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Abstract 

In this paper we investigate the question of the global 
controllability posed for a class of control hybrid sys- 
tems. New sufficient conditions for the global control- 
lability are obtained in terms of the so-called hybrid 
fountains. The main tool for our analysis is the notion 
of a controlled hybrifold. 
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1 Introduction 

In this paper we consider systems which have a hy- 
brid nature, in the sense that the dynamics of the sys- 
tem combines continuous and discrete components. We 
model control hybrid systems as a tuple consisting of a 
state space, a set of admissible controls, a family of con- 
trolled autonomous vector fields assigned to each dis- 
crete state, and collections of guards and reset maps. 

The main question investigated in the paper is the con- 
trollability of control hybrid systems. This issue has 
been addressed in [l, 5, 10, 111. In particular, in [ll], a 
sufficient condition for controllability of hybrid systems 
is formulated in terms of so-called arrival sets. In [I], 
the authors derive a necessary and sufficient algebraic 
condition for a certain subclass of piecewise affine hy- 
brid systems. In [lo], the notion of controllability for 
hybrid systems is formalized by continuity of system 
functions. 

In this paper new sufficient conditions for the global 
controllability are obtained in terms of the so called 
hybrid fountains. The main tool for our analysis is the 
notion of a hybrifold, which was originally introduced 
in [12]. 

The paper is organized as follows. In Section 2, we 
formally define the class of control hybrid systems H 
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under our consideration and specify the standard as- 
sumptions on the continuous and discrete parts of the 
dynamics of H .  In Section 3, we generalize to con- 
trol hybrid systems the notions of a hybrid execution 
and a hybrid flow originally introduced in [8, 9, 131 for 
regular hybrid systems. Next we briefly overview .the 
procedure for constructing the so-called hybrifold [12] 
and define a controlled flow on it. Section 4 relates the 
global controllability of H to the global controllability 
of the associated controlled hybrifold. In Section 5, we 
introduce the notion of a hybrid fountain and provide 
new sufficient conditions for the global controllability 
of control hybrid systems. Finally in Section 6, we il- 
lustrate the theory developed in the paper on a water 
tank system example. 

2 Regular Control Hybrid Systems: Standing 
Assumptions 

We consider control hybrid systems which in this paper 
are taken to be of the following form. 

Definition 1 An n-dimensional control hybrid systems 
H is the 7-tuple H = {Q,V, E,U, X , g , R } ,  where 

Q = (1,. . . , k}, 1 5 k < 03, is the set of discrete states 
(which are called control locations); 

V. = {Di; i E Q, Di c R"} is the collection of domains; 

E c Q x Q is a finite set of transition labels (or edges); 

U is the set of admissible control functions taking values 
in some U c RnU; 

X = {fi; i E Q,  fi : Di x U + R"} is the collection 
of autonomous control vector fields assigned to each 
control location; 

0 = {Ge;  e = ( i , j )  E E,G, C i x Di} is the collection 
of guards; 
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R = {Re; e = ( i , j )  E E ,  Re C G, x j x D j }  is the 

0 
collection of resets. 

Next we list the assumptions on the continuous part of 
the dynamics of H .  

In this section we briefly overview and generalize to 
control hybrid systems some of the notions introduced 
in [8,9,13] for hybrid systems. Henceforth we shall use 
the following notations: 

D a U i x Di shall denote the total domain of H .  

b 
e e E .  

icQ 

D - U ( G ,  U Re(Ge)), in case Re is a map, for all 
ecE 

As in [12], we shall restrict ourselves to the study of 
hybrid systems that are subject to  the following as- 
sumptions. 

Al. The control hybrid system H is deterministic and 
non-blocking, in the sense that for any family of controls 
{ul, u2,. - .  , '1Lk; i e Q ,  ui E U }  and any initial condition 
tO,zO, the hybrid system H,  A { Q , D , E , U , X , , G , R } ,  
where X, 4 { f i ( . ,  ui)} ,  a an infinite execution starting 
at ( t 0 , z o )  and such execution is unique. The reader is 
referred to [8] for necessary and sufficient conditions for 
a hybrid system to be deterministic and non-blocking. 

