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Abstract

We present a numerical approach to evaluate the trans-
fer function matrices of a periodic system correspond-
ing to lifted state-space representations as constant sys-
tems. The proposed pole-zero method determines each
entry of the transfer function matrix in a minimal zeros-
poles-gain representation. A basic computational ingre-
dient for this method is the extended periodic real Schur
form of a periodic matrix, which underlies the compu-
tation of minimal realizations and system poles. To
compute zeros and gains, fast algorithms are proposed,
which are specially tailored to particular single-input
single-output periodic systems. The new method relies
exclusively on reliable numerical computations and is
well suited for robust software implementations.

1 Introduction

Among the open computational problems listed in a re-
cent survey [13], the computation of the transfer func-
tion matrix of a periodic system is one which has some
useful applications. For example, the evaluation of
frequency-response for a periodic system, can be conve-
niently done by using the transfer function matrix cor-
responding to a constant system lifted representation.
Furthermore, for the manipulation of periodic systems,
the state-space to transfer function matrix conversion
is a useful transformation which must be provided by
any software toolbox devoted to periodic systems.

In this paper we consider time-varying periodic systems
of the form

x(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k) (1)

where the matrices Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×m,
Ck ∈ Rp×nk , Dk ∈ Rp×m are periodic with period
K ≥ 1. The importance of considering periodic systems
with time-varying state dimensions has been revealed

by the minimal realization theory of periodic systems
[2]. Note that even for constant dimension periodic sys-
tems, the corresponding minimal order (i.e., reachable
and observable) state-space realizations have, in gen-
eral, time-varying state dimensions.

In this paper we propose a numerically reliable ap-
proach to evaluate the transfer function matrix cor-
responding to lifted state space representations. The
proposed pole-zero method determines each entry of
the transfer function matrix in a minimal zeros-poles-
gain representation. For this purpose, minimal real-
izations for each input-output channel are necessary to
be computed. A basic numerical ingredient to com-
pute minimal realizations and also system poles is the
extended periodic real Schur form of a product of rect-
angular matrices introduced in [12]. To compute zeros
and gains, fast algorithms, specially tailored to par-
ticular single-input single-output periodic systems, are
developed. The proposed method is numerically reli-
able, relying exclusively on using orthogonal and well-
conditioned transformations. This guarantees a certain
form of numerical stability for the overall computa-
tion. The new method is well suited for robust software
implementations. Numerical examples computed with
Matlab-based implementations show the applicability
of this method to high order periodic systems.

Notation. To simplify the presentation we introduce
first some notation. For a K-periodic matrix Xi we use
alternatively the script notation

Xk := diag (Xk, Xk+1, . . . , Xk+K−1),

which associates the block-diagonal matrix Xk to the
cyclic matrix sequence Xi, i = k, . . . , k + K−1 star-
ing at time moment k. We reserve the script notation
X (i.e., without subscript) for X = X1. The script
notation is consistent with the standard matrix opera-
tions as for instance addition, multiplication, inversion
as well as with several standard matrix decompositions
(Cholesky, SVD). We denote with σXk the K-cyclic



shift
σXk = diag (Xk+1, . . . , Xk+K−1, Xk)

of the cyclic sequence Xi, i = k, . . . , k + K−1.

By using the script notation, the periodic system
(1) will be alternatively denoted by the quadruple
(Ak,Bk, Ck,Dk) or (A,B, C,D) if k = 1. The transition
matrix of the system (1) is defined by the nj×ni matrix
ΦA(j, i) = Aj−1Aj−2 · · ·Ai, where ΦA(i, i) := Ini . The
state transition matrix over one period ΦA(j + K, j) ∈
Rnj×nj is called the monodromy matrix of system (1)
at time j and its eigenvalues are called characteristic
multipliers at time j.

2 Transfer function matrices of periodic
systems

To define the transfer function matrix (TFM) of the
periodic system (1), we consider the time-invariant rep-
resentations corresponding to the two associated lifted
systems introduced in [8] and [9, 3], respectively. The
lifting technique of [8] uses the input-output behavior
of the system over time intervals of length K, rather
than 1. For a given sampling time k, the corresponding
mK-dimensional input, pK-dimensional output, and
nk-dimensional state vectors are

uL
k (h) = [uT (k + hK) · · ·uT (k + hK + K − 1)]T ,

yL
k (h) = [yT (k + hK) · · · yT (k + hK + K − 1)]T ,

xL
k (h) = x(k + hK)

The lifted system has the form

xL
k (h + 1) = FL

k xL
k (h) + GL

k uL
k (h)

yL
k (h) = HL

k xL
k (h) + LL

k uL
k (h) (2)

where

FL
k = ΦA(k + K, k)

GL
k = [ ΦA(k + K, k + 1)Bk · · ·Bk+K−1 ]

HL
k =




Ck

...
Ck+K−1ΦA(k + K − 1, k)




LL
k =




Dk 0 · · · 0
Lk,2,1 Dk+1 · · · 0

...
...

