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Abstract. The classical Rayleigh quotient iteration (RQI) allows one to compute a one-dimensional
invariant subspace of a symmetric matrix A. Here we propose a generalization of the RQI
which computes a p-dimensional invariant subspace of A. Cubic convergence is preserved
and the cost per iteration is low compared to other methods proposed in the literature.
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1. Introduction. Many classical methods exist for computing a single eigenpair
(eigenvector and eigenvalue) of a symmetric matrix A. Among them are the power
method and (shifted) inverse iteration, with the Rayleigh quotient iteration (RQI)
as a particular case [14, 15]. The RQI is of particular interest because of its cubic
convergence and its potential use in the shifted QR algorithm [22, 15].

In some cases, especially for multiple or clustered eigenvalues, it is advisable
to compute the whole invariant subspace spanned by the corresponding eigenvec-
tors. This leads one to consider algorithms whose iterates are general p-dimensional
subspaces of Rn. Algorithms for refining estimates of invariant subspaces were first
proposed by Stewart [20], Dongarra, Moler, and Wilkinson [7], and Chatelin [4]. Dem-
mel [5] unified these methods by showing that they amount to solving the same Ric-
cati equation. Recently, other methods have been proposed, notably by Helmke and
Moore [13] and Edelman, Arias, and Smith [9], based on the fact that the invariant
subspaces are the stationary points of a well-chosen cost function. The fundamental
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difference between the former methods [20, 7, 4, 5] and the latter [13, 9] is that the
former represent subspaces by means of a fixed projective space representation, while
the latter rely on the quotient geometry of the Grassmann manifold (see section 4.8
in [9] and section 7 in the present paper). Methods of the first category [5] all display
linear convergence (as in the classical subspace iteration of Rutishauser [17, 18]) or
quadratic convergence [4] but at a high numerical cost of O(n3) per iteration. In the
second category, Newton’s method on the Grassmann manifold displays cubic con-
vergence for symmetric A [19, 9] but at a high cost of O(n3) per iteration because it
does not take advantage of a condensed form of A.

In the present paper, we propose a generalization of the RQI dealing with p-
dimensional subspaces of Rn. The property of cubic convergence of the classical RQI
extends to the generalized algorithm. Moreover, the numerical cost of each iteration
is shown to be as low as O(np2) after a preliminary reduction to condensed form. The
generalized RQI we propose for invariant subspace computation is defined as follows
(practical implementation is discussed in section 6).

Algorithm 1.1. Pick an orthonormal basis X(0) in Rn×p, i.e., XT
(0)X(0) = Ip.

Then, for k = 0, 1, 2, . . . , repeat the following:
1. Compute the solution Z ∈ Rn×p of the Sylvester equation

(1.1) AZ − ZXT
(k)AX(k) = X(k).

2. Compute X(k+1) := qf(Z), where qf(Z) denotes the Q-factor of the QR de-
composition of Z.

The iterates in Algorithm 1.1 are orthogonal matrices X(k), but our interest is
in fact directed towards a p-dimensional invariant subspace of A. In section 4, we
show that Algorithm 1.1 indeed defines an algorithm on the set of p-dimensional
(linear) subspaces of Rn. This set can be endowed with a manifold structure, called
the Grassmann manifold Gr(p, n), that provides a suitable mathematical framework
in which to analyze (1.1). Section 2 motivates the approach taken in the analysis
of (1.1) via a geometrical interpretation of the classical Rayleigh quotient algorithm,
i.e., Algorithm 1.1 with p = 1.

The organization of the paper is as follows. Section 2 reviews the classical RQI in
the projective space setting, preparing the generalization to the Grassmann manifold.
This generalization is carried out in section 4 after an overview of the essential features
of the Grassmann manifold in section 3. The local and global convergence properties
of the new algorithm are analyzed in section 5, and its practical implementation is con-
sidered in section 6. Section 7 is dedicated to a comparison with other Grassmannian
methods for eigenspace computation. Conclusions are drawn in section 8.

2. A Geometrical View of the Classical RQI. In this section, we briefly review
the classical RQI. We show that it defines an iteration on the set of one-dimensional
(linear) subspaces of Rn, and we provide coordinate charts for this set. These concepts
will be generalized to higher dimensional subspaces in the following sections.

Let A be a real symmetric n× n matrix. The classical RQI is as follows [14, 15].
Algorithm 2.1 (RQI). Pick a unit vector x(0); then, for k = 0, 1, 2, . . . , repeat

the following:
1. Compute the Rayleigh quotient ρ(k) = xT(k)Ax(k).
2. If A−ρ(k)I is singular, then solve (A−ρ(k)I)x(k+1) = 0 for unit vector x(k+1)
and stop. Otherwise, solve equation

(2.1) (A− ρ(k)I)z(k+1) = x(k)

for z(k+1).
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3. Normalize, i.e., x(k+1) = z(k+1)/‖z(k+1)‖.
4. If ‖z(k+1)‖ is big enough, then stop.

The iterates x(k) of Algorithm 2.1 belong to the unit sphere Sn−1. But the
unitary norm of the iterates is irrelevant: the required information is contained in
the direction of x(k). In other words, an iterate x ∈ Sn−1 is a representation of the
one-dimensional subspace {xα : α ∈ R}, which we shall denote as �x�, anticipating a
broader definition appearing in section 3. The set of all one-dimensional subspaces of
R
n is called the real projective space RPn−1.

A subspace �x� can be represented by two elements of Sn−1: x or −x. It is
straightforward to show that if x(k) maps to x(k+1) through an iteration of Algo-
rithm 2.1, then −x(k) maps to −x(k+1). Thus, Algorithm 2.1 induces an algorithm
on RPn−1 with step �x(k)� 	→ �x(k+1)�, which can be written as follows.

