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Abstract

We present a unifying computational framework to
solve robust pole assignment problems for linear sys-
tems using state feedback. The new framework uses
Sylvester equation based parametrizations of the pole
assignment problems. The non-uniqueness of solutions
is exploited by minimizing additionally sensitivity of
closed-loop eigenvalues and the norm of the correspond-
ing state feedback matrix. The solution methods rely
on using gradient search based minimization techniques
on suitably defined cost functions. The discussion of
main functional and numerical aspects reveals many
desirable features of the underlying algorithms which
recommend them to serve as bases for robust numeri-
cal software implementations.

1 Introduction

Pole assignment techniques to modify the dynamic re-
sponse of linear systems are among the most studied
problems in modern control theory. The complete the-
oretical solution of this problem for standard systems
has been followed by the development of many com-
putational methods (see for example the collection of
reprints in [13]). Sensitivity analysis of the pole assign-
ment problem (see [10] and references therein) moves
one step forward the understanding of difficulties and
practical limitations associated with the usage of solu-
tion methods.

We address the eigenvalue assignment problem (EAP)
for standard state-space systems of the form

λx(t) = Ax(t) + Bu(t), (1)

for descriptor systems of the form

Eλx(t) = Ax(t) + Bu(t), (2)

and for linear periodic systems of the form

xk+1 = Akxk + Bkuk. (3)

In (1) and (2) A,E ∈ IRn×n, B ∈ IRn×m, and λx(t) =
ẋ(t) for a continuous-time system and λx(t) = x(t + 1)

for a discrete-time system. For the time-varying peri-
odic system (3), Ak ∈ IRn×n and Bk ∈ IRn×m are peri-
odic matrices with period K ≥ 1. Let Γ = {λ1, . . . , λn}
be a given symmetric set of n complex values.

We consider the following EAPs:

1. Standard eigenvalue assignment problem (SEAP):
given the controllable pair (A,B), determine the
state feedback matrix F ∈ IRm×n such that the eigen-
values of the closed-loop state matrix A + BF are at
desired locations Γ.

2. Descriptor eigenvalue assignment problem (DEAP):
given the controllable descriptor pair (A − λE, B)
and Γ (possibly with infinite elements), determine
the proportional-derivative feedback pair (F, K) with
F,K ∈ IRm×n such that the generalized eigenvalues
of the closed-loop descriptor pair (A + BF,E + BF )
are at desired locations Γ.

3. Periodic eigenvalue assignment problem (PEAP):
given the completely reachable periodic matrix pair
(Ak, Bk), determine the periodic state feedback ma-
trix Fk ∈ IRm×n such that the eigenvalues of
the closed-loop monodromy matrix ΦA+BF (K, 0) =
(AK−1 + BK−1FK−1) · · · (A0 + B0F0) are at desired
locations Γ.

In the multi-input case or in the case K > 1 for a peri-
odic system the corresponding EAP has a non-unique
solution. Therefore it is reasonable to exploit the non-
uniqueness by imposing additional conditions. One as-
pect which is desirable from a practical point of view is
to determine feedback matrices with small gains. Intu-
itively this must be advantageous since small feedback
gains lead to smaller control signals, and thus to less
energy consumption. Small gains are also beneficial to
reduce noise amplification. A second aspect important
in pole assignment is to achieve a small condition num-
ber for the eigenvector matrix of the state matrix or
monodromy matrix of the closed-loop system. This is
the goal of robust pole assignment [7, 4, 14, 6, 9]. In
light of recent perturbation results for the SEAP [10],
both aspects appear to be decisive for the low sensitiv-
ity of assigned eigenvalues. It was shown in [10] that



high feedback gains or high condition numbers lead to
high sensitivity of the closed-loop eigenvalues. Thus the
simultaneous minimization of the feedback norm and
condition of eigenvector matrix is a desirable general
goal for solving EAPs.

