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Abstract

We propose a general method based on the balanced
stochastic truncation (BST) approach for the model re-
duction of stable linear systems. The new method relies
on a recent general inner-outer factorization result and
extends the applicability of the BST method to systems
with infinite zeros. A computational algorithm with
enhanced accuracy for the new BST model reduction
approach is presented. The capabilities and advantages
of the new approach are illustrated on an example.

1 Introduction

Consider G(s) a p ×m stable transfer-function matrix
(TFM) with a minimal state space realization G :=
(A,B, C, D) of order n satisfying

G(s) = C(sI −A)−1B + D.

If G(s) is square and D nonsingular it is possible to
compute the left spectral factor W (s) of G(s)G∼(s) sat-
isfying

W∼(s)W (s) = G(s)G∼(s),

where we denoted G∼(s) := GT (−s). A state
space realization of W (s) can be obtained as W =
(A,BW , CW , DT ) (see e.g. [15]) with

BW = PCT + BDT

CW = D−1(C −BT
W X),

where P is the controllability Gramian of G given by

AP + PAT + BBT = 0 (1)

and X is the observability Gramian of W , being the
solution of the Riccati equation

XA + AT X + CT
W CW = 0. (2)

The state space realization of G is called a balanced
stochastic realization [3] if P = X = Σ with Σ =

diag(σ1, . . . , σn), where σi is the i-th Hankel singular
value of the stable part of the so-called ”phase matrix”
F (s) := (W∼(s))−1G(s).

We assume now that G is already stochastically bal-
anced and the singular values are ordered decreasingly.
Partition Σ as

Σ =
[

Σ1 0
0 Σ2

]
(3)

where Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn),
and σr > σr+1. Partition similarly the system matrices

A =
[

A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [ C1 C2 ].

The truncated model Gr = (A11, B1, C1, D) is a
stochastically balanced approximation of the original
system G, is stable, and satisfies the relative error
bound

‖G−1(G−Gr)‖∞ ≤
n∏

i=r+1

1 + σi

1− σi
− 1. (4)

This model reduction approach, called balanced stochas-
tic truncation (BST), has been introduced in [1], and
further analysed and extended in [3, 4].

The BST approach belongs to the family of relative
error methods [15]. In contrast to absolute error meth-
ods like the balanced truncation (BT) method [7] or the
singular perturbation approximation (SPA) method [6],
the BST method has the main advantage to provide a
uniform approximation of the frequency response of the
original system over the whole frequency domain, and
even more important, to preserve phase information.
For example, for a minimum-phase original system, the
BST-approximation is also minimum-phase. However,
this is not generally true for the absolute error methods.

Computational approaches for the BST model reduc-
tion approach are restricted to systems with full rank
D. If D has no full rank, it was suggested in [2] to
replace G(s) by [ G(s) αI ] with α > 0 and solve the



BST problem for the modified system. The BST ap-
proach applied to [ G(s) αI ] leads for small α values
to a BST-type relative error approximation, while for
large α values to an BT-type additive error approxima-
tion. However, small values of α lead to ill-conditioned
Riccati equations, thus preventing the computation of
accurate ”pure” relative error approximations.

In this paper we propose an extension of the BST
method to arbitrary stable systems. The basis of this
extension is the possibility to compute the left spectral
factor W (s) for an arbitrary G(s) in a numerically re-
liable way by using a recent algorithm for inner-outer
factorization [9]. In this context, we propose a new,
completely general computational algorithm with en-
hanced numerical accuracy for the BST model reduc-
tion approach. We illustrate the capabilities and ad-
vantages of the extended BST method by reducing a
120-th order finite element model of a CD-player.

2 Computation of left/right spectral factors

The basis for a general BST approach is the following
theorem.

Theorem 1 Let G(s) be a stable TFM of arbitrary
rank with a minimal realization G = (A, B,C, D).
Then there exist W (s) outer and V (s) co-outer with
state space realizations of the form V = (A,BV , C, DV )
and W = (A,BW , CW , DW ) such that

G(s)G∼(s) = V (s)V ∼(s) = W∼(s)W (s).

Proof. The proof is constructive, providing procedures
to compute the two factors.