Algorithm 2.2 (RQI on real projective space). Pick an element S0 in RPn−1;
then, for k = 0, 1, 2, . . . , repeat the following:

1. Pick y in Rn \ {0} such that �y� = Sk.
2. Compute the Rayleigh quotient ρk = (yTAy)/(yT y).
3. If A − ρkI is singular, then solve for its kernel and stop. Otherwise, solve
equation

(2.2) (A− ρkI)z = y

for z.
4. Sk+1 := �z�.

It is easy to see that Sk+1 does not depend on the representation y chosen in
step 1 and that Algorithm 2.1 is a realization of Algorithm 2.2 using unitary vectors
for representing elements of RPn−1.

The representation of one-dimensional subspaces by elements of Sn−1 is conve-
nient for Algorithm 2.1 but awkward from the analysis viewpoint for at least two
reasons: the representation is not unique (two candidates for the same element);
and a point of Sn−1 is represented in Rn by n components, whereas the dimension
of RPn−1 is n − 1. These drawbacks also hold for a representation by elements of
R
n \ {0} as in Algorithm 2.2.

For analysis purposes, a convenient representation of one-dimensional subspaces
is as follows. Pick W on Sn−1 and complete it with W⊥ so that (W |W⊥) is an
orthonormal basis of Rn. Denote by ΓW the elements of RPn−1 which are not or-
thogonal to W . For any element �y� of ΓW , there exists one and only one K ∈ Rn−1

such that �y� = �W + W⊥K�. This defines a bijection between ΓW and Rn−1, i.e., a
chart. A single chart cannot represent RPn−1 (RPn−1 is not diffeomorphic to Rn−1)
but different charts are obtained by changing the reference point W .

Figure 2.1 illustrates this concept of chart in combination with the RQI in the
case n = 2. Let A = diag(λ1, λ2), with λ1 and λ2 real and distinct. Take W = (1, 0)T

(note that W is one of the two distinct eigenvectors of A) and W⊥ = (0, 1)T . The
bijection between one-dimensional subspaces and K’s is best viewed on Figure 2.1.
We now show that if x(k) and x(k+1) are successive iterates of Algorithm 2.1 with
�x(k)� = �W +W⊥K(k)� and �x(k+1)� = �W +W⊥K(k+1)�, then K(k+1) = K3

(k). This
demonstrates the property that iterates of RQI (Algorithm 2.1) cubically converge to
eigenvectors of A. Indeed, if �x(k)� = �W + W⊥K(k)�, then one has [3]

x(k) = ±(1,K(k))T /
√

1 + K2
(k),

ρk = xT(k)Ax(k) = (λ1 + λ2K
2
(k))/(1 + K2

(k)),
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Fig. 2.1 RQI for n = 2.
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�x(k+1)� = �z(k+1)� = �(1,−K3
(k))

T �.

3. Grassmann Manifold and Local Coordinates. In view of generalizing the
RQI and proving its cubic convergence, we need a representation of p-dimensional
subspaces by means of matrices and an associated measure of distance between sub-
spaces.

The set of the p-dimensional linear subspaces of Rn (“linear” will be omitted in
what follows) is theGrassmann manifold, denoted here by Gr(p, n), reducing to RPn−1

when p = 1. Referring the reader to the literature (e.g., [8, 9]) for a comprehensive
treatment of this manifold, let us simply view Gr(p, n) as the set of the p-dimensional
subspaces of Rn. A p-dimensional subspace Y of Rn will be represented by an n× p
full column rank matrix Y whose columns span this space Y. For ease of reference,
we denote by ST(p, n), termed the noncompact Stiefel manifold, the set of the p× n
real matrices with full column rank. Since the column space concept is widely used
in this article, we introduce the notation �Y � for the column space of Y :

(3.1) �Y � := {Y α : α ∈ Rp}.

Note that �Y � = �Ŷ � if and only if there exists a nonsingular p-by-p matrix M such
that Ŷ = YM .

The charts we used in section 2 in order to represent RPn−1 are adapted to
Gr(p, n) with little effort, as we now show. Consider the Stiefel manifold St(p, n)
(see [9]), defined as the set of all n-by-p orthogonal real matrices,

(3.2) St(p, n) = {X ∈ Rn×p : XTX = Ip}
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(observe that St(1, n) = Sn−1). Consider a point W ∈ St(p, n) and pick W⊥ ∈
St(n − p, n) such that �W � and �W⊥� are orthogonal, that is, WT

⊥W⊥ = In−p and
WT
⊥W = 0. In other words, (W |W⊥) belongs to the orthogonal group On = {Q ∈

R
n×n : QTQ = In}. Since the columns of (W |W⊥) form an orthonormal basis of Rn,

any Y in ST(p, n) admits the decomposition Y = WY1 + W⊥Y2, where Y1 = WTY
and Y2 = WT

⊥Y . Note that Y1 and Y2 depend on the choice of the reference (W |W⊥)
in On. If Y1 is invertible, then there is a unique K ∈ R(n−p)×p such that

(3.3) �Y � = �W + W⊥K�.

Obviously, K = Y2Y
−1
1 = (WT

⊥Y )(WTY )−1. This K is called the local expression or
local coordinates of �Y �, with reference (W |W⊥). The mapping �Y � 	→ K defines a
coordinate chart. Any other reference point (W |W⊥) in On defines another coordinate
chart, and these charts make Gr(p, n) a smooth manifold, the so-called Grassmann
manifold (of p-dimensional linear subspaces of Rn).