In this paper we present a unifying framework for
the numerically reliable solution of EAPs by exploit-
ing the intrinsic non-uniqueness of the problems. The
non-uniqueness issue is addressed by formulating the
EAPs as minimum norm robust pole assignment prob-
lems [15, 16, 17]. By using Sylvester equations based
parametrizations, those solutions of the EAPs are
sought which minimize special cost functions expressing
the weighted requirements for minimum norm feedback
matrix and minimum sensitivity of closed-loop eigen-
values. The available explicit expressions for the gradi-
ents of cost functions allow the use of powerful gradient
search based minimization techniques. The discussion
of main functional and numerical aspects reveals many
desirable features of the underlying algorithms which
recommend them to serve as bases for robust numerical
software implementations. Of particular importance is
that all methods can address the eigenstructure assign-
ment as well as partial pole assignment aspects.

2 Parametrization of solutions

2.1 SEAP
The parametrization is based on a straightforward
Sylvester equation based formulation [3]. If F solves
the SEAP, then there exist X, an invertible transfor-
mation matrix, and Ã satisfying Λ(Ã) = Γ such that

X−1(A + BF )X = Ã. (4)

If we define G := FX then (4) can be rewritten as a
Sylvester matrix equation

AX −XÃ + BG = 0. (5)

which must be satisfied by X.

Conversely, to solve the SEAP, we choose Ã such that
Λ(Ã) = Γ, and assume that G is a given parameter
matrix. Then, we solve (5) for X and, provided X is
invertible, we compute the feedback matrix as

F = GX−1. (6)

To enforce the invertibility of X, the matrices Ã and
G must fulfill standard conditions: 1) the pair (Ã,G)
is observable; 2) Λ(A) ∩ Λ(Ã) = ∅. These conditions
together with the controllability of pair (A,B) ensure
that X satisfying (5) is generically invertible [5]. If Ã is
in a Jordan canonical form, then the resulting X plays
the role of the eigenvector matrix for the closed-loop
state matrix A + BF .

2.2 DEAP
If F and K are matrices which solve the DEAP, then
there exist invertible matrices X and Y such that

Y −1(A + BF )X = Ã, Y −1(E + BK)X = Ẽ, (7)

where the matrices Ã and Ẽ are such that Λ(Ã, Ẽ) = Γ.
If we define G := FX and L := KX, then (7) can be
rewritten as a Sylvester system of matrix equations

AX − Y Ã + BG = 0
EX − Y Ẽ + BL = 0

(8)

which must be satisfied by X and Y .

Thus, to solve the DEAP, we choose Ã and Ẽ such that
Λ(Ã, Ẽ) = Γ, and assume G and L are given parameter
matrices. Then, we solve (8) for X and Y and, pro-
vided X and Y are invertible, we compute the feedback
matrices as

F = GX−1, K = LX−1. (9)

To enforce the invertibility of X and Y , the matri-
ces Ã, Ẽ, G and L must fulfill some standard condi-
tions: 1) the pair (Ã − λẼ,G − λL) is observable; 2)
Λ(A, E)∩Λ(Ã, Ẽ) = ∅. These conditions together with
the controllability of pair (A−λE, B) ensure that X and
Y satisfying (8) are generically invertible. If the pair
(Ã, Ẽ) is chosen in a Weierstrass canonical form, then
the resulting X and Y play the role of the closed-loop
generalized eigenvector matrices for the closed-loop sys-
tem pair (A+BF, E +BK). Parametrizations of other
two, more particular DEAPs, are considered in [16].

2.3 PEAP
The approach for solving SEAP can be extended to
the more complicated case of PEAP. To simplify the
presentation we will introduce some notation. For a
square time-varying matrix Ak, k = 0, 1, . . . , we denote
ΦA(j, i) = Aj−1Aj−2 · · ·Ai for j > i and ΦA(i, i) := I.
If Ak is periodic with period K, then the monodromy
matrix of the system (3) at time τ is ΦA(τ + K, τ).
Its eigenvalues, denoted by Λ(ΦA(τ + K, τ)), are in-
dependent of τ and are called characteristic multipli-
ers. For an arbitrary periodic matrix Xk of period
K, also called a K-periodic matrix, we use alterna-
tively the script notation X which associates the block-
diagonal matrix X = diag (X0, X1, . . . , XK−1) to the
cyclic sequence of matrices Xk, k = 0, . . . , K−1. This
notation is consistent with the standard matrix oper-
ations like addition, multiplication, transposing, or in-
version. Further we denote with σX the K-cyclic shift
σX = diag (X1, . . . , XK−1, X0) applied to the cyclic se-
quence Xk, k = 0, . . . ,K−1.