Computation of V (s). Applying the result of [9] to
GT (s) we can determine the inner-outer factorization

GT (s) = GT
i (s)V T (s),

where GT
i (s) is the inner factor and V T (s) is the outer

factor. Thus V (s) is co-outer. Moreover, the procedure
of [9] determines V T (s) with a state space realization
of the form (AT , CT , BT

V , DT
V ) with BV and DV appro-

priate matrices.

Computation of W (s). Consider the conjugate sys-
tem G∼ = (−AT ,−CT , BT , DT ). A left coprime fac-
torization of G∼(s) in the form G∼(s) = M−1

i (s)N(s)
with Mi co-inner can be determined with N given by
[15, Theorem 13.36]

N = (−AT + KBT ,−CT + KDT , BT , DT ),

where K = −P−1B and P satisfies (1). However

−AT + KBT = −AT − P−1BBT = P−1AP

thus, N has the equivalent state space realization

N = (A,PCT + BDT ,−BT P−1, DT ). (5)

We apply once again the inner-outer factorization al-
gorithm of [9] to factorize N(s) in the form N(s) =
Ni(s)W (s), with Ni inner and W (s) outer. The state
space representation of W (s) is obtained as

W = (A,PCT + BDT , CW , DW ),

where CW and DW are appropriate matrices. Over-
all we have G∼(s) = M−1

i (s)Ni(s)W (s) and thus
G(s)G∼(s) = W∼(s)W (s). 2

We can now define the balanced stochastic realization of
an arbitrary stable G(s) using the computed left spec-
tral factor W (s) in Theorem 1 by requiring that the
two Gramians P and X in (1) and (2) are equal and
diagonal. This can be achieved by computing an appro-
priate balancing transformation matrix [7]. In the next
section, we discuss a numerically reliable approach to
compute the matrices of the reduced model which ex-
ploits the structure of the model reduction problem and
is suitable for robust software implementation.

3 A BST algorithm with enhanced accuracy

To determine the stochastic balanced state space rep-
resentation of G(s) we need to compute an appropri-
ate transformation matrix Z such that the transformed
Gramians are equal and diagonal, satisfying thus

Z−1PZ−T = ZT XZ = Σ.

If we partition Z and Z−1 in accordance with Σ in (3)

Z−1 :=
[

L
V

]
, Z := [ T U ],

then LT = Ir and Π = TL is a projection matrix. Thus
the reduced system Gr is given by

Gr := (Ar, Br, Cr, Dr) = (LAT, LB, CT, D).

The matrices L and T are called truncation matrices.

In the balancing related model reduction methods, the
truncation matrices L and T can be determined know-
ing only the Cholesky factors of the Gramians P and X.
Let P = ST S and X = RT R be in Cholesky factored
forms and compute the singular value decomposition

RST = [ U1 U2 ]
[

Σ1 0
0 Σ2

]
[ V1 V2 ]T , (6)

where Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn),
and σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn ≥ 0. Then the
truncation matrices L and T can be determined as [11]

L = Σ−1/2
1 V T

1 R, T = ST U1Σ
−1/2
1 . (7)



The emphasis on improving the accuracy of compu-
tations by exploiting the problem structure led to so-
called algorithms with enhanced accuracy. The above
approach to compute the truncation matrices using ex-
clusively the Cholesky factors of the Gramians is called
the square-root BST method. We can exploit another
structural feature of the problem to increase the com-
putational efficiency of the BST method. Since G and
W share the same state matrix A we can first reduce
A to a real Schur form (RSF). This reduction is always
necessary for the efficient and accurate computation of
the Gramians in Cholesky factored forms P = ST S and
X = RT R by employing the algorithm of Hammarling
[5]. This preliminary reduction is included in the fol-
lowing BST model reduction algorithm:

Square-root BST model reduction method.

1. Compute orthogonal Q to reduce A to a RSF

A ← QT AQ, B =← QT B, C ← CQ.

2. Solve for the Cholesky factor S of P the Lyapunov
equation

A(ST S) + (ST S)AT + BBT = 0

3. With P = ST S, form N = (A,PCT +
BDT ,−BT P−1, DT ) and compute, using the algo-
rithm in [9], the outer factor of the inner-outer fac-
torization of N as

W = (A, PCT + BDT , CW , DW ).