Note that in the case p = 1, the operation Y → (W + W⊥K) is the central
projection of Y (a point of Rn) onto the tangent plane to the unit sphere of Rn at W
(see Figure 2.1). The n× (n− 1) matrix W⊥ sets a basis in the tangent plane, and K
is the decomposition of the aforementioned central projection in this basis.

A classical definition for the distance between two linear subspaces �X� and �Y �
is given by (see [20])

(3.4) dist(�X�, �Y �) = ‖PX − PY ‖2,

where PX and PY are the orthogonal projectors on �X� and �Y �, respectively. Let
X ∈ St(p, n) and Y = X + X⊥K with (X|X⊥) in On. The following theorem es-
tablishes that ‖K‖2 is a valid measure of the distance (3.4) for assessing the rate of
convergence of �X + X⊥K� to �X�.

Theorem 3.1. Let X ∈ St(p, n) and (X|X⊥) ∈ On. The tangents of the canon-
ical angles between the subspaces �X� and �X + X⊥K� are the singular values of K.
In particular, the tangent of the largest canonical angle is equal to ‖K‖2. Moreover,

(3.5) dist(�X�, �X+X⊥K�) = sin atan ‖K‖2 =
‖K‖2√

1 + ‖K‖22
= ‖K‖2(1+O(‖K‖22)).

Proof. The proof is a direct consequence of the material in [20, section 2]. The
distance dist(�X�, �X + X⊥K�) is the sine of the largest canonical angle between
�X� and �X + X⊥K�. The cosines of the canonical angles θi between �X� and
�X + X⊥K� are the singular values of Ŷ TX = (Ip + KTK)−1/2, where Ŷ = (X +
X⊥K)(Ip + KTK)−1/2, so that Ŷ ∈ St(p, n) and �Ŷ � = �X + X⊥K�. Denoting
by τi (i = 1, . . . , p) the singular values of K, one has cos θi = (1 + τ2

i )−1/2, whence
θi = atan τi. Finally, the largest singular value of K is equal to the spectral norm of
K, defined as ‖K‖2 := max‖u‖2=1 ‖Ku‖2.

4. Extending the RQI from RP
n−1 to Gr(p, n).

4.1. RayleighQuotient. The quest for a generalization of the RQI (Algorithm 2.1)
leads us to generalize the Rayleigh quotient itself.

When Y ∈ Rn \ {0}, the Rayleigh quotient [14] is defined as ρA(Y ) = Y TAY
Y TY

. A
generalization for Y ∈ ST(p, n) uses the matrix Rayleigh quotient

(4.1) RA(Y ) = (Y TY )−1Y TAY
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to define a generalized (scalar) Rayleigh quotient [13] as

(4.2) ρA(Y ) = tr RA(Y ) = tr Y TAY (Y TY )−1 = tr (Y TY )−1/2Y TAY (Y TY )−1/2.

Important properties of the classical Rayleigh quotient [14] are preserved, as sum-
marized in the following proposition.

Proposition 4.1. Definitions (4.1)–(4.2) satisfy the following properties:
(i) (Homogeneity) ρA(YM) = ρA(Y ) for all invertible p-by-p matrices M . This

means that if �Y1� = �Y2�, then ρA(Y1) = ρA(Y2). In other words, ρA defines
a scalar field on Gr(p, n).

(ii) (Stationarity) DρA(Y ) = 0 if and only if �Y � is an invariant subspace of A.
(iii) (Minimal residual) ‖AY − Y B‖2F ≥ ‖AY ‖2F − ‖Y RA(Y )‖2F , and the equality

holds if and only if B = RA(Y ). Hence B = RA(Y ) is the unique minimizer
of ‖AY − Y B‖2F .

Proof.
(i) ρA(YM) = tr M−1(Y TY )−1Y TAYM = ρA(Y ).

(ii)

DρA(Y )[Z] = tr (ZTAY (Y TY )−1 + Y TAZ(Y TY )−1

−Y TAY (Y TY )−1(ZTY + Y TZ)(Y TY )−1)
= tr (2(Y TY )−1Y TA− 2(Y TY )−1Y TAY (Y TY )−1Y T )Z
= tr 2(Y TY )−1ZT (AY − Y (Y TY )−1Y TAY ),

DρA(Y ) = 0⇔ DρA(Y )[Z] = 0 ∀Z ∈ Rn×p(4.3)
⇔ AY − Y (Y TY )−1Y TAY = 0(4.4)
⇔ ∃RA = (Y TY )−1Y TAY ∈ Rp×p : AY − Y RA(Y ) = 0(4.5)
⇔ �AY � ⊂ �Y �;(4.6)

i.e., �Y � is an invariant subspace of A.
(iii)

‖AY − Y B‖2F = tr(Y TAAY + BTY TY B −BTY TAY − Y TAY B)
= tr(Y TAAY + (B −RA)TY TY (B −RA)−RTAY

TY RA)
= ‖AY ‖2F − ‖Y RA‖2F + ‖Y (B −RA)‖2F

and, because Y ∈ ST(p, n), the last term vanishes if and only if B = RA(Y ).
Property (iii) establishes that Y RA(Y ) is the point in �Y � that is closest (in the

sense of the Frobenius norm) to AY . We shall see in section 5.2 that this is also true
for the 2-norm.

The development for point (ii) can be recast in local coordinates (see section 3).
In local coordinates with reference (W |W⊥), the generalized Rayleigh quotient reads

(4.7) ρA(�Y �) = tr (A11 + A12K + KTA21 + KTA22K)(Ip + KTK)−1,

where A11 := WTAW , A12 := WTAW⊥, A21 := WT
⊥AW , A22 := WT

⊥AW⊥, �Y � =
�W +W⊥K�. Computing the derivative of (4.7) shows that ρA is stationary at K = 0
(local coordinates of �W �) if and only if A12 = 0 = A21, i.e., �W � is an invariant
subspace of A.