To solve the PEAP we use a parametrization similar
to the standard case. Let Gk ∈ IRm×n be a given
K-periodic parameter matrix and let Ãk ∈ IRn×n be



a given K-periodic matrix such that Λ(Φ
Ã
(K, 0)) =

Γ. Consider the following periodic Sylvester equation
(PSE)

AkXk −Xk+1Ãk + BkGk = 0, k = 0, . . . ,K−1, (10)

and assume that its solution, the K-periodic matrix Xk,
is invertible. Then, with the periodic feedback matrix

Fk = GkX−1
k (11)

we have X−1
0 ΦA+BF (K, 0)X0 = Φ

Ã
(K, 0), and thus,

Fk solves the PEAP. Usual restrictions on choosing Ãk

and Gk are similar to those in the standard case: (1)
the periodic pair (Ãk, Gk) is completely observable; and
(2) Λ(ΦA(K, 0))∩Λ(Φ

Ã
(K, 0)) = ∅. If additionally the

periodic pair (Ak, Bk) is completely reachable, then Xk

satisfying (10) is generically nonsingular and for the
above Fk, we have X−1

k+1(Ak + BkFk)Xk = Ãk. As
in the standard case, Ãk can be chosen to reflect the
desired Jordan structure of the closed-loop monodromy
matrix. For example, we can choose Ã0 in a real Jordan
form and Ãk, k = 1, . . . , K−1, as identity matrices.
In this case, each Xk is the eigenvector matrix for the
corresponding monodromy matrix ΦA+BF (k + K, k).

3 Optimization-based solution of robust EAPs

In light of the sensitivity results in [10], it meaningful to
exploit the non-uniqueness of the EAPs by computing
solutions which ensure low sensitivity of the closed-loop
eigenvalues and small feedback gains. This leads to a
formulation of each EAP as a minimum norm robust
EAP for which the solution method relies on solving an
unconstrained nonlinear programming problem. One
of the main advantages of the Sylvester equation based
parametrizations of EAPs is the possibility to easily
derive explicit analytic expressions for the gradients of
cost functions. This allows to employ efficient gradient
based local search techniques to compute the ”optimal”
feedback by minimizing the underlying cost function.

Since the dimension of the minimization problems could
be potentially large, a particularly well suited class of
methods to solve our problems is the class of uncon-
strained descent methods, as for instance, the limited
memory BFGS method [8] used in conjunction with a
line search procedure with guaranteed decrease as that
described in [12]. The guaranteed decrease feature of
these methods ensures that the condition numbers of
the solutions of Sylvester equations progressively de-
crease in each iteration and thus, these solutions remain
invertible at each iteration once an invertible solution
has been determined at the first iteration. In what fol-
lows, we define for each EAP the cost function to be
minimized and give the corresponding result for the ex-
pressions of gradient.

3.1 SEAP
If Ã is in a Jordan form, then X is the eigenvector ma-
trix for the closed-loop system state matrix A + BF .
As a measure of the sensitivity of closed-loop eigenval-
ues, we use the condition number κF (X) of X with re-
spect to the Frobenius norm. For computational conve-
nience, instead of minimizing κF (X) := ‖X‖F ‖X−1‖F ,
the minimization of the sum ‖X‖2F +‖X−1‖2F can be al-
ternatively performed, since the two optimization prob-
lems are mathematically equivalent [4]. Thus, for the si-
multaneous minimization of the norm of the state feed-
back matrix F and of the condition number κF (X) we
can use the following performance index

J =
α

2
(‖X‖2F + ‖X−1‖2F

)
+

1− α

2
‖F‖2F , (12)

where 0 ≤ α ≤ 1 is a weighting factor. For α = 0 J
defines a pure norm minimization problem, while for
α = 1 we get a pure robust EAP. Intermediary values
of α lead to a combination of both aspects.

The Sylvester equation based parametrization allows
to derive explicit analytic expressions of gradients of
the performance criterion J with respect to the free
parameter matrix G [15].

