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Abstract 

The purpose of this note is to introduce new method- 
ologies for high resolution image processing and 
knowledge-based segmentation for SAR imagery. These 
techniques could also have a major impact on problem- 
s in radar and remote sensing where modern mathe- 
matical tools and optimization techniques are likely to  
advance significantly the current state of the art. 

1 Introduction 

In this talk we will present certain novel methodologies 
for image analysis, primarily for the purposes of SAR 
(synthetic aperture radar) imaging. 

SAR imaging is a mature subject with a history and 
technological developments of over 40 years. A classical 
text on the subject is [4] to which we refer the interested 
reader for a detail discussion of enabling technology and 
a wide range of applications. Extensive amount of SAR 
data, documentation and technology can also be found 
on the web, e.g., [l]. The purpose of this talk is to ad- 
dress two particular aspects of SAR processing where 
mathematical and software developments may permit 
significant improvement of imaging. In particular, we 
will focused on (i) high resolution spectral analysis and 
image reconstruction and (ii) knowledge based image 
analysis and segmentation. To this end we briefly out- 
line the origin of SAR data and the nature of the prob- 
lems we address. 

SAR data are typically collected by a flying system 
(satelite, plane) as depicted in Figure 1, see [4, 10, 11. 
The target area is illuminated by a series of electro- 
magnetic pulses. The recorded echoes are analyzed into 
components according to the distance of the responsi- 
ble scatterers (e.g., using matched filtering). The e- 
choes from a particular distance range contain infor- 
mation about the profile and reflectivity of the relevant 
scatterers at that range. The information is encoded 
in the amplitude and the doppler shift of the reflected 
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signal. E.g., positive doppler shift indicates a scatter- 
er which is positioned more aft, etc. Spectral analysis 
of the echoed signal into Fourier components produces 
the amplitude and position of scatterers at each dis- 
tance range-thereby generating a SAR image of the 
targeted area. 

Figure 1. Synthetic Aperture Radar (SAR) system 

Analogous issues arise in sonar or radar applications 
which involve array of sensors [8]. A target area is il- 
luminated and the direction of the reflected wave, as it 
impinges upon an antenna array, reveals the location 
of the scatterers. The spatial harmonics of the received 
signal across the elements of the antenna carry the use- 
ful information which may allow resolving the location 
of nearby scatterers. 

Section 2 outlines a new methodology for very high res- 
olution spectral analysis and discusses its relevance and 
performance when applied to SAR data. Section 3 high- 
lights a new framework for the subsequent processing of 
SAR images using knowledge based segmentation and 
anisotropic smoothing. 

2 Signal processing: Very High Resolution 
(VHR) spectral analysis 

Traditional Fourier trasform based techniques are limit- 
ed by the “uncertainty principle”, whereas the “modern 
spectral estimation techniques”-Maximum-entropy- 
method (MEM), Capon maximum likelihood, MUSIC, 
ESPRIT-which were developed in the 1980’s, are able 
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t o  exceed the uncertainty limit. However such benefit- 
s can only be drawn in high signal-to-noise conditions 
and the techniques are quite sensitive to the nature of 
the noise. Our recent work [5, 6, 2, 31 has given rise to 
a new framework. The algorithms we have developed 
are akin to the aforementioned techniques (MEM, etc.) 
in that they rely on analytical properties of the power 
spectrum and its relation to covariance statistics. Yet, 
they differ in that they use non-traditional covariance 
statistics and generalized analytic interpolation to pro- 
vide superior resolution and robustness. 

The new approach is based on the observation that the 
state-covariance of a linear filter provides analytic in- 
terpolation constraints for the spectral density functions 
of the input. More precisely, if !DU(e) with 6 E [-7r17r] 

is the spectral density of the input process U,, 

z,+~ = Ax, + bun, n = 0,1, .  . . (1) 

is the state equation of the filter, and P = E {z,z~} is 
its state-covariance, then 

G U ( 0 )  = Ref(eje) 

where f is a positive real function which satisfies 

f(.4) = W, (2) 

with W E  + EW‘ = P and E being the grammian of 
the system ( E  = bb’ +AEA‘). Equation (2) along with 
the analytic constraints on f limit the allowable spectra 
G,, for the input process. Classical analytic interpola- 
tion theory can be used to characterize all admissible 
spectra, while more recent developments ([2, 31) allow 
restriction on the dimension of the relevant spectra. 

We mention one of the possible techniques based (2): 
To start with, the input-to-state filter (1) can be select- 
ed with a pass-band on any harmonic interval where 
high resolution is desired. After estimating P from 
the observation record, a unique canonical power spec- 
trum which consists of a minimal number of (com- 
plex) sinusoids can be constructed using singular-value- 
decomposition of P [6]. The frequency of such sinusoids 
reveal individual scatterers within the pass-band. An 
example of the method is shown below. Figures 2a and 
2b are reconstructed from SAR data. They show two 
nearby buildings in a city. Figure 2a has been con- 
structed using traditional Fourier transform techniques. 
The performance of modern techniques (MEM, RIIUSIC, 
ESPRIT etc.) is not acceptable due to the large num- 
ber of scatterers within the field of view (some of it not 
shown). Figure 2b has been constructed using the afor- 
mentioned canonical spectral analysis and a suitable fil- 
ter following [6]. The lower left corner of both images is 
shown in Figures 3a and 3b, respectively. Comparison 
of the two shows that the “wall structure” is highlight- 
ed more clearly in 3b with a distinct series of individual 
scatterers lined up across the image. This indicates a 

significant improvement in 
methods. 

