
Proceedings of the 39” IEEE 
Conference on Decision and Control 
Sydney, Australia December, 2000 

Geometric Scattering in Tele-manipulation of 
Port Controlled Hamiltonian Systems 

S. S tramigioli 
Delft University of Technology 

Delft , The Netherlands 
http://lcewww.et.tudelft.nl/”stramigi 

A.v.d.Schaft 
University of Twente 

Enschede, The Netherlands 
B. M asc hke 

UFR Genie Electrique et des Procedes 
Lyon, France 

S.Andreotti and C.Melchiorri 
University of Bologna 

Bologna, Italy 

Abstract In this paper we study the interconnection 
of two port controlled Hamiltonian systems through 
a transmission line with delay. The contributions of 
the paper are firstly a geometrical, multi-dimensional, 
power consistent exposition of tele-manipulation of In- 
trinsically Passive Controlled (IPC) physical systems 
(Stramigioli 1998, Stramigioli et al. 1999), with a clari- 
fication on impedance matching, and secondly a system 
theoretic condition for the adaptation of a general port 
controlled Hamiltonian system with dissipation (PCHD 
system) to a transmission line. To the knowledge of 
the authors, the latter result in particular has never 
appeared in such a general form. Experimental results 
on an Internet implementation are also presented. 

1 Introduction 

A lot of work has been done in the field of tele- 
manipulation. Some of the contributions specifically 
address the problem of time delays due to the ac- 
tual transmission through a line of non-neglectable 
length. The problem was firstly addressed in 
(Anderson and Spong 1989) for a one dimensional case, 
and then extended in (Niemeyer and Slotine 1991), 
where important considerations on the line causality 
and extensions with adaptation techniques are treated. 

In this work we present a geometrical multi-dimensional 
case, which uses digital transmission of data in order 
to create a perfectly bilateral tele-manipulation system 
on a transmission line with varying, non-neglectable de- 
lays: the Internet. 

2 Background 

2.1 Generalized Hamiltonian systems 
Almost’ any lumped parameter physical system 
with independent states can be represented by 
the following generalized Hamiltonian equations 
(Dalsmo and van der Schaft 1999, van der Schaft 1999) 
with dissipation: 

where x is the state vector, H the Hamiltonian en- 
ergy function, J ( z )  the skew-symmetric Poisson tensor, 
R(x)  the symmetric, positive semi-definite, dissipation 
tensor, U the input and y the output. 

2.2 Geometric scattering 
Scattering variables are well known in network the- 
ory. At the knowledge of the authors, the first works 
which present scattering variables from a geometrical 
point of view are (Maschke and van der Schaft 1999, 
van der Schaft 1999). This way of defining scattering 
is conceptually important because it allows to define 
scattering variables of vector spaces which do NOT 
have a canonically defined inner product like 4 3 )  
(LonEariC 1985, Duffy 1990). This allows to imple- 
ment a tele-manipulating system from an intrinsically 
geometric point of view. . 

The main idea is as follows. Given any vector space V, 

‘This point will be discussed later. 
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we can consider the vector space: 

D := v x v* 
On D there exist a canonical, symmetric, two co- 
variant tensor called +pairing. This symmetric, non- 
degenerate 2form, is defined by the bilinear operation: 

( ( f l , e l ) , ( f i , e2>)+  := (e1,f2) 4- (ea,f1) 

where (fi,ei) E D and (ei,fj) denotes the 
intrinsic dual pairing. Using this tensor it 
is also possible to give a geometric definition 
of a Dirac structure which is a generalization 
of Poisson structures (Maschke and van der Schaft 
1999, van der Schaft 1999, Maschke and van der Schaft 
2000). Once dual bases for V and V* are used, a matrix 
representation of this (0,2) type tensor becomes: 

o r  
Ta.i = ( I  ”> 

It is now possible to consider the singular values2 of 
the tensor which turn out to be f l  and -1 (both 
with multiplicity equal to the dimension of V). Further- 
more, due to the fact that the 2form is not degenerate, 
there are two complementary subspaces associated to 
the singular values, namely: 

having the property that 

D = s+ @ s-, 
which implies that there is a unique way to express 
a power pair (f, e) E D as the sum of two elements 
s+ E Sf and s- E S-. Furthermore, by restricting 
(,)+ to S+ we obtain an inner product on S+, and 
by restricting - (, )+ to S- we obtain an inner product 
on S- .  After choosing any basis for V and the corre- 
sponding unique dual basis for V*, it is then possible 
(see e.g. (van der Schaft 1999) to choose induced OT- 

thonormal bases for S+ and S-.  The decomposition 
on the two subspaces can be then expressed as3: 

