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Abstract

We present an efficient and numerically reliable ap-
proach to compute the zeros of a periodic system.
The zeros are defined in terms of the transfer-function
matrix corresponding to an equivalent lifted state-
space representation as constant system. The proposed
method performs locally row compressions of the asso-
ciated system pencil to extract a low order pencil which
contains the zeros (both finite and infinite) as well as
the Kronecker structure of the periodic system. The
proposed algorithm belongs to the family of fast, struc-
ture exploiting algorithms and relies exclusively on us-
ing orthogonal transformations. For the overall zeros
computation a certain form of numerical stability can
be ensured.

1 Introduction

Among the important open computational problems
listed in a recent survey [23], the computation of ze-
ros of the transfer-function matrix of a periodic sys-
tem is one which has many useful applications. Besides
characterizing when the system is minimum-phase or
not, the zeros provide information on several structural
properties of a system. A general, efficient and nu-
merically reliable algorithm to compute the zeros of a
periodic system can be seen as a universal tool for the
analysis of periodic systems. For instance, reachabil-
ity/stabilizability and observability/detectability can
be easily studied by computing the zeros of particu-
lar periodic systems without outputs or inputs, respec-
tively. Even the poles of a periodic system can be seen
as a particular type of zeros for a system with no in-
puts and no outputs. A recent algorithm using this to
evaluate the transfer-function matrix of a periodic sys-
tem [22], relies on the computation of poles and zeros of
particular single-input single-output periodic system.

We consider the periodic time-varying system of the
form

x(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k) (1)

where the matrices Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×m,
Ck ∈ Rp×nk , Dk ∈ Rp×m are periodic with period
K ≥ 1. For the computation of zeros it is important
to consider this more general case of time-varying state
dimensions. Since the transmission zeros of a standard
system are defined in term of a minimal realization, a
similar definition is appropriate also for the zeros of pe-
riodic systems (see for example [14]). However, the min-
imal realization theory of these systems revealed (see for
example [5, 8]) that minimal order (i.e., reachable and
observable) state-space realizations of periodic systems
have, in general, time-varying state-space dimensions.
Note that periodic systems with time-varying dimen-
sions have been already considered earlier in [12, 9].
But only recently, numerically reliable algorithms for
systems with time-varying dimensions have been de-
veloped. Notable examples are the recent algorithms
for the computation minimal realizations [21] and the
evaluation of the transfer-function matrix of periodic
systems [22]. Finally, the development of general algo-
rithms able to address the time-varying case, is one of
the requirements formulated for a satisfactory numeri-
cal algorithm for periodic systems [23].

The definition of zeros of a periodic system can be in-
troduced starting from any of the time-invariant lifted
reformulations [4, 10]. These zeros have a nice inter-
pretation in terms of periodic blocking property of ex-
ponentially periodic input signals [2]. In this paper we
use the lifting approach proposed by Meyer and Bur-
rus in [15] as basis for the definition of zeros. However,
the computation of zeros using this lifted reformulation
by using standard methods (e.g., as those proposed in
[6]), involves forming products of up to K matrices.
Apart from being computationally expensive, the ex-
plicit computation of the lifted reformulation can lead
to severe numerical difficulties. A second lifting ap-
proach appears in the works of several authors [17, 7, 12]
and leads to a large order standard system representa-
tion with sparse and highly structured matrices. While
the direct application of the numerically stable method
of [16] is certainly possible, the computational complex-
ity for large order systems is very high. Assuming con-
stant dimensions ni = n, such an algorithm has a com-



plexity of O((Kn)3), instead of an expected complexity
of O(Kn3) for a satisfactory algorithm [23].

Although the lifting techniques are useful for their the-
oretical insight, their sparsity and structure may not
be suited for numerical computations. This is why,
in parallel to the theoretical developments, numeri-
cal methods have been developed that try to exploit
this structure. The purpose of this paper is to pro-
pose a numerical approach to compute the zeros of the
transfer-function matrix (TFM) of the periodic system
(1) which meets the requirements of generality, speed
and accuracy for a good numerical algorithm for peri-
odic systems as formulated in [23]. This goal is mainly
achieved by exploiting the sparse structure of the as-
sociated system pencil by performing locally row com-
pressions to extract a low order pencil (of order about
n = maxi{ni}) which contains the zeros (both finite
and infinite) as well as the Kronecker structure of the
periodic system. For this pencil, standard methods can
be employed to determine the zeros and the Kronecker
structure (e.g., [16]). The new algorithm belongs to the
family of fast, structure exploiting algorithms and relies
exclusively on using orthogonal transformations. This
is why, for the overall zeros computation a certain form
of numerical stability can be ensured.