Proposition 1 Let F be the state feedback computed
as in (6), assigning the desired eigenvalues Γ for given
Ã and G. Then, the gradient of J with respect to G is
given by

∇GJ = (1− α)HT + BT UT , (13)

where H = X−1FT , and U satisfies the Sylvester equa-
tion

ÃU − UA + S = 0 (14)

with S = α(−XT + X−1X−T X−1) + (1− α)HF .

Note that each function and gradient evaluation in-
volves the solution of two Sylvester equations (5) and
(14) sharing the same coefficient matrices.

3.2 DEAP
If the pair (Ã, Ẽ) is in a Weierstrass form then X and Y
play the roles of the eigenvector matrices for the closed-
loop system pair (A + BF, E + BK). For the simulta-
neous minimization of the norm of the state feedback
matrices F and K and of the condition numbers κF (X)
and κF (Y ) we can use the following performance index

J =
α

2
(‖X‖2F + ‖X−1‖2F + ‖Y ‖2F + ‖Y −1‖2F

)

+
1− α

2
(‖F‖2F + ‖K‖2F

)
, (15)

where 0 ≤ α ≤ 1 is a weighting factor, with the same
meaning as in case of SEAP.

The following result gives the analytic expressions of
gradients of the performance criterion J with respect
to the free parameters G and L for the DEAP [16]:



Proposition 2 Let (F, K) be the pair of state feed-
back matrices computed as in (9), assigning the desired
eigenvalues Γ for given (Ã, Ẽ) and (G,L). Then, the
gradients of J with respect to G and L are given by

∇GJ = (1− α)FX−T + BT U
∇LJ = (1− α)KX−T + BT V

(16)

where U and V satisfy the dual Sylvester system

AT U + ET V = S

UÃT + V ẼT = −T
(17)

for
S = (1− α)(FT F + KT K)X−T

+α(−X + X−T X−1X−T )
T = α(−Y + Y −T Y −1Y −T ).

Note that each function and gradient evaluation in-
volves the solution of a Sylvester system (8) and of a
dual Sylvester system (17) sharing the same coefficient
matrices.

3.3 PEAP
To solve the robust PEAP the condition numbers
κF (Xk) must be minimized [9]. This can be done si-
multaneously with the minimization of the norm of the
feedback matrix. For this purpose we use the following
weighted cost function to be minimized

J =
α

2

K−1∑

k=0

(‖Xk‖2F + ‖X−1
k ‖2F ) +

1− α

2

K−1∑

k=0

‖Fk‖2F .

The script notation allows to simplify the notation. F
is computed as

F = GX−1, (18)

where X satisfies the PSE

AX − σXÃ+ BG = 0. (19)

Further J can be expressed alternatively as

J =
α

2
(‖X‖2F + ‖X−1‖2F ) +

1− α

2
‖F‖2F .

With the above expression of J , we have the following
result for the expression of the gradient [17]:

Proposition 3 Let F be the periodic feedback com-
puted as in (18), assigning the desired characteristic
values Γ for given Ã and G. Then, the gradient of J
with respect to G is given by

∇GJ = (1− α)HT + BTUT , (20)

where H = X−1FT , and U satisfies the PSE

ÃU − σUσA+ σS = 0 (21)

with S = α(−X T + X−1X−TX−1) + (1− α)HF .

Note that each function and gradient evaluation in-
volves the solution of two PSEs (19) and (21) sharing
the same coefficient matrices.

4 Main algorithmic features

Satisfactory eigenvalue assignment algorithms must ful-
fill several functional and numerical requirements to
serve as bases for numerically robust software imple-
mentations. In what follows we discuss several algo-
rithmic features of the Sylvester equation based ap-
proach and we point out how apparent limitations of
this method can be overcome.

4.1 Functional features
Satisfactory computational algorithms must be general
and flexible, and must exploit all structural aspects of
the underlying problem. We will examine these aspects
in case of the Sylvester equation based eigenvalue as-
signment methods.