. . .
...

Lk,K,1 Lk,K,2 · · · Dk+K−1




with Lk,i,j = Ck+i−1ΦA(k + i − 1, k + j)Bk+j−1, for
i = 2, ..., K, j = 1, 2, . . .K−1, and i > j.

The system (2) is called the standard lifted system at
time k of the given K-periodic system (1). The associ-
ated TFM Wk(z) is

WL
k (z) = HL

k (zInk
− FL

k )−1GL
k + LL

k (3)

and depends on the sampling time k. Obviously
WL

k+K(z) = WL
k (z) and the TFMs at two successive

values of k are related by the following relation [5]

WL
k+1(z) =

[
0 Ip(K−1)

zIp 0

]
WL

k (z)
[

0 z−1Im

Im(K−1) 0

]

Thus, computing a single TFM for an arbitrary k is
sufficient to determine all TFMs at K successive values.

The second lifted representation we consider is called
the cyclic lifted system [9, 3]. Consider the cyclic shift
matrix

Zk =




0 · · · 0 Ink+K−1

Ink
· · · 0 0

...
. . .

...
...

0 · · · Ink+K−2 0




and define (similar as done in [9] for constant dimen-
sions) the cyclic lifted system at time k, with mK inputs
and pK outputs, as the time-invariant system

xC
k (h + 1) = FC

k xC
k (h) + GC

k uC
k (h)

yC
k (h) = HC

k xC
k (h) + LC

k uC
k (h) (4)

with (FC
k , GC

k ,HC
k , LC

k ) = (ZkAk, ZkBk, Ck,Dk). The
state dimension of this system is µ =

∑K
i=1 ni and its

pK ×mK TFM is

WC
k (z) = HC

k (zIµ − FC
k )−1GC

k + LC
k .

The relationships between the TFMs of the two lifted
systems is

WC
k (z) = ∆p(z−1)WL

k (zK)∆m(z), (5)

where ∆j(z) = diag {Ij , zIj , · · · , zK−1Ij}. Thus, the
TFM of the cyclic lifted system can be easily de-
termined from the TFM of the standard lifted sys-
tem. Conversely, having the TFM WC

k (z), we compute
WL

k (zK) using the relation (5) and then replace zK by
z.

For the computation of the TFM, we can also use the so-
called stacked lifted representation [6]. This is a time-
invariant descriptor system representation of the form

ES
k xS

k (h + 1) = FS
k xS

k (h) + GS
k uL

k (h)
yL

k (h) = HS
k xS

k (h) + LS
k uL

k (h) (6)

where GS
k = ZkBk, HS

k = Ck, LS
k = Dk, and

FS
k − zES

k =




−zInk
O · · · O Ak+K−1

Ak −Ink+1 · · · O O
...

...
. . .

...
...

O O · · ·−Ink+K−2 O
O O · · · Ak+K−2 −Ink+K−1




(7)
The TFM of the stacked lifted system is

WS
k (z) = HS

k (zES
k − FS

k )−1GS
k + LS

k

and it is easy to show that WS
k (z) = WL

k (z), that is,
the TFMs of the stacked and standard lifted systems
are the same.



3 Computational approach

In this section we propose an efficient computational
approach to determine W (z) := WL

1 (z), the TFM at
time k = 1 of the standard lifted system (2). The TFMs
for other time moments k = 2, . . . ,K or for the cycled
lifted system (4) can be easily obtained by simple alge-
braic manipulations via (5).

A straightforward approach to compute the pK ×mK
TFM W (z) is to apply the pole-zero method of [15]
to the standard lifted system (2). This amounts to
compute successively the poles, zeros and gains cor-
responding to minimal realizations of the individual
input-output channels. However, because the construc-
tion of the standard lifted system involves matrix mul-
tiplications, this approach is not suited for numerical
computations. To avoid matrix multiplications, we can
employ the same approach to the cyclic lifted system
and compute the TFM of the standard lifted system via
(5). Alternatively, we can compute the same TFM from
the stacked lifted system by applying a similar pole-zero
approach but for descriptor systems [10]. In both cases,
the required computational effort and computer storage
can be prohibitive for large dimensions or large periods.