Notation. For a K-periodic matrix Xi we use alter-
natively the script notation

Xk := diag (Xk, Xk+1, . . . , Xk+K−1),

which associates the block-diagonal matrix Xk to the
cyclic matrix sequence Xi, i = k, . . . , k+K−1 starting at
time moment k. We reserve the script notation X (i.e.,
without subscript) for X = X1. By using the script no-
tation, the periodic system (1) will be alternatively de-
noted by the quadruple (Ak,Bk, Ck,Dk) or (A,B, C,D)
if k = 1. The transition matrix of the system (1) is de-
fined by the nj ×ni matrix ΦA(j, i) = Aj−1Aj−2 · · ·Ai,
where ΦA(i, i) := Ini . The state transition matrix over
one period ΦA(j + K, j) ∈ Rnj×nj is called the mon-
odromy matrix of system (1) at time j and its eigenval-
ues are called characteristic multipliers at time j.

2 Zeros and poles of periodic systems

To define the zeros and poles of the periodic system (1),
we define first the transfer-function matrix (TFM) cor-
responding to the associated lifted system introduced
in [15]. This lifting technique uses the input-output be-
havior of the system over time intervals of length K,
rather then 1. For a given sampling time k, the corre-
sponding mK-dimensional input and pK-dimensional
output vectors are

uL
k (h) = [uT (k + hK) · · ·uT (k + hK + K − 1)]T ,

yL
k (h) = [yT (k + hK) · · · yT (k + hK + K − 1)]T

and an nk-dimensional state vector is defined as

xL
k (h) := x(k + hK).

The lifted system has the form

xL
k (h + 1) = FL

k xL
k (h) + GL

k uL
k (h)

yL
k (h) = HL

k xL
k (h) + LL

k uL
k (h) (2)

where

FL
k = ΦA(k + K, k)

GL
k = [ ΦA(k + K, k + 1)Bk · · ·Bk+K−1 ]

HL
k =




Ck

Ck+1ΦA(k + 1, k)
...

Ck+K−1ΦA(k + K − 1, k)




LL
k =




Dk 0 · · · 0
Lk,2,1 Dk+1 · · · 0

...
...

. . .
...

Lk,K,1 Lk,K,2 · · · Dk+K−1




with

Lk,i,j = Ck+i−1ΦA(k + i− 1, k + j)Bk+j−1,

for i = 2, ..., K, j = 1, 2, . . . K−1, and i > j.

The system (2) is called the standard lifted system at
time k of the given K-periodic system (1). The associ-
ated TFM Wk(z) is

WL
k (z) = HL

k (zInk
− FL

k )−1GL
k + LL

k (3)

and depends on the sampling time k. Obviously
WL

k+K(z) = WL
k (z) and the TFMs at two successive

values of k are related by the following relation [10]

WL
k+1(z) =

[
0 Ip(K−1)

zIp 0

]
WL

k (z)
[

0 z−1Im

Im(K−1) 0

]

To define the zeros and poles of a periodic system we as-
sume in what follows that the given periodic system (1)
is minimal (i.e., completely reachable and completely
observable). It follows (see e.g., [2]) that the lifted sys-
tem (2) is minimal too and the converse is also true.

Definition 1. The zeros of the periodic system
(Ak,Bk, Ck,Dk) are the invariant zeros (see [14]) of the
associated lifted system (2) or, equivalently, the trans-
mission zeros of the associated TFM Wk(z) (3).

Definition 2. The poles of the periodic system
(Ak,Bk, Ck,Dk) are the eigenvalues of the monodromy
matrix FL

k , or equivalently, the poles of the associated
TFM Wk(z) (3).



The invariant zeros of the lifted system (2) are the
Smith-zeros of the associated system pencil

SL
k (z) =

[
FL

k − zInk
GL

k

HL
k LL

k

]
(4)

Using this pencil, we can extend the standard defini-
tions of zeros at infinity, as well as of the system pencil
Kronecker structure [16] to periodic systems. However,
since the pencil (4) involves forming of matrix prod-
ucts, this pencil is certainly not suited for the reliable
numerical computation of zeros. We will use instead
a more convenient representation, the so-called stacked
lifted representation [12], which is a time-invariant de-
scriptor system representation of the form

ES
k xS

k (h + 1) = FS
k xS

k (h) + GS
k uL

k (h)
yL

k (h) = HS
k xS

k (h) + LS
k uL

k (h) (5)

where GS
k = Bk, HS

k = Ck, LS
k = Dk, and

FS
k − zES

k =




Ak −Ink+1 O · · · O

O
. . . . . . . . .