Generality
Generality means that an eigenvalue assignment algo-
rithm is able to assign an arbitrary set of eigenvalues,
and ideally, it can also assign a desired eigenstructure
for the closed-loop system. Although the first require-
ment seems to be trivial, even well-known methods im-
plemented in commercial software are not able to fulfill
this requirement. For example, the robust pole assign-
ment method of [7] (implemented in function place of
the MATLAB Control Toolbox) can not assign poles
with multiplicities greater than rank of B and the im-
proved version of this approach has the same limitation
[14]. The Sylvester equation based approach for the
SEAP/DEAP/PEAP has no such limitations and can
easily address the assignment of a given eigenstructure
for the closed-loop system by suitably choosing the Jor-
dan form of Ã for the SEAP, the Weiertrass form of the
pair (Ã, Ẽ) for the DEAP or the periodic Jordan form
of Ã for the PEAP. The case of overlapping closed-loop
and open-loop spectra can be also addressed by per-
forming an initial eigenvalue shifting with a preliminary
(random) feedback. For additonal details for SEAP and
DEAP approaches, see [15, 16].

Flexibility
One apparent limitation of the Sylvester equation based
approach is the need that the closed-loop and open-
loop spectra do not overlap. This condition guarantees
the existence of a unique solution to the corresponding
Sylvester equations (5), (8), or (19), and is thus conve-
nient from numerical point of view when using Sylvester
equation solvers. Although technical, this condition
prevents the Sylvester equation based approach to per-
form a partial eigenvalue assignment, i.e., to keep un-
modified some of the open-loop eigenvalues. Since the
partial eigenvalue assignment is a very useful feature,
especially when stabilizing high order systems, we show
how this feature can be easily accommodated within
the Sylvester equation based approach and thus sub-
stantially increasing its flexibility.



In case of SEAP, the performance index J in (12) is in-
variant to an orthogonal system similarity transforma-
tion, that is, if F is the optimal feedback matrix for the
pair (A,B) then F̂ = FQ is the optimal feedback ma-
trix for the transformed pair (Â, B̂) := (QT AQ,QT B),
where Q is an orthogonal matrix. Thus, if we want to
keep unmodified the eigenvalues of A lying in a ”good”
region Cg of C and to modify only those lying in its
complement Cb = C \ Cg (the ”bad” region), then we
can first reduce A to an ordered real Schur form (RSF)
to obtain the pair

QT AQ =
[

A11 A12

0 A22

]
, QT B =

[
B1

B2

]
, (22)

where Λ(A11) ⊂ Cg and Λ(A22) ⊂ Cb. With this sep-
aration, we can perform a partial pole assignment by
solving for the optimal solution F2 the SEAP for the re-
duced pair (A22, B2) and a corresponding reduced set
Γ2 = Γ \ Λ(A11). The overall optimal feedback matrix
results as F = [ 0 F2 ]QT . A similar approach can also
be employed in case of the PEAP (for details see [17]).

In case of DEAP, the performance index J is invariant
to an orthogonal system similarity transformation, that
is, if F and K are the optimal feedback matrices for the
descriptor pair (A−λE, B) then F̂ = FZ and K̂ = KZ
are the optimal feedback matrices for the transformed
pair (Â − λÊ, B̂) := (QT AZ − λQT EZ, QT B), where
Q and Z are orthogonal matrices. Thus, if we want
to keep unmodified the generalized eigenvalues of pair
(A,E) lying in Cg and to modify only those lying in its
complement Cb, then we can first reduce (A,E) to an
ordered generalized real Schur form (GRSF) to obtain
the triple

QT AZ =
[

A11 A12

0 A22

]
, QT B =

[
B1

B2

]
,

QT EZ =
[

E11 E12

0 E22

]
,

(23)

where Λ(A11, E11) ⊂ Cg and Λ(A22, E22) ⊂ Cb. With
this separation, we can perform a partial pole assign-
ment by solving for the optimal solution F2 and K2 the
DEAP for the reduced descriptor pair (A22−λE22, B2).
The overall optimal feedback matrices result as F =
[ 0 F2 ]ZT and K = [ 0 K2 ]ZT .

Structure exploitation
The Sylvester equation approach in conjunction with
the optimization based search for a minimum norm and
well-conditioned feedback exploits the intrinsic freedom
of the multi-input EAP to address an important addi-
tional requirement, namely, the well conditioning of the
EAP. Note that most of pole assignment algorithms do
not exploit this structural feature of the problem and
even algorithms for robust pole assignment address only
partially this aspect by ignoring norm minimization.