1 
Js+ = - ( e + f )  Jz 

where, with an abuse of notation, s+ indicates a numer- 
ical representation of the projection of the power pair 
(e, f) on the subspace S+ using the induced orthonor- 
mal basis and similarly for the negative subspace. It 

2Note that we cannot intrinsically use the eigenvalues of a two 

3Note that the sum must be interpreted as a sum of real nu- 
covariant tensor. 

merical vectors as expressed in the dual bases explained 

Figure 1: Scattering transformation. 

is then possible (see e.g. (Maschke and van der Schaft 
1999, van der Schaft 1999) to see that 

where the norms for Sf and S- are induced by the 
above canonically defined inner products. This result 
is very important because it shows that we can alge- 
braically write the power flow as the sum of a positive 
and negative power depending only on the two scatter- 
ing variables. This can be interpreted as power going 
in opposite directions as shown in Fig. 1 where it is 
shown in bond graph notation that the power bond has 
indeed the same direction as the variables s+ due to the 
accordance of sign. Intuitively s+ can be thought of as 
a wave transporting power in the direction of the bond 
and s- in the opposite one. 

3 Causality and sign issues 
It has been shown in (Anderson and Spong 1989) that 
in order to preserve passivity with a transmission line 
connecting two systems, the power port connected to 
the transmission line can be %oded and decoded” in 
scattering variables. The coded signal s- can be sent 
on the line and it will be used by the other side as the 
incoming signal s+. The total energy stored on the line 
is therefore the integral of the traveling signal. Since 
the variable s+ is always an input for the two systems 
attached to the line, we have two causal possibilities: 

0 Computing e and s- as a function of f and the 

Computing f and s- as a function of e and the 

incoming wave s+ 

incoming wave variable s+. 

It has been shown in (Niemeyer and Slotine 1991) that 
there are multiple reasons for choosing the last of the 
two options. Furthermore, if we want to have a per- 
fectly symmetric system, the causalities at both sides 
should be the same. A first possibility, from a purely 
causal point of view, would be to let the line behave ’ 

as a gyrative action4 in such a way that for the line 
length and delay tending to zero, the effort supplied by 
one side would become the input flow of the other and 
vice versa. Unfortunately such a system cannot work 
because in steady state, when the master and slave do 

41n a gyrative action, the effort on one side would be a function 
of the flow on the other side and the other way around. 
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not move, the velocities should be zero (f = 0 ) ,  but 
at the same time, we want that a reflection of a force 
different from zero could take place if necessary (that 
is, e # 0). Since with a symplectic connection the two 
variables f and e are equal, this is not possible. This 
implies that the systems at both sides should have an 
impedance causality, and that the line in the limit of its 
length tending to zero should not behave as a gyrative 
action. 

From this we conclude we have to choose exactly the 
same scattering mapping on both sides, and connect the 
departing wave of one side to the incoming wave of the 
other side. This has an important consequence: if the 
line length and its delay are tending to zero, then we get 
a causal inconsistency since ‘the line’ should supply the 
same power variable at both sides, namely the flow f 
and this value should come from somewhere. By writing 
down the equations it would be possible to see that this 
would correspond to an algebraic loop with no delays 
and implies that the energy storage of a finite length 
line “fixes” the causal problem exactly as a mass would 
do to connect two physical systems through springs. 

4 Line Impedance adaptation 
The scattering mapping relation reported in Sect. 2.2 
is somehow canonical. This means that the system at- 
tached to the power port (e, f) of the transmission line 
reported in Fig. 1 feels an identity impedance. To see 
this we can proceed as follows. 

Since Ti3 of Eq. (2) is a quadratic form, we cannot di- 
rectly consider the eigenvalues of its representing ma- 
trix since this would not be a coordinate free oper- 
ation as it is well known in tensor calculus. In or- 
der to do this, we first need to “higher” one of its 
indexes(Dubr0vin et al. 1992). For this purpose, we 
consider a characterizing impedance zkz which is a 2- 
covariant tensor in V. It is then possible to define the 
following tensor of type ( 2 , O )  in D: 

It is now possible to study the eigenspaces of the (1,l) 
tensor 

where Z is a numerical representation of the tensor 
Z k i .  It is possible to see that, if we choose an iden- 
tity impedance 2 = I ,  we get two eigenvalues equal 
to the singular values +1 and -1, with eigenspaces S+ 
and S-. Furthermore, as an extra check, it can also be 
easily seen by supposing no power coming from the line 
(s+ = 0) and looking at another causal form of Eq. (5): 

e = & s + - f  

Figure 2: Scaling of impedance. 