A2. For each i e Q ,  Di is assumed to  be a non-empty, 
closed, contractible n-dimensional sub-manifold of Etn, 
with a piecewise smooth boundary. No two smooth 
components of-the boundary dDi meet at  a zero angle. 

A3. For each e = ( i , j )  E E ,  the guard G, is a closed 
piecewise smooth (n - 1)-dimensional sub-manifold of 
i x dDi with a piecewise smooth (or possibly empty) 
boundary. G,  has a finite number of connected compo- 
nents. 

A4. For each e = ( i , j )  e E ,  the reset Re is a homeo- 
morphic map from G,  onto Re(G,)  which is a subset of 
j x aDj.  

A5. For any e ,  e' e E ,  G ,  n Re! (Get) = 0, Ge n Gel # 
0 =+ (e  = e'), and [Re(Ge)]" n [Ret(Ge~)]" # 8 * 
( e  = e'). Thus only images of resets are allowed to 
have intersections and that can happen only at  their 
boundary points. 
Furthermore, any p e dGe Ud{Re(Ge)},  for some e e E ,  
satisfy some technical conditions specified in [12]. 

A6. For anyp  e G, ,  e = ( i ,  j) e E ,  there exists a control 
U E U under which a state z e (i x Dj)  n D can be driven 
to p (under U )  in such a way that the trajectory does 
not leave (i x Di) n d. 
Similarly, for any p' e Re (Ge) ,  there exists a control 
U' e U under which p' can be driven to a state z' E 

(j x Dj)nd (under U') in such a way that the trajectory 
does not leave (j x D j )  n d. 

B1. For each i E Q ,  X i  E C'(Di x U;IR"), T E 

(1, 2,. . a ,  CO, w } ,  where Cw denotes the class of analytic 
functions. 

B2. The set of admissible control functions 

U =Us(R;RnU) , s€  {1,2,*.*,CO}, 

is the set of all Rnu-valued bounded piecewise 
C"(Et; R"") functions of time with limits from the right; 
Hence any U e U, defined on some [TI, Tz) ,  T2 < CO, is 
Cs on [TI, Tz) with the exception of a finite number of 
points. 

For the results formulated in this paper we shall need 
r = 1, s = 1. 

Definition 2 A control hybrid system satisfying as- 
sumptions Al-A6 and Bl-B2 is called a regular control 

0 
hybrid system. 

3 Control Hybrifold 

Let H be a regular control hybrid system. We shall use 
the standard notion of a forward hybrid time trajectory 
7 = {[TilTi+l);  ~i < ~ i + l } ,  as defined in [8, 9, 12, 131. 
We shall use he symbol N ( T )  to  denote the size of the 
time trajectory and the symbol ( T )  to denote the set 
{1 ,2 , - - . ,N(T) l .  

As follows from the assumption B2, for'any control U e 
U defined on some [Tl,T2), T2 < CO, there exists a finite 
hybrid time trajectory T E 9 such that U is Cq on each 
Ii e T ,  i E ( T ) ,  and TI = TI, T N ( ~ ) + ~  = T2. We shall 
say that such T is the hybrid time trajectorg of U and 
denote it as ~ ( u ) .  

Definition 3 (Forward Control Execution) 
For any U e U ,  defined on [Tl,Tz), T2 < CO, and 
p e D ,  we define a (forward) control execution start- 
ing at  p as a triple x = ( ~ , q , + ) ,  where T E 9 is 
a refinement of T(u); q : ( T )  + Q is a map; and + = {+j  : [ T ~ ; T ~ + I )  -+ Dq(j);  j e ( 7 ) )  is a collection of 
continuously differentiable maps such that 41 ( T I )  = p ,  
and d j M  = X q ( j ) ( M ) , U j ) .  

Furthermore, for all j e ( T ) ,  j # N ,  we must have 
(q(A7 q(j + 1)) e E ,  aj A { lim 

and R(q(j),q(j+l)) ( a j )  = +j+1 ( T j + l ) .  

+ j ( t ) }  E G(q(j),q(j+l)) , 
t*Tj+l 

0 

Lemma 1 Let H be a regular control hybrid system. 
For any U* E U defined on some [TI , T2), Tz < 00, and 
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any p E D ,  there exists a unique control execution of H .  