resolution over traditional 

Figure 2: SAR image using (a) fft techniques, (b) 
canonical spectral analysis in [6] 

Figure 3: Detail of the SAR image using (a) fft 
techniques, (b) canonical spectral analysis in [6] 

3 SAR Imaging and Image Processing 

We have been working on a knowledge based segmen- 
tation method for SAR imagery. This is an application 
of a new approach combining anisotropic diffusion and 
the Bayesian paradigm for the segmentation of SAR 
(synthetic aperture radar) images. See [7] and the ref- 
erences therein. 

One of the key ideas is the introduction of a prior- 
i knowledge about the number of objects present in the 
image, e.g., target, shadow, and background terrain vi- 
a Bayes’ rule. Posterior probabilities obtained in this 
way are then anisotropically smoothed, and the image 
segmentation is obtained via MAP classifications of the 
smoothed data. 

The model we employ begins with the assumption that 
the image is composed of n classes of objects. The 
goal of our segmentation is to determine to which class 
each pixel in the image belongs. We assume that the 
value of each pixel in a given class can be thought of as 
a random variable with a known normal distribution, 
and that these variables are independent across pixels. 
Thus, the likelihood of a particular pixel i having a 
certain value w given that it is in a given class c is: 

where i is an index ranging over all pixels in the image, 
V,  is the value of the pixel, and Ci is its class. pc and 

4325 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2010 at 13:29:17 EST from IEEE Xplore.  Restrictions apply. 



oc denote the mean and standard deviation of class c; 
these are assumed known. In practice, these parameters 
are estimated from a set of sample images. 

Given a set of intensity distributions Pr(K = vlCi = c) 
and priors Pr(Ci = c) ,  we can apply Bayes’ Rule from 
elementary probability theory to calculate the posterior 
probability that a given pixel belongs to a particular 
class, given its intensity: 

(4) 
(The denominator is just regarded as a normalization 
constant and can be ignored.) For simplicity, assume a 
homogeneous prior. 

We can then calculate the posteriors P: := Pr(Ci =. 
clV, = w) using (3) and (4) above, and then to apply 
anisotropic smoothing to each Pc. Specifically, we 
have chosen to smooth by evolving Pc according to a 
discretized version of the partial differential equation 

dP‘ 
at - = ((P,c)2P:z - 2P;Py”P:y + (P;)2P;y)1’3 (5) 

This equation defines the affine geometric heat flow, 
under which the level sets of Pc undergo affine curve 
shortening [9]. This particular diffusion equation was 
chosen because of its affine invariance, because it pre- 
serves edges well, and because of its numerical stabili- 
ty. The final segmentation is obtained using the maxi- 
mum a posteriori probability estimate after anisotropic 
smoothing. 

.4n example of the method from [7] is shown in Figures 
4, 5. 

Figure 4: SAR Image - A Tank 

4 Concluding remarks 
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Figure 5: Smoothed Posteriors and Segmentation of 
Figure 3. 

References 

[ 11 .4laska S AR facility h tt p : / /www . asf. a I as ka .ed u 

[2] C. I. Byrnes, T.T. Georgiou, and A. Lindquist, 
“A generalized entropy criterion for Nevanlinna-Pick 
interpolation,” IEEE Trans. on Aut. Contr., to  appear. 

[3] C. I. Byrnes, T.T. Georgiou, and A: Lindquist, 
“A new approach to  spectral estimation: A tunable 
high-resolution spectral estimator,” IEEE Trans. on 
Signal Proc., to appear. 

[4] J.C. Curlander and R. N. McDonough, Synthet- 
ic Aperture Radar, Wiley, 1991. 

[5] T.T. Georgiou, “Signal estimation via selective 
harmonic amplification: MUSIC, Redux,” IEEE Trans. 
on Signal Processing, 48(3): 780-790, March 2000. 

[6] T.T. Georgiou, “Spectral estimation via selective 
harmonic amplification,” IEEE Trans. on Aut. Contr., 
to appear, February 2001. 
[7] S. Haker, G. Sapiro, and A. Tannenbaum, 
“Knowledge-based segmentation of SAR data with 
learned priors,” IEEE Trans. Image Processing 9 

[8] D.H. Johnson and D.E. Dudgeon, Array SzgnaE 
Processing, Prentice-Hall, 1993. 

[9] G. Sapiro and A. Tannenbaum, “Affine invariant 
scale-space,” International *Journal of Computer Vision 

[lo] M. Soumekh, “Reconnaissance with ultra wide- 
band UHF synthetic aperture radar,” IEEE Signal Pro- 
cessing Magazine, 12(4): 21-40, 1995. 

(2000), pp. 298-302. 

11 (1993), 25-44. 

Spectral analysis and image processing tools such as the 
ones we discuss above may have a wide range of appli- 
cations. However, the nature of SAR imaging render 
the synergy of these techniques especially promising. 
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