4. Solve for the Cholesky factor R of X the Lyapunov
equation

(RT R)A + AT (RT R) + CT
W CW = 0.

5. Compute the singular value decomposition (6) and
determine the truncation matrices as

L = Σ−
1
2

1 UT
1 R, T = ST V1Σ

− 1
2

1 .

6. Compute the reduced system

Gr = (LAT, LB, CT,D).

An alternative ”balancing-free” approach to compute
the truncation matrices has been proposed in [10]. This
approach avoids basically balancing and was primarily
intended to improve the numerical accuracy of compu-
tations when ill-conditioned (i.e., nearly rank deficient)
truncation matrices L and T can result because the
original system is poorly scaled. It relies on the obser-
vation that, for any invertible Z̃, the pair (Z̃−1L, T Z̃)
defines the same projection Π = TL as the pair (L, T )
in (7), but in a different coordinate form. A balancing-
free square-root approach combining the square-root

method of [11] and the balancing-free technique of [10]
has been proposed for the BST method in [12]. This
involves the computation of two QR-decompositions

ST V1 = TJ, RT U1 = FH,

where J and H are nonsingular matrices and T and
F are matrices with orthonormal columns. With the
computed F and T , L is computed as

L = (FT T )−1FT .

The resulting truncation matrices L and T are always
well conditioned.

The key computation in the BST model reduction ap-
proach is the computation of the inner-outer factoriza-
tion of N at step 3 using the algorithm of [9]. This
computation consists in two main steps: (1) the full
row rank compression of N involving the solution of a
reduced order standard Riccati equation, and (2) the
dislocation of unstable zeros by solving a reduced order
Lyapunov equation. A delicate computation is a pre-
liminary orthogonal reduction of the system pencil to
isolate a reduced order subsystem with special proper-
ties. This reduction, involving repeated rank determi-
nations, can be sensitive to the scaling of the system.

It would be ideal to perform the BST algorithm on
an already balanced minimal realization, with the bal-
anced Gramian P having a reasonably small condition
number. However, for a nearly non-minimal system,
the controllability Gramian P can be almost singular.
Therefore, the need to invert P to form N at step 3
can lead to an unacceptable overall accuracy loss. In
such cases, it is advisable to apply first an alternative
method (e.g., the additive error BT approach) to per-
form a preliminary order reduction which guarantees a
well conditioned P . Such a preliminary reduction could
also be beneficial when the applicability of the BST-
method is restricted by a too high order of the original
system.

4 Discrete-time systems

Let G(z) be a discrete-time TFM with a minimal state
space realization G = (A,B,C, D) of order n satisfying
G(z) = C(zI − A)−1B + D. Let G∼(z) := GT (z−1)
denote the conjugate TFM for G(z). We have a result
similar to Theorem 1 for the spectral factorization of
discrete-time systems.

Theorem 2 Let G(z) be a stable TFM of arbitrary
rank with a minimal realization G = (A,B, C,D).
Then there exist W (z) outer and V (z) co-outer with
state space realizations of the form V = (A, BV , C, DV )
and W = (A,BW , CW , DW ) such that

G(z)G∼(z) = V (z)V ∼(z) = W∼(z)W (z).



Proof. The proof is immediate by using bilinear trans-
formations formulas as in [13]. 2

The bilinear transformation technique can serve as ba-
sis for a discrete-time BST algorithm. We apply the
continuous-time BST algorithm to the continuous-time
system Gc(s) := G( s+1

s−1 ) resulted by a bilinear transfor-
mation. If Gc,r is the computed continuous-time BST
approximation for Gc, then the discrete-time BST ap-
proximation is obtained by the inverse bilinear trans-
formation Gr(z) = Gc,r( z+1

z−1 ). The disadvantage of this
approach is that the resulting reduced system Gr has
possibly a nonzero Dr matrix even if the original system
is strictly proper.