The following conceptual procedure serves as basis to
describe the proposed approach to compute an element
wij(z) of W (z) in the zeros-poles-gain form

wij(z) = γ

∏qz

ι=1(z − µι)∏qf

ι=1(z − ρι)

starting from the stacked lifted system (6):

Pole-Zero Algorithm.

1. Compute a minimal realization (Â−zÊ, b̂, ĉ, d̂) of the
subsystem corresponding to the (j, i)th input-output
channel of the stacked lifted system
(FS

1 − zES
1 , GS

1 ,HS
1 , LS

1 ).
2. Compute the qf finite poles ρι, ι = 1, . . . , qf as the

finite generalized eigenvalues of the pair (Â, Ê).
3. Compute the qz finite zeros µι, ι = 1, . . . , qz of the

descriptor system (Â− zÊ, b̂, ĉ, d̂).
4. Choose a real z0 satisfying |z0| > 1, that is neither a

pole nor zero and compute the gain

γ =
(
ĉ(z0Ê − Â)−1b̂ + d̂

) qf∏
ι=1

(z0 − ρι)/
qz∏

ι=1

(z − µι)

The basis of this conceptual procedure is the method
proposed in [10] for descriptor systems. This proce-
dure is numerically reliable, since each step can be per-
formed using numerically stable algorithms. However,
because ignoring the structure of the problem, the com-
putational complexity of this approach is too high. To

compute a single element of W (z), the computational
complexity is, in the worst case, of order O(µ3), where
µ =

∑K
i=1 ni. For example, in the case of a periodic sys-

tem with constant state dimensions ni = n, the compu-
tational complexity is O(K3n3) instead of a desirable
complexity of O(Kn3) as formulated in [13] for a sat-
isfactory algorithm for periodic systems. In what fol-
lows, we show that such a computational complexity
can be indeed achieved by cleverly exploiting the prob-
lem structure. For this purpose, we discuss each step of
the above algorithm and indicate how the underlying
computations can be done efficiently.

3.1 Computational ingredients

For periodic systems with constant dimensions, the pe-
riodic real Schur form (PRSF) is the basic numerical
ingredient to solve periodic Lyapunov equations or to
compute the poles of a periodic system. According to
[1], given the matrices Ak ∈ Rn×n, k = 1, . . . , K, there
exist orthogonal matrices Zk, k = 1, . . . , K, ZK+1 :=
Z1, such that

Ãk := ZT
k+1AkZk (8)

where ÃK is in real Schur form (RSF) and the matri-
ces Ãk for k = 1, . . . , K−1 are upper triangular. Nu-
merically stable algorithms to compute the PRSF have
been proposed in [1, 7]. For Ak in a PRSF, the compu-
tation of the eigenvalues of AK · · ·A2A1 becomes very
straightforward. The computation of the PRSF is nu-
merically stable and has a computational complexity
O(Kn3).

For systems with time-varying dimensions, the extended
periodic real Schur form (EPRSF) represents a gener-
alization of the PRSF which allows to address many
problems with varying dimensions. According to [12],
given the matrices Ak ∈ Rnk+1×nk , k = 1, . . . , K,
with nK+1 = n1 there exist orthogonal matrices Zk ∈
Rnk×nk , k = 1, . . . , K, ZK+1 := Z1, such that the ma-
trices

Ãk := ZT
k+1AkZk =

[
Ãk,11 Ãk,12

0 Ãk,22

]
, (9)

are block upper triangular, where Ãk,11 ∈ Rn×n,
Ãk,22 ∈ R(nk+1−n)×(nk−n) for k = 1, . . . , K and n =
mink{nk}. Moreover, ÃK−1,11 is in RSF, Ãk,11 for
k = 1 . . . ,K− 1 are upper triangular and Ãk,22 for
k = 1 . . . ,K are upper trapezoidal. The computation
of the EPRSF is numerically stable and has a compu-
tational complexity O(Kn3), where n = max{ni}.

A main application of the PRSF and EPRSF is the
computation of the poles of the TFM W (z). For a
minimal periodic system, the poles are defined as the
eigenvalues of the monodromy matrix ΦA(k + K, k) =
Ak+K−1 · · ·Ak+1Ak. For constant dimension, the poles



are independent of k and can be easily computed by
reducing the K-periodic matrix Ak to a PRSF. How-
ever, for time-varying dimensions, the poles set depends
on the sampling time, and can be easily computed
from the EPRSF. For a given k, the pole set is formed
from a so-called core set, representing the eigenvalues
of ΦA11(k +K, k), and nk −n null poles. Note that the
core poles are independent of k.