Moreover, (4.7) shows that if �W � is an invariant subspace of A, then ρA is even
in K. This feature, which of course is also valid when p = 1, plays a key role in the
performance of the Rayleigh quotient shifts for accelerating the convergence of the
inverse iteration.



GRASSMANN–RAYLEIGH QUOTIENT ITERATION 63

4.2. Grassmann–Rayleigh Quotient Iteration. When p = 1, (4.5) reduces to
(A − ρA(Y )I)Y = 0. By analogy with the classical RQI (Algorithm 2.2), (4.5) leads
us to consider the following Grassmann–Rayleigh Quotient Iteration (GRQI).

Algorithm 4.2 (GRQI). Pick a p-dimensional subspace Y0 of Rn (that is, Y0
belongs to the Grassmann manifold Gr(p, n)). Then, for k = 0, 1, 2, . . . , repeat the
following:

1. Pick Y ∈ ST(p, n) such that �Y � = Yk.
2. Solve

(4.8) AZ − Z (Y TY )−1Y TAY︸ ︷︷ ︸
RA(Y )

= Y

for Z ∈ Rn×p.
3. Define Yk+1 := �Z�.

Notice that the mapping

(4.9) T Y : Z 	→ AZ − Z(Y TY )−1Y TAY

can be singular. What to do for this nongeneric case will be discussed in section 6.
Algorithm 4.2 indeed defines an algorithm on Gr(p, n).
Proposition 4.3. The sequence {Y(k)}k≥0 generated by Algorithm 4.2 is inde-

pendent of the choice of Y used to represent Yk. That is, if Ya and Za (Yb and Zb,
respectively) verify (4.8) and if �Ya� = �Yb�, then �Za� = �Zb�.

Proof. If AZ−Z(Y TY )−1Y TAY = Y , then a right-multiplication by an invertible
matrix M leads to AZM − ZM((YM)T (YM))−1(YM)TAYM = YM .

Moreover, Algorithm 4.2 and our original Algorithm 1.1 are equivalent in the
sense of the p-subspaces.

Proposition 4.4. Algorithms 4.2 and 1.1 are equivalent on the manifold Gr(p, n);
i.e., they define the same subspace iteration.

Proof. Algorithm 1.1 is a realization of Algorithm 4.2 with the particular choice
Y+ = qf(Z). Note that the qf operation does not alter the column space.

Clearly, for computational matters, it is preferable to represent elements of Gr(p, n)
by orthogonal bases in order to prevent loss of numerical rank, which would deteriorate
the quality of the subspace representation. Thus, Algorithm 1.1 must be interpreted
as a numerically reliable realization of Algorithm 4.2.

5. Convergence of the GRQI.

5.1. Cubic Local Convergence. This section is dedicated to the proof of the fol-
lowing theorem, which generalizes the result of cubic local convergence of the classical
RQI [14, 15].

Theorem 5.1 (cubic convergence of GRQI). Suppose A is symmetric real. Let V
be an invariant subspace of A and V⊥ be its orthogonal complement. If A|V and A|V⊥
have no eigenvalue in common, then the iterates Yk of the GRQI (Algorithm 4.2)
converge cubically to V for all Y0 in a neighborhood of V.

Consider the iteration (4.8):

T Y Z ≡ AZ − Z(Y TY )−1Y TAY = Y.

Take V ∈ St(p, n) such that �V � = V and that Λ1 := V TAV is diagonal. Also take
V⊥ ∈ St(n − p, n) such that �V⊥� = V⊥ and that Λ2 := V T⊥ AV⊥ is diagonal. Note
that Λ1 and Λ2 have no element in common.
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The columns of (V |V⊥) form a basis of Rn. The matrix Y decomposes as Y =
V Y1+V⊥Y2, and K := Y2Y

−1
1 is the local representation of �Y � in the coordinate chart

with reference (V |V⊥); see section 3. Define Z̃ := ZY −1
1 and note that �Z̃� = �Z�.

Decompose Z̃ according to Z̃ = V Z1 + V⊥Z2, where the tilde is omitted in the
decomposition for ease of notation. Then K+ = Z2Z

−1
1 is the local representation of

the next iterate �Y �+ of Algorithm 4.2. Using V +V⊥K to represent �Y �, (4.8) reads

Λ1Z1 − Z1(Ip + KTK)−1(Λ1 + KTΛ2K) = Ip,(5.1)
Λ2Z2 − Z2(Ip + KTK)−1(Λ1 + KTΛ2K) = K,(5.2)

K+ = Z2Z
−1
1 .(5.3)

We shall now prove that

‖Z−1
1 ‖ ≤ c1‖K‖2,(5.4)
‖Z2‖ ≤ c2‖K‖(5.5)

for all K sufficiently small, from which it follows that K+ = O(K3), i.e., that the
convergence is cubic.

While (5.4)–(5.5) is valid for any matrix norm, the spectral norm ‖ · ‖2 is of
particular interest because of its interpretation in terms of distance and canonical
angles between �Y � and �V �; see section 3. We shall also use the Frobenius norm,
denoted by ‖ · ‖F .

Intuitively, (5.5) is due to the right-hand side of (4.8). It accounts for the linear
convergence of unshifted or constant-shifted inverse iteration. Inequality (5.4) follows
from the stationary property of RA(Y ) around �V � (see Proposition 4.1).