...
...

. . . . . .−Ink+K−2 O

O
. . . Ak+K−2 −Ink+K−1

−zInk
O · · · O Ak+K−1




(6)
The TFM of the stacked lifted system is

WS
k (z) = HS

k (zES
k − FS

k )−1GS
k + LS

k

and the associated system pencil is defined as

SS
k (z) =

[
FS

k − zES
k GS

k

HS
k LS

k

]
. (7)

The relation of these matrices with those of the stan-
dard lifted system is explained by the following lemma,
which is easily proven by standard elimination.

Lemma 1 There exist invertible matrices Tl and Tr

and matrices X and Y such that :



Iµk
O O

O FL
k − zInk

GL
k

O HL
k LL

k


 =

[
Tl O
X I

]
·
[

FS
k − zES

k GS
k

HS
k LS

k

]
·
[

Tr Y
O I

]
,

where µk := nk+1 + · · ·+ nk+K−1.

By Schur complementation, it is now easy to see that
WS

k (z) = WL
k (z), that is, the TFMs of the stacked and

standard lifted systems are the same. Moreover, both
system pencils are essentially equivalent since the trans-
formations of the above lemma only eliminated the non-
dynamical part of the systems matrix SS

k (z). Thus, we
have the following immediate results which underly the
proposed computational algorithm in the next section:

Lemma 2 The zeros of the periodic system
(Ak,Bk, Ck,Dk) are the invariant zeros of the stacked
lifted system (5), and hence the zeros of the associated
system pencil (7).

Lemma 3 The poles of the periodic system
(Ak,Bk, Ck,Dk) are the finite generalized eigenvalues
of the pencil FS

k − zES
k defined in (6).

3 Computational approach

In this section we propose an efficient computational
approach to determine the zeros at k = 1 of the stan-
dard lifted system (2). The zeros for other time mo-
ments k = 2, . . . ,K can be similarly computed by just
permuting the order of the underlying matrices. To
simplify the notation for the case k = 1, we drop in
what follows the index used for the sampling time in
the lifted system matrices. Before starting our devel-
opments, we discuss shortly possible approaches relying
on existing algorithms for standard systems.

A straightforward approach to compute the zeros of the
pK ×mK TFM W (z) is to apply the algorithm of [6]
to the system matrix (4) and to extract additional in-
formation on zeros and Kronecker structure using the
results of [19]. However, because the construction of
the standard lifted system involves matrix multiplica-
tions, this approach is certainly not recommendable for
numerical computations. To avoid matrix multiplica-
tions, we can employ the general approach of [16] to
the stacked lifted system and compute the system zeros
as the invariant zeros of the system matrix (7). This
approach is numerically reliable because it relies exclu-
sively on using orthogonal transformations. But since it
ignores the structure of the problem, the computational
complexity of this approach is too high. To compute
the zeros, the computational complexity is, in the worst
case, of the order of O((µ+Kp)(µ+Km)µ) operations,
where µ =

∑K
i=1 ni. For example, in the case of a peri-

odic system with constant state dimensions ni = n, the
computational complexity is O(K3(n+ p)(n+m)n) in-
stead of a desirable complexity of O(K(n+p)(n+m)n)
as formulated in [23] for a satisfactory algorithm for
periodic systems. In what follows, we show that such
a computational complexity can be indeed achieved by
exploiting the problem structure.

The idea of fast numerical algorithms to compute eigen-
values of products of square matrices has been intro-
duced by Van Dooren [20]. The algorithm proposed in
[20], can be used to compute the poles of periodic sys-
tems with constant dimensions by deflating the (K−1)n
simple eigenvalues at infinity of the pencil FS − zES

by applying (K−1) orthogonal transformations on low
order submatrices of this pencil. This approach is an



orthogonal version of the technique employed by Luen-
berger [13] and is equivalent to the ”swapping” tech-
nique described in [1]. The extension of this algorithm
to the time-varying case is relatively straightforward
and is a particular case of the approach proposed in this
paper. In what follows we show how this idea can be
applied to deflate a part of the system pencil (7) which
corresponds to

∑K
i=2 ni simple eigenvalues at infinity.