0 

In [12], a set MH (called the hybrifo2d) is constructed 
from a hybrid system H .  In this section we briefly 
overview this procedure and define the controlled hybrid 
flow on M H .  The basic idea in the construction of the 
hybrifold is to glue together each guard to the image 
of the corresponding reset map by identifying any state 
p E G,, where e E E ,  with the corresponding image 
Re(p). So an equivalence relation N on D is generated 
by p - Re(p), for all e E E and p E G,. This relation 
gives rise the quotient space MH = D /  -, where each 
equivalence class is collapsed to a point. The set M H  
is called the hybrifold of H .  

Let T be the natural projection map 7r : D + M H  
which assigns to each p its equivalence class. We put 
the quotient topology on M H ,  i.e. the smallest topology 
in which V c MH is open if and only if T-'(V) c D is 
open (in the relative topology of D ) .  

As has been proven in [12], MH is a topological n- 
manifold with boundary. Thus we shall assume, with- 
out loss of generality, that MH is embedded in R", 
for some m, n 5 m < m. Henceforth we shall deal 
not with the original domains Di but rather with the 
hybrifold M H .  

Remark 1 Take an arbitrary x E MH and consider its 
inverse image under 7r. As follows from the assump- 
tion A5, there are two possible cases: (i) T- ' ( x )  is a 
singleton, i.e. p = 7r-l(x) E fi; and (ii) T - ~ ( X )  = 
{ z1 , . . . , zS ,p} ,  where each zi, 1 5 i 5 s < CO, lies 
on the boundary of a guard Gei, for some ei E E ,  and 
p = Rel(zl)  = = R e s ( Z s ) .  In both cases we shall 
take p as the canonical representative of the equivalence 
class 7r-l (x ) .  

Definition 4 (Hybrid Control Flow) Take an ar- 
bitrary control U E U defined on some [TI, Tz), T2 < m, 
and an arbitrary state x E M H .  Let p E D be the canon- 
ical representative of the equivalence class ..-I(.). 

As follows from Lemma 1, there exists a unique control 
execution x = {T,  q, q$} of H starting at  p .  

We shall use the symbol QH(t ,x ,u) ,  t E [Tl,T2), to 
denote the controlled hybrid flow on M H :  

Q H ( t ,  2, U )  A n(q$i(t)), for any i E (7) and t E [ ~ i ,  ~ i + l ) .  

MH with the controlled flow Q H  defined on it shall be 
called the controlled hybrifold of H .  

0 

Lemma 2 For any control U ,  the controlled hybrid 
flow QH(. ,x ,u)  is continuous on MH with respect to 

0 
the argument t. 

4 Global Controllability of Hybrid Systems 

Let H be an  arbitrary regular control hybrid system 
and MH its controlled hybrifold. In this section we 
relate the global controllability of the total domain D 
of H with the global controllability of M H .  

Definition 5 (Accessible sets of H )  
We shall say that a state p' E D is accessible f rom p 
inD (with respect to  V c D) if there exists a control 
U E U, defined on some [TI,  T2), T2 < CO, and its control 
execution x = (7, q, 4) of H starting at p such that 

(i) ~ N ( T ) ( ~ )  = P', for Some T E [ T N ( r ) ;  7 N ( ~ ) + l ) ;  and 

(ii) for any j E (T )  and t E [ ~ j ;  T ~ + I ) ,  q $ j ( t )  E V .  

The set of all states in D accessible from p (with respect 
to V )  shall be denoted by AE(p). In the case V = D, 

0 
we shall write  AD(^). 

Thus we assumed that an accessible state p' can be 
reached from p in finite time using a finite number of 
switching (or jumps)  between control locations. 

Remark 2 We observe that, as follows from Defini- 
tion 3, Re(p) E  AD(^), for any state p E G,, e E E. 

Similarly, we can define the accessible states using the 
dynamics of the controlled hybrifold M H .  

Definition 6 (Accessible sets of M H )  
Let x E MH c R". We shall say that a state x' e MH 
is accessible from x (with respect to  V C M H )  if there 
exists a control U E U defined on some [TI,  T2), TZ < 00, 

such that 

(i) x' = QH(T,x,u) ,  for some T E [Tl,T2); and 

(ii) for any TI 5 t 5 T ,  Q H ( t ,  x ,  U )  E V .  