Lemma 5.2. Let A, B be p × p symmetric matrices. Let C be a p × p matrix.
Define gap[A,B] = min |λ(A)− λ(B)|. Suppose gap[A,B] > 0. Then, for all E, F in
R
p×p with ‖E‖F , ‖F‖F < gap[A,B]/2, the equation

(A + E)Z − Z(B + F ) = C

admits one and only one solution Z ∈ Rp×p, and

‖Z‖2 ≤
√
p

gap[A,B]− ‖E‖F − ‖F‖F
‖C‖2.

Proof. One has

‖Z‖2 ≤
‖C‖2

sep2(A + E,B + F )
≤ ‖C‖2

sepF (A + E,B + F )/
√
p

≤
√
p‖C‖2

gap[A,B]− ‖E‖F − ‖F‖F

as a consequence of Definition 4.5 and Theorems 4.6, 4.7, and 4.10 in [20].
Lemma 5.3. Let D be diagonal and let ‖ · ‖ denote any consistent matrix norm.

Then for every ε > 0 there exists a δ > 0 with the following property: for every E
such that ‖E‖ < δ and such that D and D − E have no eigenvalues in common, the
unique solution Z to

(5.6) DZ − Z(D − E) = I

is invertible, and its inverse satisfies ‖Z−1‖ ≤ (1 + ε)‖E‖.
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Proof. The existence and uniqueness of Z are a consequence of the fact that the
operator Z 	→ AZ − ZB is invertible if and only if A and B have no eigenvalues in
common [11].

Denote by n the size of D, Z, E, and I. Suppose, without loss of generality, that
D = diag(D1, . . . , Dq), where Dj = djIm(j), with dj �= dl whenever j �= l. Partition
E, I, and Z in the same manner.

Let i ∈ {1, . . . , q}. Define I = (1, . . . , i − 1, i + 1, . . . , q). After a permutation
bringing block i in the upper left position, (5.6) decomposes as(

Di 0
0 DI

)(
Zii ZiI
ZIi ZII

)
(5.7)

−
(

Zii ZiI
ZIi ZII

)[(
Di 0
0 DI

)
−
(

Eii EiI
EIi EII

)]
=
(

Ii 0
0 II

)
.

Blocks ii and iI of this equation give, respectively,

(5.8) ZiiEii + ZiIEIi = Ii

and

(5.9) diZiI − ZiIDI + ZiiEiI + ZiIEII = 0.

Solving (5.9) for ZiI leads to

(5.10) ZiI = −ZiiEiI(diII −DI + EII)−1 = −Zii O(E),

where (diIi − DI + EII) is invertible whenever E is sufficiently small. Substitut-
ing (5.10) in (5.8) yields

Zii[Eii − EiI(diII −DI + EII)−1EIi] = Ii,

whence

(5.11) Z−1
ii = Eii − EiI(diII −DI + EII)−1EIi = Eii + O(E2).

From (5.10), we have Z = diag(Z11, . . . , Zqq)(In + O(E)). Then, from (5.11), we
conclude that Z is invertible whenever E is sufficiently small (provided that Z exists,
which is guaranteed when D and D + E have no common eigenvalue), and

Z−1 = (I + O(E))−1 diag(Z−1
ii )(5.12)

= (I + O(E)) diag(Z−1
ii )(5.13)

= (I + O(E)) (diag(E11, . . . , Eqq) + O(E2))(5.14)
= diag(E11, . . . , Eqq) + O(E2),(5.15)

whence

(5.16) ‖Z−1‖ ≤ (1 + O(‖E‖)) ‖E‖,

which completes the proof.
We are now able to prove (5.5) and (5.4). First note that

(I + KTK)−1(Λ1 + KTΛ2K) = Λ1 − (KTKΛ1 −KTΛ2K + O(K4)).
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Lemma 5.2 applied to (5.2) directly leads to

(5.17) ‖Z2‖2 ≤
√
p

gap[Λ1,Λ2] + O(‖K‖2)
‖K‖2,

which proves (5.5). For (5.4), defining E = KTKΛ1−KTΛ2K+O(K4) and applying
Lemma 5.3 to the Sylvester equation (5.1), we obtain

‖Z−1
1 ‖ ≤ (1 + O(‖E‖))‖E‖
≤ (‖Λ1‖+ ‖Λ2‖)‖K‖2 + O(K4).(5.18)

In conclusion,

(5.19) ‖K+‖2 ≤
√
p
‖A|ν‖2 + ‖A|ν⊥‖2

gap[A|ν , A|ν⊥ ]
‖K‖32 + O(K5).

This concludes the proof of Theorem 5.1.
Remark 5.4. Note that Lemma 5.3 cannot be used in the nongeneric case where

Λ1 and (I+KTK)−1(Λ1+KTΛ2K) have a common eigenvalue. This case corresponds
to a singular T Y (4.9). An easy remedy when a singular T Y shows up during the
iteration is to slightly perturb the offending iterate so as to dismiss the singularity
while staying in the neighborhood where cubic convergence holds.

Theorem 5.1 guarantees local cubic convergence but provides no information
about the size of the basin of attraction of a given invariant subspace V. Obtain-
ing such an estimate from the above proof amounts to quantifying the region around
V where the bounds (5.4) and (5.5) hold. This estimate will thus shrink if Z is poorly
conditioned. The term (diII−DI+EII)−1 in (5.10) and (5.11) suggests that this will
happen when the distinct eigenvalues of A|V are not well separated. The following
example illustrates that in such situations, some subspaces that are “close” to V may
not belong to its basin of attraction.

Example 5.5. Let A = diag(1.01, 1, 2) and

Y =


 1 0

0 1
0.1232 0.1593


 .

The initial subspace is thus “close” to the invariant subspace V spanned by the columns
of

V =


 1 0

0 1
0 0


 .