Since the multiplicity of eigenvalues are by definition
in excess one with respect to the multiplicity of infinite
zeros, this deflation will not affect the computation of
both finite and infinite zeros.

Consider instead SS(z) in (7), an equivalent pencil S(z)
with permuted block rows and columns

S(z) =




S1 −T1 O · · · O
O S2 −T2 · · · O
...

. . . . . . . . .
...

O SK−1 −TK−1

−zTK O · · · O SK




(8)

where for i = 1, . . . , K

Si :=
[

Ai Bi

Ci Di

]
, Ti :=

[
Ini+1 O

O O

]
.

Consider the (n2 + n3 + 2p)-th order orthogonal trans-
formation matrix U1 compressing the rows of the (n2 +

n3 + 2p)× (n3 + m) matrix
[ −T1

S2

]
to

[
R1

O

]
, where

R1 is an r2 × (n3 + m) full row rank matrix with
n2 ≤ r2 ≤ n2 + min(p,m). Applying U1 to the first
two blocks rows of S(z) we obtain for the nonzero ele-
ments

U1

[
S1 −T1 O
O S2 −T2

]
=

[
S̃1 R1 −T̃1

Ŝ2 O −T̂2

]

which defines the new matrices Ŝ2 and T̂2. Then
construct the orthogonal transformations Ui for i =
2, . . .K−1 such that

Ui

[
Ŝi −T̂i O
O Si+1 −Ti+1

]
=

[
S̃i Ri −T̃i

Ŝi+1 O −T̂i+1

]

where Ri are full row rank matrices. Applying the
transformations Ui successively to the ith and (i+1)th
block rows of the pencil S(z), we get a reduced pencil




S̃1 R1 −T̃1 O O

S̃2 O R2
. . . O

...
...

...
. . . −T̃K−2

S̃K−1 − zT̃K−1 O O · · · RK−1

ŜK − zT̂K O O · · · O




which is orthogonally similar to the original system pen-
cil SS(z) in (7). Since the matrices Ri have full row
rank, the subpencil

ŜK − zT̂K

will contain all finite zeros of the original pencil. The
Kronecker structure and the infinite zeros of SS(z) are
essentially those of the subpencil

[
S̃K−1 − zT̃K−1 RK−1

ŜK − zT̂K O

]

To compute the finite zeros and Kronecker structure
of the periodic system, we thus apply to the resulting
lower order subpencils a general algorithm to compute
the eigenvalues and the Kronecker structure of a system
matrix of a particular descriptor system [16].

The proposed algorithm to compute zeros can be ap-
plied to compute the poles as well by defining

Si := Ai, Ti := Ini+1 .

In a similar way, with

Si :=
[

Ai Bi

]
, Ti :=

[
Ini+1 O

]

or

Si :=
[

Ai

Ci

]
, Ti :=

[
Ini+1

O

]

the zeros algorithm can be used to compute the input
decoupling and output decoupling zeros, respectively
[11].

The zeros algorithm can be extended without any mod-
ification to compute the zeros of a periodic descriptor
system

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k) (9)

where Ek ∈ Rnk+1×nk+1 and is possibly non-singular.
In this case the building blocks of the system pencil (8)
are

Si :=
[

Ai Bi

Ci Di

]
, Ti :=

[
Ei O
O O

]
.

For the computations of poles of the periodic descriptor
system (9) these blocks are redefined as

Si := Ai, Ti := Ei.

For the descriptor case, the resulting algorithm for com-
putation of poles generalizes the procedure of [20] to the
case of time-varying state dimensions.



4 Algorithmic aspects

The reduction of S(z) can be done by computing suc-
cessively K−1 rank revealing QR decompositions (with
column pivoting) of (νi + ni+1 + 2p)× (ni+1 + m) ma-
trices (νi ≥ ni) and applying the transformation to two
sub-blocks of dimensions (νi + ni+1 + 2p) × ni+1) and
(νi+ni+1+2p)×(ni+2+m). Assuming constant dimen-
sions ni = n, p ≤ m and generic ranks (i.e., νi = ni),
the reduction step has a computational complexity of
O((K − 1)(n + p)(n + m)n). Since the last step, the
computation of zeros of the reduced pencil, has a com-
plexity of O((n + p)(n + m)n), it follows that the over-
all computational complexity of the proposed approach
corresponds to what is expected for a satisfactory algo-
rithm for periodic systems. In fact, when this approach
is employed to compute the poles, it is even more effi-
cient than the standard algorithm based on the periodic
real Schur form [3]. This is why, the proposed algorithm
belong to the family of fast algorithms [20], being more
efficient than an algorithm based on eigenvalue compu-
tation (if this is applicable, as for example, in the case
of invertible D).