How can we then model, in a power consistent way, 
an impedance line different from the identity ? This 
can be done by using what is called in bond graphs a 
transformer. The resulting scheme is given in Fig. 2. 
The equation characterizing a transformer with matrix 
transformation M are 

where in our case M is a square, in general t ime  
varying, non-singular matrix. The impedance seen at 
the (el, f1) port is the matrix 21 such that el = Zlf1 
and substituting the transformer’s equations: 

which implies that 21 = (MMT)-’. This is a trivial, 
well known result in network theory. 

21 is a positive definite, symmetric, 2-contravariant 
tensor, and therefore: 

(7) 
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A question arises: is it possible to find an lMTF of 
Fig. 2 such that the impedance seen from (e1,fi) can 
get any symmetric desired value Z? 
The answer is given by a well known result, namely 
that given any symmetric, positive semidefinite matrix 
2 there exists always a symmetric matrix N such that 

With this result we can state that all meaningful 
impedances (symmetric and positive definite) 2 can be 
generated by a proper choice of a transformer M = 
N-1. 
This implies that since a generic scattering transforma- 
tion can be expressed by 

1 
1s-  = $e2 - f 2 )  

using Eq. (6)  



Eventually, we obtain the scattering transformation for 
a generic, multidimensional impedance 2: 

As we shall see hereafter, 2 is a fundamental parameter 
for the line, which characterizes the wave variables s+, 
s- ,  and directly effects the system behavior. 

It is important to know that, in a real analog trans- 
mission line like a coaxial cable or a twisted pair, the 
impedance is obviously a physical characteristic of the 
line which we cannot influence. On the other hand, in a 
digital transmission line like the one considered in this 
work, only data are sent and the scattering mapping 
of Fig. 2 corresponds to an algorithmic implementation 
which codes and decodes the sent and received data. 
Future work will formally analyse the correctness of this 
analogy. 

5 Impedance Matching 
Impedance matching is a well-known problem in trans- 
mission lines. The energy received from the line has 
to be absorbed by master and slave systems. Once 
the impedance Z seen at the power port of Fig. 3 is 
chosen (model of the line), a system with the “same 
impedance” needs to be connected at  the end of the 
line to avoid waves reflections. This guarantees conti- 
nuity of impedance with respect to the line. 
A general system theoretic condition for matching of a 
general physical system connected to a line as in Fig. 3 
can now be stated as follows: 

Principle 1 The system seen at the scattering side of 
the transformation of Fig. 3 and having s+ as input and 
s- as output has to be of relative degree 2 1 [that is, 
the system should have no direct feedthrough). 

This implies that there should not be an algebraic re- 
lation between the waves s+ and s-, which is exactly 
equivalent to the idea of undiscriminated reflection of 
power. In intuitive terms, the power should be first 
somehow “processed” by the master (resp. slave) be- 
fore some information is sent back to the slave (resp. 
master). 

Now, we want to investigate what conditions Principle 
1 imposes on a generic PCHD system, as treated in 
Sect. 2.1, connected at the end of the line as in Fig. 3. 
Since we consider port controlled generalized Hamilto- 
nian systems (both master and slave sides), we have: 

Figure 3: Power interconnection with an Hamiltonian sys- 
tem. 

From the scattering transformation of Eq. (8) ,  we can 
obtain the port variables as function of the wave vari- 
ables: 

1 
s+ + s- = JZN- le  + e = --N(s+ + s - )  Jz 

1 
S+ - s- = J Z N f  j f = -N-’(s+ - s - )  Jz 

and thus the Hamiltonian system of Eq. (9) is trans- 
formed to: 

I -G(x)N-’(s+ - s - )  

dH(x) 1 e = GT(x)- = --N(s+ + s-) 
dx Jz 

The new system having as input s+ and as output s- 
is thus given as: 

h = ( J ( z )  - R(z)- 
G ( ~ ) N - W - ~ G T ( X ) ) ~  + J ~ N - ~ G ( x ) ~ +  i S- = JzN-’GT(x)% - S+ 

Hence we conclude that the input s+ is directly fed 
through to the output s-. This implies that any power 
arriving from the line is sent back independently of the 
state of the system connected to the line. Thus the 
Hamiltonian system of Eq. (9) does not satisfy Principle 
1, and is not general enough for impedance matching. 