Nevertheless, one iterate of Algorithm 4.2 yields

Z =


 −20.9669 −162.8163
−16.0128 −124.8679

0.2046 0.0253


 and X+ =


 0.7947 −0.1495

0.6069 0.2081
−0.0078 0.9666


 ,

where X+ nearly contains the eigenvector [0, 0, 1]T . This is a situation where the
algorithm initialized “close” to V converges to a different invariant subspace. This
behavior is a consequence of the two eigenvalues of A|V being close to each other,
which results in an ill-conditioned Z for some initial conditions close to V.

Note that there exists a set (of measure zero) of matrices Y such that the solution
Z of the GRQI equation (4.8) is not full rank. As a corollary of the proof of cubic
convergence, this set is bounded away from the invariant subspaces of A; indeed it
was shown that Z−1

1 exists for all K sufficiently small.
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5.2. Global Convergence. Algorithm 1.1 (implemented with slight perturbation
as explained above) was extensively tested on randomly selected matrices, as well as
on some ill-conditioned matrices such as the Laplacian

A =



−2 1 · · ·
1 −2 1 · · ·
0 1 −2 1 · · ·

· · · . . .




and matrices with repeated eigenvalues. The particular case where there is no in-
variant subspace V such that A|V and A|V⊥ have no eigenvalue in common has also
been investigated. In all these situations, Algorithm 1.1 invariably showed numerical
convergence to an invariant subspace of A. This suggests that the generalized RQI
inherits the good global convergence properties of the classical RQI. Unfortunately,
the developments available for the RQI do not generalize, as we now show.

The global convergence properties of the classical RQI are well understood [14, 15,
3]. In [15], it was shown that the iterates x(k) of Algorithm 2.1 either converge to an
eigenvector of A or converge to the bisectors of a pair of eigenvectors of A, the latter
situation being unstable under perturbations of x(k). Batterson and Smillie [3] showed
later that the set of points for which the RQI does not converge to an eigenvector is
a set of measure zero.

The proof in [15], due to Kahan, relies on the following observation. Given X ∈
St(1, n) = Sn−1, one defines a residual as

(5.20) r = (A− ρA(X)I)X.

The Euclidean norm of the residual r can be interpreted as the distance between
AX and �X�, i.e., ‖r‖ = minY ∈�X	 ‖AX − Y ‖. The Euclidean norm of the residual
is shown to be monotonically decreasing under the (classical) RQI and is used as a
Lyapunov function in the proof of [15].

A straightforward generalization of (5.20) in the case where X ∈ St(p, n) would
be

(5.21) Res = AX −XRA(X),

where RA(X) = XTAX is the matrix Rayleigh quotient. Indeed,

‖AX −XB‖2,F = ‖(X|X⊥)T (AX −XB)‖2,F

=
∥∥∥∥
(

XTAX −B
XT
⊥AX

)∥∥∥∥
2,F

=
∥∥∥∥
(

A11 −B
A21

)∥∥∥∥
2,F

is minimal for B = RA(X). We see that ‖Res‖2,F = ‖A21‖2,F expresses the departure
of

(X|X⊥)TA(X|X⊥) =
(

A11 A12
A21 A22

)
from being a block upper triangular matrix.

Another way to measure the “eigenness” of a space �X� is the principal angle
between �AX� and �X�. In the case p = 1, this principal angle would be

θ = arcos
xTAx

‖x‖‖Ax|| .
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This measure seems more appropriate because it is invariant under a multiplication
of A by a constant.

Unfortunately, neither of the two distances proposed above shows a systematic
decrease in numerical tests. This compromises the possibility of establishing a global
convergence analysis along the lines of Kahan’s proof.

6. Practical Implementation of the Algorithm. The practical relevance of the
new method depends on two important issues: (i) keeping the computational cost of
each iteration step as low as possible and (ii) detecting stagnation or convergence of
the method.

6.1. Computational Efficiency. The key equation of Algorithm 1.1 is the Sylvester
equation

(6.1) AZ − ZÂ = X, XTX = Ip,

where A and Â = RA(X) = XTAX are both symmetric. It is easy to see that
orthogonal similarity transformations on A and Â do not alter the nature or solvability
of the equation. Define indeed

(6.2) Au := UTAU, Âv := V T ÂV, Xuv := UTXV

for U ∈ O(n) and V ∈ O(p). Then Zuv := UTZV solves the transformed equation

(6.3) AuZuv − ZuvÂv = Xuv

if and only if Z solves (6.1). One shows, moreover, that both systems of equations
have the same conditioning [21]. The matrix Â = XTAX changes at each step of the
iteration but is small compared to A. Transforming the n-by-n matrix A to a more
convenient form Au thus needs to be done only once, whereas computing a special
form of the p-by-p matrix Âv can be done at each step of the algorithm. For this
reason, we assume A to be already in an “appropriate” form Au = A and dismiss the
index u in what follows. An “appropriate” form can be a banded matrix (see below).
Efficient methods to solve (6.1) are typically based on an eigenvalue decomposition of
the smallest matrix Â [2, 12]. Then Âv is diagonal:

(6.4) Âv = diag{ρ1, . . . , ρp} = V T ÂV.

An implementation of Algorithm 1.1 based on such reductions then requires the fol-
lowing basic steps at each iteration:

Â := XTAX.(6.5)
Find V such that V T ÂV = Âv = diag {ρ1, . . . , ρp}.(6.6)
Xv := XV.(6.7)
Find Zv such that AZv − ZvÂv = Xv.(6.8)
X+ := qf (ZvV T ).(6.9)

The eigenvalues ρi of Â = RA(X) are called the Ritz values of A with respect to �X�,
and the corresponding columns of Xv are called the Ritz vectors.

