3 shows one such «j. DBasically, its image
should be of minimal length, i.e., consist of one arc of
0B(c, R/2) and two line segments a;p; and b1q; tan-
gential to it. pj;,q; must be on the correct side of
0B(c, R/2). Furthermore, to minimize energy, a;j must
be of constant speed. In summary,



ql pl

Figure 3: Construction of af

.
:

Figure 4: o* for two aircraft encounters.

Lemma 1 The optimal solution to problem (2) is a
constant speed motion consisting of three stages: first
from ay to p1 along a straight line, then from p1 to q1
along the circle 9B(c, R/2), and last from g1 to by along
a straight line.

Denote with v*(a,b) the global optimal solution to
problem (2) given in Lemma 1, highlighting its depen-
dence on the aligned points a, b. Using Proposition 2,
we can now characterize the optimal maneuver for the
case when a, b are not necessarily aligned.

Theorem 2 In the case of a two aircraft encounter,
the optimal solution o to problem (1) in P(R,a,b) is:

{a () =" (a, b+ w)(t) — £=ew,

1 tr (3)
as(t) = a1 +az —v"(a,b+w)(t) — ttjnitfow’

for all t € Ty,, where w = (a1 + ag — by — by) /2.

Figure 4 shows the plots of optimal resolution maneu-
vers for two typical two-aircraft encounters. Although
in (3), v*(a,b+w) is a constant speed motion, in gen-
eral ] and a3 are not, since they have an additional
drift term: the larger the difference w between a; + as
and by + bo, the larger the variation in speed.

By using other transformations of maneuvers which
preserve the MSE, we can obtain additional optimal-
ity conditions. See [1] for details.

3.3 Optimal 2-legged Maneuvers

Due to the difficulty in computing the optimal joint
resolution maneuver a* for the general multiple air-
craft resolution problem (1), we deal with the case of
2-legged maneuvers. Consider n aircraft with starting
positions a = (a1, ,a,) and destination positions

Figure 5: Feasible set for ¢; given ¢;.

b = (b1,---,b,). Fix an epoch t; € (to,ts) and asso-
ciate with each aircraft ¢ a waypoint ¢;. Then a 2-legged
maneuver for aircraft i is a constant speed motion con-
sisting of 2 stages: first from a; at time ¢y to ¢; at time
t1 and then from c¢; at time ¢; to b; at time ¢y, both
along a straight line. Denote with P2 the set of all 2-
legged maneuvers for aircraft i, and with P2 £ [T, P?
the set of all 2-legged joint maneuvers. P?(R) denotes
the set of all elements of P2 with MSE at least R.

In this subsection, we shall try to solve the 2-legged
version of problem (1) defined as follows:

Minimize J(a) subject to a € P?(R). (4)

Compared with problem (1), problem (4) is finite di-
mensional, hence it can be solved by various standard
optimization techniques. Notice that for o € P? with
waypoints {c¢; }7_;,

tr —to - 2
J(a) = E c—ct||°+C
(@) (ty —te)(te —to) &= lei =l
where C'is a constant and ¢} is given by

C;L:(tf_tc)ai‘F(tc_to)bi7 i=1,--.n.
ty —1to

The MSE constraint can be simplified as well. For each
aircraft pair ¢ and j, suppose we fix ¢; and have the
freedom to choose ¢;. Figure 5 shows the feasible set
of ¢; by a shaded region, which has four possible con-
figurations depending on the relative positions a; — a;
and b; — b;. In some configurations the feasible set has
two connected components, corresponding to the two
different resolution types for aircraft i and j.

Suppose we have decided which type of resolution ma-
neuver to use. Then, the problem is to find the way-
points ¢y, -+ , ¢, which

n
Minimize Z l|e; — ¢¥||* subject to ¢; € Afcj(cj),Vi # 7,

i=1



Figure 6: Optimal two legged resolution maneuvers for
3-aircraft encounters.

where A;;(c;) denotes the feasible set of ¢; given ¢;, and
+ denotes the connected component of A;;(c;) match-
ing our desired resolution type. Notice that in all but
the first configuration, one of the connected component
of A;j(c;) is nonconvex. We then linearize the feasible
set by using a half plane inner approximation Aj;(c;)
of A;j(c;) as shown in Figure 5. In the special case
when any pair of aircraft is in the first configuration,
which corresponds to the case when the unconstrained
optimal joint maneuver would cause a conflict between
any aircraft pair, the approximation is tight.

We then have a linearly constrained quadratic opti-
mization problem which can be solved very efficiently
by many software packages. Simulation results for 3-
aircraft encounters are shown in Figure 6. In both
cases, each pair of the three aircraft is in the first con-
figuration. The optimal maneuver is calculated for each
type and then the global optimal one is selected.

4 Randomized Algorithm

In [4], we propose a decentralized conflict resolution
algorithm for multiple aircraft encounters based on a
probabilistic model of the aircraft motion. Although
this stochastic algorithm performs reasonably well, one
of its drawbacks is that safety cannot be guaranteed.
On the other hand, the optimization algorithm we pro-
posed in the previous section ensures safety, but it can-
not handle the explosively increasing number of reso-
lution types when the number of aircraft involved is
large. We then suggest to use the stochastic resolution
algorithm as the random “type chooser” for the opti-
mization procedure, thus obtaining a randomized op-
timization procedure which both guarantees the safety
property and is computationally efficient.

More specifically, for a given encounter of multiple air-
craft, we run the stochastic resolution algorithm first.
The generated maneuver corresponds to a particular
resolution type which can be thought to be a relatively
good one. Using this type we can then run the con-
vex optimization algorithm to obtain a nearly optimal
resolution maneuver within that type.

Figure 7: Resolution maneuvers for 8-aircraft encounters.

Simulation results of the randomized algorithm for two
8-aircraft encounters are shown in Figure 7, where the
left column shows the simulation results of the stochas-
tic algorithm and the right column shows the results of
the convex optimization process for the particular type
of maneuvers specified by the left column.
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