Since both the reduction step and the subsequent, ze-
ros computation step, are based exclusively on orthog-
onal transformations, the proposed algorithm to com-
pute zeros is backward stable, and thus the computed
zeros are exact for a slightly perturbed system pencil.
However, since the structure of the perturbed pencil is
not preserved in the reduction, we can not say that the
computed zeros are exact for a slightly perturbed orig-
inal system. In spite of this weaker type of stability,
the proposed algorithm is the first numerically reliable
procedure able to compute zeros of a periodic system
with an acceptable computational effort.

5 Examples

Example 1. Consider the 2-periodic single-input
single-output system described by the following matri-
ces

A1 =
[

0
0.5

]
, B1 =

[
1
0

]
, C1 = 1, D1 = 0

A2 =
[

0 0.5
]
, B2 = 1, C2 =

[
1 0

]
, D2 = 0

where the state-space dimensions are n1 = 1, n2 = 2.
This system has no input or output decoupling zeros,
thus is minimal (i.e., reachable and observable). The
system has a pole at ρ = 0.25 and a zero at µ = ∞.

Example 2. Consider the 3-periodic single-input

single-output system

A1 =
[

0 0.9
0 0

]
, B1 =

[
3
0

]
, C1 =

[
0 1

]
, D1 = 1

A2 =
[

1 2
0 0

]
, B2 =

[
0
1

]
, C2 =

[
2 4

]
, D2 = 3

A3 =
[

0 0
1 4

]
, B3 =

[
0
1

]
, C3 =

[
3 1

]
, D3 = 1

with state dimensions n1 = n2 = n3 = 2. This system is
not minimal, having an input-decoupling zero at ν = 0.
Therefore, the computed poles ρ1 = 1, ρ2 = 0 and
zeros µ1 = 8, µ2 = 0 also include the uncontrollable
pole ν = 0.

Example 3. Consider a discrete-time periodic system
originating from a continuous-time periodic model of
a spacecraft pointing and attitude system described in
[18]. This system has state, input and output dimen-
sions n = 4, m = 1, p = 2, respectively. The dis-
cretized system for different sampling periods K has
been used in [24] to compare periodic output feedback
controllers designed for this system. The periodic sys-
tem for K = 120 has a zero at µ = ∞ and has poles
at

ρ1 = 0.7626 + 0.6469i
ρ2 = 0.7626− 0.6469i
ρ3 = 0.9942 + 0.1077i
ρ4 = 0.9942− 0.1077i

Note that the order of the stacked lifted system is 480.
Although the direct application of the zeros algorithm
of [16] to this system is still feasible, it is certainly too
expensive to solve this problem.

In the following table, computational times are given to
determine the zeros of the associated TFM for different
values of K. The values for Tfast represent computa-
tional times for the proposed fast method, while the
values for Tlifted are the times when applying the algo-
rithm of [16] directly to the stacked lifted system. The
computations have been done on a 866 MHz PC run-
ning Matlab 6.1 under Windows ME.

K 40 80 120 240
Tfast (sec) 0.05 0.06 0.11 0.17
Tlifted (sec) 0.33 2.31 7.74 61.46

Table 1: Computational times for zeros determination

It is easy to see that the computational time for the fast
method varies almost linearly with K, and this confirms
our claim for a computational complexity of O(Kn3) of
the proposed approach. In contrast, when applying the
algorithm of [16] to the stacked lifted system, the result-
ing times clearly indicates a computational complexity
of O(K3n3).



6 Conclusion

In this paper we presented a numerically backward sta-
ble algorithm to compute the generalized eigenstructure
of a stacked system matrix of a periodic system. This
algorithm can be applied to find the zeros, poles and
decoupling zeros of the system matrix and the left and
right null space structures of the corresponding lifted
transfer function. The algorithm exploits the block
cyclic structure of the pencil to yield a complexity which
is linear in the period K and cubic in the dimension
n = maxi ni of the blocks. The method also works
for matrices of varying dimension and can easily be ex-
tended to handle periodic systems in generalized state
space form.
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