Steps (6.6), (6.7), and (6.9) involve dense matrices and require O(p3), O(np2), and
O(np2) floating point operations (flops), respectively. One would like the other two
steps (6.5) and (6.8) to require at most O(np2) flops as well. This is possible by putting
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A in a special “condensed” form. An obvious one is to choose A tridiagonal. Step (6.5)
then requires O(np2) flops and step (6.8) can be decoupled into the individual systems

(6.10) (A− ρiI)zi = xi

for each column xi of Xv and zi of Zv, respectively. Since these systems are tridiagonal,
they each require O(n) flops.

We should point out that the preliminary reduction of A to tridiagonal form
requires O(n3) flops and becomes therefore the most time-consuming step of the
procedure. A more economical idea would be to reduce A to a banded matrix with
bandwidth 2k + 1. Such a matrix can also be viewed as a block tridiagonal matrix
with k × k blocks. The complexity of obtaining such a form is comparable to that
of obtaining a “scalar” tridiagonal form, but it can be computed more efficiently on
parallel architectures [6]. Moreover, if k2 � p, then steps (6.5) and (6.8) both still
require O(np2) flops.

In many applications (e.g., PDEs), the matrix A has a special sparsity pattern
that can also be exploited. For example, one often encounters matrices A that already
have a banded form and therefore do not need a preliminary reduction. Other forms
of A allow cheap solutions for the systems (6.10) although A does not have a banded
form. These include, e.g., low-rank modifications of banded matrices or matrices with
special structure such as Toeplitz or Hankel matrices. Finally, we point out that in
many applications A is sparse and should therefore no longer be transformed to a
condensed form. Instead, one can use iterative solvers to find a solution zi to (6.10)
for each right-hand side xi. It turns out [10] that a high relative accuracy of (6.10)
is only needed in the last few steps of the iteration and hence that a lot of flexibility
can be built into the iterative procedure.

Our recommendation is thus to use this algorithm on a block tridiagonal form of
A when A is dense and not to reduce A at all when A is sparse, but rather to use
flexible iterative solvers for the equations (6.10).

6.2. Handling Singularities. The Sylvester equation (6.1) has a unique solution
except when the operator

TX : Z 	→ AZ − ZXTAX

is singular, which happens when A and RA(X) have a common eigenvalue, that is,
when some Ritz value ρi is also an eigenvalue of A. In this nongeneric situation,
one could take advantage of the knowledge of the eigenvalue ρi of A and solve for
the kernel of (A − ρiI). Another possibility is to dismiss the singularity by slightly
perturbing ρi (see Remark 5.4). In any case, the conditioning of systems (6.10) is
doomed to deteriorate during the iterations. This characteristic feature of shifted
inverse iterations is discussed in [16].

6.3. Stopping Criterion. For the stopping criterion of the algorithm, one has to
detect whether the solution Z of (6.1) is such that �Z� is nearly equal to �X�. A
possibility is to rely on dist(�X�, �Z�) defined in section 3. From Theorem 3.1,

dist(�X�, �Z�) = sin atan ‖KZ‖2,

and

‖K‖2 = ‖X⊥K‖2 = ‖X⊥XT
⊥Z(XTZ)−1‖2 = ‖(I −XXT )Z(XTZ)−1‖2,
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the computation of which requires O(np2) flops. One can also use a criterion based
on the “block-diagonality” of (X|X⊥)TA(X|X⊥) by checking the value of ‖XT

⊥AX‖,
i.e., the norm of the residual Res (see section 5.2). When A is suitably condensed,
the computation requires O(np2) flops.

6.4. Comparison with Independent RQIs. The practical implementation (6.5)–
(6.9) remains a realization of Algorithm 4.2 if we redefine (6.9) as

(6.11) X+ = qf(Zv).

In fact, if we are not interested in the X’s generated by Algorithm 1.1 but only in the
�X�’s, we can content ourselves with an implementation of Algorithm 4.2, which can
be as follows.

Algorithm 6.1 (implementation of GRQI). Pick Y(0) ∈ ST(p, n). Then, for
k = 0, 1, 2, . . . :

1. Orthonormalize the columns of Y(k) to get X ∈ St(p, n).
2. Compute Â := XTAX.
3. Find V such that V T ÂV = diag{ρ1, . . . , ρp}.
4. Xv := XV .
5. For i = 1, . . . , p, find Z such that AZ − Zdiag{ρ1, . . . , ρp} = Xv. If this
system is singular, dismiss the singularity by slightly perturbing the ρi’s.

6. Y(k+1) := Z.
Algorithm 6.1 shows that the GRQI step can be interpreted as p classical RQI

steps in parallel preceded by an orthonormalization step. Because this orthonormal-
ization is expensive (O(np2)), one may prefer to skip this step and to define xi+ = zi
after (6.10), which would result in p independent RQIs. This simplification of the
GRQI has two disadvantages. First, the local convergence property is lost. Indeed,
there exist starting points arbitrarily close to certain invariant subspaces for which
parallel evolution of p RQIs results in convergence to a different invariant subspace [3].
Second, parallel evolution of p RQIs without orthogonalization is very prone to column
merging in the course of the iterations.

One can imagine implementing only a few steps of Algorithm 4.2 and then switch-
ing to p independent RQIs. It is difficult, however, to evaluate the right time to switch
from one strategy to the other, because there is no bound on Ritz vectors [15]. If Al-
gorithm 4.2 is abandoned too early, then the independent RQIs are likely to merge
or to behave oddly as described above. Moreover, the convergence of GRQI is so fast
in the neighborhood of an invariant subspace that one hardly has the time to make a
decision.