It is also possible to develop a discrete-time analog of
the continuous-time BST-algorithm. The main diffi-
culty is that, in general, G could have poles in the
origin. In such a case, A is singular and thus a stan-
dard state space realization for G∼ can not be formed.
Even for a nonsingular A, the explicit computation
of G∼ := (A−T ,−A−T CT , BT A−T , DT − BT A−T CT )
is not advisable, when A is ill-conditioned. How-
ever, explicit formulas for the numerator factor N
in G∼(z) = M−1

i (z)N(z) can still be derived with
help of bilinear transformations formulas. By applying
the continuous-time coprime factorization algorithm to
Gc(s) := G( s+1

s−1 ) we get the corresponding continuous-
time Nc (see (5)). Then we compute N(z) := Nc( z+1

z−1 )
and we obtain explicit expressions for the matrices of
the state space representation

N = (A,BN , CN , DN ),

with

BN = APCT + BDT ,
CN = BT (AT − I)−1P−1(A− I),
DN = DT −BT (AT − I)−1(CT − P−1BN ),

where P is the discrete-time controllability Gramian
satisfying

APAT − P + BBT = 0. (8)

For the inner-outer factorization at step 3 the discrete-
time algorithm proposed in [8] is used, to obtain
W = (A,APCT + BDT , BW , CW ). The observability
Gramian X can be computed by solving

AT XA−X + CT
W CW = 0. (9)

Both Lyapunov equations (8) and (9) can be solved
directly for the Cholesky factors of the Gramians S
and R, respectively, using the discrete-time Hammar-
ling algorithm [5]. Note however, that due to the rather
complicated expressions of the state space matrices of
the realization of N , the explicit discrete-time approach
seems to have no special computational advantages over
the bilinear transformation approach.

5 Numerical example

To illustrate the capabilities of the proposed approach,
we apply it to a strictly proper model and compare
it with two well-known absolute error approaches: the
balanced truncation (BT) method [7] and the singu-
lar perturbation approximation (SPA) [6]. As example,
we use the 120-th order single-input single-output fi-
nite element model of the dynamics between the lens
actuator and radial arm position of a portable com-
pact disc player discussed in [14]. This system is not
minimum-phase, having besides the 113 stable zeros,
also 5 unstable zeros and 2 infinite zeros.

Due to physical constraints on the size of the systems’s
controller, a reduced model with order r ≤ 15 is de-
sired. For comparison purposes we determined 15-th
order reduced models GBST

r , GBT
r , and GSPA

r with the
BST, BT and SPA methods, respectively. The Hankel
singular values of the original G system and the singu-
lar values computed by the BST algorithm are shown
in Figures 1 and 2, respectively.
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Figure 1: Hankel singular values of G.
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Figure 2: Stochastic singular values.



From the wide range of variation of the Hankel singu-
lar values of G in Figure 1 we expected numerical dif-
ficulties when inverting P . Indeed, the controllability
Gramian P to be used at step 3 of the algorithm had
a condition number of order 1017. Therefore, the orig-
inal system is numerically uncontrollable and the sub-
sequent operations with P led to severe accuracy loss.
To prevent excessive accuracy loss or even the failure
of the inner-outer factorization algorithm an additional
scaling of the model before step 3 was performed. The
computed reduced system has 8 stable, 5 unstable and
two infinite zeros. The 5 unstable zeros are practically
the same as those of the original system. These results
regarding the preservation of unstable zeros are consis-
tent with the theory of BST model reduction developed
in [3] for non-minimum phase systems.

An alternative approach which we also tested was to
perform the BST method after a preliminary order re-
duction with the BT method to guarantee an accept-
able condition number for P . The preliminary reduc-
tion with the BT method led to a system of order 72,
for which the condition number of P was of order 107

(as expected from Figure 1). The zeros of this reduced
model contain two infinite zeros and the 5 unstable ze-
ros of the original system. This infinite and unstable
zeros structure is kept also after performing the BST
approach on the reduced model. Note that no addi-
tional scaling at step 3 was necessary to use this com-
bined BT and BST approach.

We computed the absolute and relative errors from the
frequency responses evaluated on a grid of 10000 fre-
quency values in the frequency range [10−8, 108]. The
resulting absolute errors for the three methods are

‖G−GBST
r ‖∞ = 8.047,

‖G−GBT
r ‖∞ = 0.0423,

‖G−GSPA
r ‖∞ = 0.0423

and the relative errors are

‖G−1(G−GBST
r )‖∞ = 1.07,

‖G−1(G−GBT
r )‖∞ = 2.1682 · 103,

‖G−1(G−GSPA
r )‖∞ = 8.1742 · 108.