The set of all states in MH accessible from z (with 
respect t o  V )  shall be denoted by Av(x).  In the case 

0 V = M H ,  we shall write A(x).  

The set of all states co-accessible t o  p (to x) ,  with re- 
spect to V c D (with respect t o  V c M H ) ,  in H (in 
M H )  is defined dually and shall be denoted as C A L ( p )  
(as CAw(x)).  

Remark 3 We observe that for any p E D and any 
neighborhood V of p in D ,  we have 

4 m P N  c A"'v'(dP)), (1) 
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where x : D + MH is the natural projection map. 
This is because any orbit in D is projected by x onto 
an orbit in M H .  

In the particular case V = M H ,  we have the following 
result. 

(ii) The relation - is a bisimulation on D x D,  in the 
sense that if a state p can be driven to some y ,  then any 
p’, p‘ - p ,  can be driven to  some y’ such that y’ - y .  

(iii) V p E D x ( A ~ ( p ) )  = A(n(p)) .  
0 

Definition 7 We say that a set D1 c D is controllable 
with respect to D2 c D for the control hybrid system 
H if A z ( p )  = D1, for all p E D1. 

In the particular case when D1 = D, 0 2  = D, and 
AD@) = D, for all p E D, we shall say that the total 
domain D is globally controllable for H .  

Similarly, we shall say that a set C1 c MH is control- 
lable with respect to C2 C MH if Ac2(x) = C1, for all 
x E c l .  MH is globally controllable if A(x)  = M H ,  for 

0 
all x E M H .  

Theorem 2 Let H be a regular control hybrid system. 
Then the total domain D is globally controllable if and 
only if the associated hybrifold MH is globally control- 
lable. 

Proof: 
=+ Let D be globally controllable. Then, using Re- 
mark 3, we obtain for any x E M H ,  

M H  = r ( D )  = ~ ( A D @ ) )  C A“‘D’(x(p)) = A ( x )  C MH 

where p is an arbitrary point in the set x-’(x) c D. 
Hence A(x)  = M H ,  for any x E M H ,  and MH is globally 
controllable. 

+= Conversely, let MH be globally controllabre. Take 
any p,p’  E D. Each of them could lie in any of the sets 

{ G e , R e t ( G e ! ) , B ;  e ,e’  E E } .  

Consider, for instance, the case when p E G ,  and p’ E 
R,t(G,,), for some e = ( i , j ) , e ’  = ( i ’ , j ’ )  E E .  Then 
define y = R,(p) and y’ E Gel such that Ref(y’ )  = p‘. 

By the assumption A6, the guard and reset conditions 
are non-vac%ous, in the sense that there are states z E 

( j  x D j )  n D and z’ E (i’ x D i t )  n D such that z is 
accessible from y and _z‘ is co-accessible to y’ .  Next 
note, that since z ,  z’ E D and n is 1 to 1 on D, from the 
existence of an orbit connecting n ( z )  to n(z’) in MH 
follows the existence of a control execution that drives 
z to z‘. Finally, combining all the accessibility relations 
for p ,  y ,  z ,  z’, y’,p’ we conclude that p’ E AD@).  

The rest of the cases can be considered in an analogous 
manner. Thus Ao(p)  = D,  for any p E D, and D is 

0 
globally controllable. 

The above result allows us to  use the hybrifold and the 
continuous controlled hybrid flow defined on it in or- 
der to study the global controllability of the original 
control hybrid system. The advantage of this approach 
is in the fact that the controllability results formulated 
for differential control systems acting on subsets or sub- 
manifolds of Rn can be transformed to control hybrid 
systems. This shall be demonstrated in the next sec- 
t ion. 

5 Hybrid Fountains 

In this section we introduce the notion of a hybrid foun- 
tain which we shall use as the main hypothesis in our 
controllability result. Henceforth the symbol B ~ ( x ) ,  
where x E M H ,  0 < 6 E R1, shall denote the m- 
dimensional ball with the center x and the radius 6. 
The sets AB6(P)(p) and CAB6(p)(p) shall be denoted as 
A6(p)  and CA6 ( p ) ,  respectively. 

Definition 8 A state x E MH is called a hybrid foun- 
tain if 

31.1 > 0 V6,O < 6 < p , A 6 ( x )  - { x }  and CA6(x)  - { x }  
are non-emptyl open sets. 