7. Comparison with Other Grassmannian Methods. In [5], Demmel compared
three methods for refining estimates of invariant subspaces. These methods are based
on the fact that �W + W⊥K� is an invariant subspace of A if and only if the Riccati
equation

(7.1) A22K −KA11 = −A21 + KA12K

is satisfied, where (W |W⊥) is an orthogonal basis and

(7.2)
(

A11 A12
A21 A22

)
=
(

WT

WT
⊥

)
A (W |W⊥).

Equation (7.1) can be solved by the iteration

(7.3) A22Ki+1 −Ki+1A11 = −A21 + KiA12Ki, K0 = 0,
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Table 7.1 Comparison of methods for invariant subspace computation.

Method Order of convergence Numerical cost of one iteration

GRQI Cubic O(np2) (A condensed)
Newton on Gr(p, n) Cubic O(n3) (even for A condensed)
Iteration (7.4) Quadratic O(n3) (even for A condensed)
Iteration (7.3) Linear O(np2) (A condensed)

used in [20, 7], or by the Newton–Raphson method used in [4], which yields

(7.4) (A22 −KiA12)Ki+1 −Ki+1(A11 + A12Ki) = −A21 −KiA12Ki.

Note that the Aij ’s remain constant in the course of the iteration, since W is fixed.
Iteration (7.3) converges linearly and costs O(np2) per iteration after reduction of
A to condensed form. The Newton–Raphson method (7.4) converges quadratically,
even for symmetric A’s. It cannot reach cubic convergence for symmetric A because
working on the fixed affine space {W +W⊥K : K ∈ R(n−p)×p} destroys the symmetry
of the problem. Each step of (7.4) costs O(n3) because matrices (A22 −KiA12) and
(A11 + A12Ki) vary from step to step.

In [9], Edelman, Arias, and Smith proposed a Newton method on the Grassmann
manifold for the cost ρA(Y) defined in (4.2). If �X� is the current iterate with X
orthonormal, then the next iterate is �X + N�, where N is orthogonal to X (i.e.,
XTN = 0) and solves

(7.5) (I −XXT )(−NXTAX + AN) = (I −XXT )AX.

Using N = X⊥H and the notation

(7.6)
(

A11 A12
A21 A22

)
=
(

XT

XT
⊥

)
A(X|X⊥),

equation (7.5) reads

(7.7) A22H −HA11 = −A21.

The method converges cubically thanks to the symmetry of ρA: if �V � is an invariant
subspace of A, then ρA(�V +V⊥K�) = ρA(�V −V⊥K�). On the other hand, since A22
is modified in each iteration, one cannot take advantage of a preliminary reduction of
A, and the cost per iteration is thus O(n3).

In comparison, the GRQI (Algorithm 1.1) achieves cubic convergence with a cost
of O(np2) per iteration when A is in condensed form (see section 6). Algorithm 1.1
is faster and cheaper than the methods of [5] and [9].

It is worthwhile to note that Algorithm 1.1 is explicitly mentioned in section 4.8
of Edelman, Arias, and Smith [9] in relation to Newton’s method. However, the GRQI
and Newton’s method are not equivalent, as we now show (this fact is also observed
in numerical simulations). Let us use the same notations as above for Aij along with

Z = XZ1 + X⊥Z2,(7.8)
K = Z2Z

−1
1 .(7.9)

The GRQI maps �X� to

(7.10) �Z� = �XZ1 + X⊥Z2� = �X + X⊥K�,



72 P.-A. ABSIL, R. MAHONY, R. SEPULCHRE, AND P. VAN DOOREN

to be compared with �X + X⊥H� in the case of the Newton step. The equation for
K is obtained from (1.1); i.e.,

(7.11)
{

A11Z1 + A12Z2 − Z1A11 = Ip,
A21Z1 + A22Z2 − Z2A11 = 0,

which implies

(7.12) A21 + A22K −KZ1A11Z
−1
1 = 0

or equivalently

(7.13) A21 + A22K −KA11 = −K(A11Z1 − Z1A11)Z−1
1 .

Comparing the definitions of H in (7.7) and K in (7.13) shows that Newton and
GRQI are not equivalent unless A11 = XTAX and Z1 = XTZ commute, which is
not the case in general. Note that when p = 1, A11 and Z1 commute, since they are
scalars. In this case, Newton (with tangent update) is equivalent to GRQI. This fact
was pointed out in a number of earlier works [16, 19].

8. Conclusion. We have shown how the RQI can be extended to the Grassmann
manifold Gr(p, n) in view of computing a p-dimensional invariant subspace of a sym-
metric matrix A. Taking advantage of the geometry of Gr(p, n) and of some properties
of Sylvester equations, we have shown cubic convergence of the algorithm. Compar-
ison with other methods for computing invariant subspaces [20, 7, 4, 9] leads to the
conclusion that the GRQI achieves a higher rate of convergence at a lower numerical
cost.

Even though the algorithm presented in this paper has a number of appealing
features, we do not claim that it should replace other eigenvalue solvers. For large
sparse matrices, there are other well-known methods such as the Jacobi–Davidson
method or other Krylov-based methods which do not require a preliminary reduction
to a condensed form. Even when a condensed form is available, one can use other
eigenvalue solvers such as inverse iteration or divide and conquer techniques. Each of
these methods are well suited to particular types of problems, i.e., the type of matrix
that is given or the number and location of the requested eigenvalues (see [1] for a
survey).

The purpose of our paper is not to present a robust and efficient eigenvalue solver,
but rather to show the existence of a cubically convergent subspace method and to
show that its implementation can be quite efficient. In the future, such a technique
may become a valuable component in a flexible eigenvalue solver.
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