As expected, the BST method has the lowest relative
error in comparison with the very poor relative errors
for the BT and SPA methods. On contrary, the ab-
solute errors for the absolute error methods are much
better than that for the BST approach.

The good uniform approximation of both amplitude
and phase obtained with the BST method can be seen in
the Nichols plots in Figure 3. Note that while the cen-
tral frequencies part is reasonably well approximated by
all methods, there are significant differences at both low
and high frequencies, where the BT and SPA methods
provide poor approximations.
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Figure 3: Nichols frequency responses.

The Figure 4 shows more in details the performance
of different computed approximations on basis of Bode
magnitude plots. All methods approximate satisfac-
torily the central peak at frequency about 120 Hz, but
have different approximation properties at low and high
frequencies. The SPA method has zero stationary er-
ror but appears inappropriate at high frequencies. Al-
though the BT approximation is somewhat better at
high frequencies, its performance at both low and high
frequencies appears still unsatisfactory. The BST ap-
proximation appears satisfactory over the whole range
of frequency values, being able to follow the shape of the
gain with high fidelity over the whole frequency range
(see also the zoomed region in Figure 5).
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Figure 5: Zoomed area of Figure 4.

6 Conclusion

We presented a computational method for the BST
model reduction which is applicable regardless the orig-
inal system has infinite zeros or not, or its TFM has full
rank or not. Each step of the proposed BST algorithm
can be performed using numerically reliable procedures.
The critical computation is the inner-outer factoriza-
tion of a TFM with possible infinite zeros and/or non-
full rank. This computation can be performed in a nu-
merically reliable way by using a recently developed
inner-outer factorization algorithm [9]. The proposed
new BST algorithm for continuous-time systems can
be used for discrete-time systems as well by means of
bilinear transformation techniques.

Several open issues related to the proposed BST algo-
rithm are still to be addressed. One important the-
oretical problem is the derivation of a bound for the
achieved relative error. Based on limited experimental
evidence, we conjecture that a bound of the form (4)
could be also valid for the new BST method. From nu-
merical point of view it is important to study the role
of scaling to prevent excessive ranges for the elements
of system matrices and to simultaneously reduce the
condition number of controllability Gramian. This is
especially important to increase the reliability of rank
decisions when performing the inner-outer factorization
at step 3.

In spite of intrinsic numerical difficulties, we believe
that the BST approach is a viable method to obtain
reduced order plant models or controllers, when a good
uniform approximation over the whole frequency range
is more important than small absolute errors. As model
reduction algorithm, this method is best suited as final
step of reducing high order models, following a pre-
liminary order reduction with powerful additive error
methods like the BT or SPA approaches. These addi-

tive error methods perform well regardless the original
system is minimal or not and can compute reduced or-
der models with a prescribed condition number of the
Gramians. By combining the BT and BST method, the
risk of accuracy losses in the BST method due to inver-
sion of an ill-conditioned Gramian can be significantly
reduced.
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[9] C. Oară and A. Varga. Computation of general
inner-outer and spectral factorizations. IEEE Trans.
Autom. Control, 45, No. 7, 2000.

[10] M. G. Safonov and R. Y. Chiang. Model reduc-
tion for robust control: a Schur relative error method.
Int. J. Adapt. Contr.&Sign. Proc., 2:259–272, 1988.

[11] M. S. Tombs and I. Postlethwaite. Truncated bal-
anced realization of a stable non-minimal state-space
system. Int. J. Control, 46:1319–1330, 1987.

[12] A. Varga and K. H. Fasol. A new square-root
balancing-free stochastic truncation model reduction
algorithm. In Prepr. of 12th IFAC World Congress,
Sydney, Australia, vol. 7, pp. 153–156, 1993.

[13] W. Wang and M. G. Safonov. Comparison be-
tween continuous and discrete-time model truncation.
In Proc. 29th CDC, Honolulu, Hawaii, pp. 494–499,
1990.

[14] P. Wortelboer. Frequency-weighted Balanced Re-
duction of Closed-loop Mechanical Servo-systems: The-
ory and Tools. PhD thesis, Techn. Univ. Delft, 1994.

[15] K. Zhou, J. C. Doyle, and K. Glover. Robust and
Optimal Control. Prentice Hall, 1996.