(2) 

If the function p a sup{p; such that (2) holds} is con- 
tinuous at x ,  we shall say that x is a continuous hybrid 
fountain. If p is unbounded at x we consider it to be 

0 
continuous at x .  

We note that the continuous fountain property does not 
depend on the particular way that MH is embedded in 
P. 

The reader is referred to  [2, 3, 61 for applications of the 
fountain condition to the study of ordinary differential 
systems acting on subsets of Rn. See also [7], where a 
set of algebraic conditions for verification of the foun- 
tain property is presented, and [4], where applications 
to hierarchical hybrid control theory are outlined. 
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Henceforth we shall use the term controlled closed orbit 
in the sense of controlled loop. 

Theorem 3 Let each E E M H  be a continuous hybrid 
fountain and let for each x E MH there exist a control 
U E U such that x lies on a nontrivial (controlled under 
U )  closed orbit in M H .  Then each connected component 
of [MH]' is controllable with respect to M H .  

Proof: Let C denote one of (the finite number of) the 
connected components of [MH]'. For any two states 
x,x' in C we define a relation -O in such a way that 
z wO x' if and only if there exists a (controlled) non- 
trivial closed orbit in MH passing through both x and 
x', i.e. there exists a control U defined on some [TI, Tz) ,  
T2 < 00, such that 

(i) 3 T ,  TI < T < Tz, ~(T~,X,U) = 9(T,x,u); and 

(ii) 3 t, TI < T 5 T ,  q(t,x, U) = x'. 

Clearly, the relation wO is reflexive (since each state in 
MH lies on a nontrivial orbit), symmetric and transi- 
tive. Hence there exists a partition of C on the equiva- 
lent classes of w O .  Let [z], for an arbitrary x E C ,  denote 
the equivalent class containing x. We claim that [XI is 
an open subset in C. 

Indeed, take any z E [XI. Let U and 0 5 t < 00 be 
such that z = !P(t,x,u). Define a = 9(t - A,x,u) 
and b = IE(t + A,z,u), A > 0. Then, since a and b are 
hybrid fountains, the sets A'((a) - { a }  and CA'(b) - { b }  
are open, for sufficiently small 6 > 0. Choose A so 
small that z E A"a) and z E CA6(b) (this is possible 
since a,  b are continuous hybrid fountains). Then there 
exists an open neighborhood N ( z )  of z which lie in the 
intersection (A6(.) - { a } )  n (CA6(b) - { b } ) .  Each state 
z' E N ( z )  is accessible from a and co-accessible to b. 
Moreover, since a, b E [z], we conclude that z' lies on a 
non-trivial orbit passing through z. This is true for all 
z' E N ( z ) ,  hence N ( z )  c [z] and [z] is open, as claimed. 

For any x, x' E C we have [z] r l  [x'] # 0 3 [XI = [x'], so 
any two equivalent classes are either disjoint or coincide. 
Since C is connected, C = [XI. In other words, any two 
states in C lie on a nontrivial controlled orbit in MH 

0 
and hence, C is controllable with respect t o  M H .  

Theorem 4 Assume that the hybrifold MH is con- 
nected and the conditions of Theorem 3 are satisfied. 

0 
Then MH is globally controllable. 

Consider the directed graph r of H which has vertices Q 
and edges E. We can treat it as a finite state machine, 
by defining the transition function @ : Q + Q in such 

a way that for any i, j E Q,  @(i) = j if and only if 
( i , j )  E E or i = j .  

Theorem 5 Assume that the conditions of Theorem 3 
are satisfied. Then MH is globally controllable if and 
only if the graph r = {Q, E }  is controllable as a finite 
state machine. 