Hence, in order to meet Principle 1, we have to enlarge 
the class of PCHD systems. We do this by considering 
PCHD systems of the extended form 

with B(x) 2 0 a newly added dissipation matrix. 
In this case we obtain, using Eq. (8) and Eq. (lo), the 
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IR be expressed by a linear mapping of the form: 

(c ,>> = x. I n- where DL , Dc, 
element of the 

, D R  are skew+ymmetric. A dissipating 
system has characteristic equations of 

Figure 4: The 

new output equation: 

interconnection description the form eR = R f R  with R symmetric and positive 
semi-definite. This implies that 

f~ = ( D R  - R)-lG; fL + ( D R  - R)-'GT 3 f c  

and therefore 

where 

F = (B(z)N-' + N)-' ( B ( z ) N - ~  - N )  

which implies, using Principle 1, that to have 
impedance matching we must have: 

B = N N = Z  

since this implies F = 0. 

Thus, a system of the extended PCHD form Eq. (lo),  
for which B(z)  is equal to the impedance Z of the line 
to which it is connected, guarantees the matching con- 
dition expressed in Principle 1, and eliminates any dis- 
criminate reflection of power. 

Using the previous setting, it is even possible to give a 
measure for the level of matching if this is not perfect. 
This can be easily done considering the induced norm 
of F. From Eq. (11) it is possible to see that F is a 
mapping of the following form: 

F : S + - + S - :  s+-Fs+ 

and since S+ and S- are normed spaces, we can define 
the following induced norm for F :  

If this norm is zero, perfect matching is obtained, if this 
norm is 1 perfect reflection takes place. 

5.1 An interconnection approach 
The previous conclusion can be obtained similarly using 
the framework of Dirac structures. For simplicity, we 
consider a network structure with reference to Fig. 4 
relating three ports: the power port connected to the 
line (fL, e L ) ,  the power port connected to a dissipating 
component (fR, e R )  and a power port connected to a 
storage element (fc, ec ) .  The network structure can 

B := DL + G ~ ( D R  - R)-lG: 
A := G I +  G ~ ( D R  - R)-lG? 
C := -GT + G ~ ( D R  - R)-'G: 
D := Dc + G3(D, - R)-lGT 

(12) 

(13) 

(14) 

(15) 

Applying the scattering transformation to the power 
port ( f ~ ,  - e L )  it is possible to obtain: 

where 

+ N - ~ A .  

This implies for Principle 1 that for adaptation we need 
to have ( N  + N - l B )  = 0 and therefore B = -2 which 
implies: 

DL + G ~ ( D R  - R)-'GT = -2 

with Z symmetric. This implies that necessarily DL = 
0 and furthermore, if we suppose Gz to be square and 
non-singular, that also DR = 0, implying that: 

R-' = G;' ZGyT .  

From the previous analysis, we can conclude that the 
adaptation is independent of the state of the system 
and only depending on the system interconnection and 
its dissipative term. 

6 Spatial tele-manipulation 
The presented theory can be used to passively imple- 
ment spatial tele-manipulation. With this is meant that 
the developed theory is well posed in a coordinate free 
setting and therefore it is possible to choose, for exam- 
ple 

V = 4 3 )  x . . . x se(3) .  
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In this case the transmitted power variables will be a set 
of twists and their dual wrenches. To keep decoupled 
twists during transmission, the chosen line impedance 
should be of the form: 

21 0 . . .  0 

z=(; 1:. . .  1:. 0). 

... 0 z, 
This can be used in complex tele-manipulation systems 
using Intrinsically Passive Controlled techniques like 
the ones presented in (Stramigioli et al. 1999) in which 
variations of geometric spring's length is controlled by 
a twist, an element in se(3). The importance of the 
presented theory becomes relevant in these kind of ap- 
plications where, the vector spaces used do not have 
any intrinsic inner product. 

Figure 5:  Scattering variables 

7 Experiments 
Real experiments have been implemented to verify the 
theory. These experiments used an Internet intercon- 
nection between the University of Bologna and the Delft 
University of Technology in order to create a real long, 
time varying delay. The experimental results indeed 
confirmed the theory. The only plot which is shown 
here is the one reported in Fig. 5 which shows the power 
waves s+ and s- and the virtual power transmitted 
through the network. A lot of other results have been 
obtained, but are not reported here for matter of space. 

8 Conclusions 
In this paper a general setting for tele-manipulation of 
Port Control Hamiltonian systems has been presented. 
A new system theoretic condition has been introduced 
which can be used to test if proper matching is taking 
place. A possible measure of matching has been also 
introduced. 

It has been shown that the standard form of explicit 
port controlled Hamiltonian systems is not general 
enough to obtain matching and it must be extended 
by a feed-throw term. This can be shown more gen- 
erally using directly a network structure as shown in 
Sect. 5.1. 

The presented theory is important for the implementa- 
tion of geometrical tele-manipulation where the vector 
space used se(3) does not have an internal product. 
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