Moreover, most methods have also restrictions with re-
spect to the allocation of the closed-loop eigenstructure.

4.2 Numerical features

We focus on discussing numerical properties like the
numerical stability and computational efficiency of the
Sylvester equation based eigenvalue assignment algo-
rithms, and we address shortly the implementation as-
pects of this approach in robust numerical software.

Numerical stability
To solve each of the EAP, the computation of the opti-
mal feedback for the computed optimal parameter ma-
trix involves the solution of two systems of linear equa-
tions: the corresponding Sylvester equation (5), (8), or
(19), and a linear system (e.g., FX = G in case of
SEAP to compute the feedback matrix F ). Thus the
Sylvester equation based approach can be considered to
be practically numerically stable.

Concerning the accuracy of the results, in a robust pole
assignment problem it is expected that the optimal X
or X (in case of PAEP) is reasonably well-conditioned,
thus the last computational step is usually very accu-
rate. Thus, the main source of errors appears to be the
numerical solution of the Sylvester equations, where the
separation of open-loop and closed-loop spectra is the
essential factor for the accuracy of the computed X or
X . However, a good separation can be always achieved
by an initial eigenvalue shifting with a preliminary feed-
back, and therefore, for most practical problems, we can
expect that the computed results corresponding to an
optimal solution are very accurate.

Efficiency
The overall efficiency of the eigenvalue assignment algo-
rithms heavily depends on the costs of function and gra-
dient evaluations. Each function and gradient evalua-
tion involves the solution of two Sylvester equations. In
case of SEAP, the Sylvester equations (5) and (14) shar-
ing the same coefficient matrices, can be solved using
the Schur method [2]. This approach can be efficiently
employed provided the matrix A is reduced first to a
RSF using an orthogonal similarity transformation and
assuming further that the matrix Ã is in a Jordan form
(a particular RSF with block-diagonal structure). The
reduction of A, performed only once, can be seamlessly
combined with the reordering of the RSF to accom-
modate with the partial pole assignment requirement.
For the transformed problem, the function and gradient
evaluations can be performed very efficiently since now
we have to solve only reduced Sylvester equations with
the coefficient matrices in RSF. The same technique
can be employed to reduce the computational burden
associated to evaluate the functions and gradients for
the DEAP and PAEP. For details, see [16, 17].



Implementation aspects
The Sylvester equation based approach is simple to im-
plement. For FORTRAN implementations to solve the
SEAP and DEAP, all necessary software to perform the
linear algebra computations is available in LAPACK
3.0 [1]. Here routines are provided to compute the RSF
of a matrix, the GRSF of a matrix pair, to solve the
Sylvester equation or Sylvester system, as well as sys-
tems of linear equations. For optimization, efficient
unconstrained minimization routines are available in
MINPACK-2 (the successor of MINPACK-1 [11]), offer-
ing a convenient reverse communication interface which
allows an easy implementation of function and gradient
computations.

For testing purposes, prototype MATLAB m-functions
have been implemented by the author to solve the ro-
bust SEAP and several robust DEAPs (see [16]). These
m-functions rely on two efficient mex -functions devel-
oped within the NICONET project1: linmeq to solve
various matrix equations and genleq to solve various
generalized matrix equations. For optimization, the
fminunc unconstrained minimization function available
in the Optimization Toolbox 2.0 of MATLAB has been
employed.

5 Conclusions

We surveyed recently developed reliable numerical ap-
proaches to exploit the intrinsic non-uniqueness of
EAPs by formulating the EAP as a minimum norm
robust pole assignment problem. The efficient evalua-
tion of the cost functions and gradients is of paramount
importance for the usefulness of the optimization based
approach. Using transformation techniques in conjunc-
tion with the solution of reduced Sylvester equations
is the main ingredient to achieve this goal. Further,
it allows to address with practically no extra costs
the partial pole assignment problem too. We believe
that the presented robust pole assignment approaches
are viable ways to solve large EAPs in the perspec-
tive of the requirements formulated by recent sensi-
tivity analysis results [10]. Numerical results for the
SEAP/DEAP/PEAP reported in [15, 16, 17] indicate
that the Sylvester approach produce the same or even
better results than similar, but much more involved ap-
proaches [14, 6, 9].
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