Proof: 
Assume that MH is globally controllable. Then for 

any i, j E Q ,  i # j ,  take some states p E Di and p' E D j .  
There exists a trajectory II, from p t o  p' in M H .  Let 
the sequence i = q , r Z , . - . , r e  = j ,  e > 1, be such 
that $ switches consecutively from the domain Drs to 
the domain DrS+,,  where s = 1,2, ... , e  - 1, using the 
corresponding guards and the images of the reset maps. 
Hence each consecutive pair ( rs ,  r,+1) belongs to E and 
hence, there exists a trajectory from the state i to the 
state j in the graph I'. Since this holds for an arbitrary 
pair (i, j )  E Q, we conclude that I' is controllable as a 
finite state machine. 

e= Conversely, assume that I' is controllable as a finite 
state machine. Then for any two states p,p' E D take 
i and j such that p E Di and p' E D j .  If i # j ,  find 
a trajectory i = T ~ , T z , . - . , T ~  = j ,  C > 1, in the graph 
I'. Since each consecutive pair (r , ,rs+l)  belongs to E ,  
there exists a guard G(,a,rd+l) in the domain DYa which 
is identified with the image of the reset map R(rs,rs+l) in 
the domain D,,+,. Hence the domains D,, and D,.*+,, 
and thus Di and D j ,  lie in one connected component 
of M H .  This can be shown for all i , j  E Q. Hence MH 
is connected and, as follows from Theorem 4, MH is 

0 
globally controllable. 

R e m a r k  4 In conclusion we note that it is entirely fea- 
sible to generalized the presented results to hybrid sys- 
tems with autonomous and controlled switchings. 

6 Water Tank System 

To illustrate the controllability result obtained in the 
previous section, we consider a system consisting of two 
water tanks. The water can be added to  the system at 
some rate w > 0 (where we treat the parameter w as 
control) via tank 1 or tank 2. In addition to that, the 
water is removed from tank i, i = 1,2, at some constant 
rate vi > 0. We model the system as a control hybrid 
system and distinguish two control locations : 

q = 1 : 

= 2 : 

{ j r ,  = w - VI, j rz  = -v2, (z1,xz) E D1, 

{ 21 = - V I ,  fz = w - VZ, ( 2 1 , ~ ~ )  E Dz,  
where 21, xz denote the levels of water in the tanks 
1 and 2, respectively; D1 A {[ZI, m) x [ZZ, m)} and 
Dz a { [ h ,  00) x [h, 00)). 
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= z2 

0 = T(1 x (11,12)} = x (11,12)} 

Figure 1: Hybrifold MH 

The class of control functions is taken to be the set of 
,all piecewise constant functions of time taking values 
in the set U = {w; w 3 max{v1,212}}  C R. 

The guards are specified as G ( 1 , 2 )  = 1 x { (XI ,  Z2) E Dl}, 
and G(2,1)  = 2 x { (Z1,22)  E Dz}. The resets are de- 
fined in such a way that when hitting a guard in one 
domain the system switches to the other control loca- 
tion, without changing the continuous part of the state, 
i.e. q l , 2 ) ( 1 i x d 2 )  = ( 2 ; x 1 , / 2 )  and R ( 2 , 1 ) ( 2 i ~ l , X 2 )  = 
(1; 11, x 2 ) .  

The control objective for the system could be formu- 
lated in terms of reachability of a final state or a region 
from an initial state (by means of choosing an appro- 
priate control w) while keeping the levels of water in 
the tanks above the levels XI = Z I ,  2 2  = 12 (by means 
of the defined above guards and resets). 

To construct the associated with this system hybrifold 
we identify (via the identity reset maps) the x and y 
coordinate axes of D 1  with the x and y axes of D 2 ,  

respectively. The hybrifold MH is shown in Figure 1. 

Remark 5 We note that the only two states in the 
total domain D = (1 x 0 1 )  U (2 x D 2 )  which do not 
satisfy the assumptions listed in Section 2, (namely A5) 
are 01 A ( l ; Z l , Z Z )  and 0 2  A (2;Zl ,Z2) .  These are the 
states that admit the so-called Zeno behavior. For more 
information on Zen0 executions and Zen0 states see [12, 
131. We omit these two states and their image 0 A 
~ ( 0 1 )  = 'IT(@) from our consideration. This will not 
influence our conclusion about controllability, because 
any control execution in D with the initial condition at 
01 or 0 2  does not pass through any state in D-{ol, 02). 

U 

It can be easily verified that each state po E Do is a 
hybrid fountain. Furthermore, each p E (D - {01,*}) 

lies on a non-trivial closed control orbit. Applying The- 
orem 3, we conclude that MH - (0) is controllable and 
hence, by Theorem 2 and Remark 5, D - {01 ,02}  is 
controllable. 
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