3.2 Computation of minimal realizations

The minimal realization problem at Step 1 of the Pole-
Zero Algorithm has a particular structure. To sim-
plify notations, we denote by (F − zE, G,H, L) the
stacked lifted system (FS

1 − zES
1 , GS

1 ,HS
1 , LS

1 ) (at time
k = 1) and let Gj and Hi be the jth-column of G and
the ith-row of H, respectively, and let Lij be the ele-
ment (i, j) of L. We want to compute a minimal real-
ization of the system (F − zE, Gj ,Hi, Lij). The matri-
ces Gj and Hi have a very special particular structure.
Since i and j can be uniquely expressed as

i = (`i − 1)p + t, j = (`j − 1)m + s,

it follows that Hi can be constructed only from c`i,t,
the row t of C`i , and Gj can be constructed only from
b`j ,s, the column s of B`j , as

Hi = [ O · · · O c`i,t O · · ·O ] (10)

Gj = [ O · · · O bT
`j ,s O · · ·O ]T (11)

Further, Lij is defined as

Lij =
{

d`i,ts , if `i = `j

0, if `i 6= `j

where d`i,ts is the element (t, s) of D`i . The single-
input single-output system (F − zE, Gi,Hj , Lij) can
be seen as a stacked lifted system corresponding to
a particular single-input single-output periodic system
(A, B̃, C̃, D̃) with zero B̃k for k 6= s and zero C̃k for
k 6= t and appropriate D̃k. Thus, we can apply the min-
imal realization procedure of [12] to the periodic system
(A, B̃, C̃, D̃) to obtain a minimal order periodic system
(Â, B̂, Ĉ, D̂). The corresponding a lifted stacked system
(Â−zÊ, b̂, ĉ, d̂), at Step 1 of the Pole-zero Algorithm
is a minimal realization of (FS

1 − zES
1 , GS

1 ,HS
1 , LS

1 ).

In what follows we shortly present the main steps of
the minimal realization approach for a stable periodic
system (for details, see [12]). The minimal realization
procedure involves the computation of two truncation
matrices L and T such that the matrices of the minimal
order system (Â, B̂, Ĉ, D̂) are obtained as

Â = σLAT , B̂ = σLB̃, Ĉ = C̃T , D̂ = D. (12)

The computation of truncation matrices relies on the
reachability grammian P and observability grammian

Q, which satisfy the periodic Lyapunov equations

σP = APAT + B̃B̃T

Q = AT σQA+ C̃T C̃ (13)

Since these grammians are non-negative definite, they
can be expressed in Cholesky factorized forms P = SST

and Q = RTR, where Sk and Rk for k = 1, . . . , K are
nk × nk upper triangular matrices.

For each k, consider the singular value decomposition
of RkSk in the partitioned form

RkSk = [ Uk,1 Uk,2 ]
[

Σ̃k 0
0 0

]
[ Vk,1 Vk,2 ]T , (14)

where Σ̃k ∈ Rrk×rk , Uk,1 ∈ Rnk×rk , Vk,1 ∈ Rnk×rk and
Σ̃k > 0. From the above decomposition define, with
Σ̃ = diag (Σ̃1, . . . , Σ̃K), the truncation matrices

L = Σ̃−
1
2UT

1 R, T = SV1Σ̃−
1
2 , (15)

which are used to determine the reduced system ma-
trices in (12). Note that this system is balanced, the
corresponding grammians being equal and diagonal.

The key computation in determining L and T is the so-
lution of the two periodic Lyapunov equations in (13)
with time-varying dimensions directly for the Cholesky
factors of the Gramians. A numerically reliable proce-
dure for this computation has been proposed in [12].
Since the computation of truncation matrices (and also
of the minimal realization) can be done using only the
Cholesky factors (square-roots) of Gramians, the above
method is called the square-root method. This method
leads to a guaranteed enhancement of the overall nu-
merical accuracy of computations. Potentially more
accurate is the balancing-free square-root method [12],
which avoids balancing by using well-conditioned trun-
cation matrices. For the purpose of the Pole-zero al-
gorithm, this approach is that one to be preferred.

The computational complexity of the approach of [12]
to determine a minimal realization is O(Kn3). The
most time-consuming operation in this process is the
solution of the two periodic Lyapunov equations satis-
fied by the grammians. When employing the procedure
of [12] for this purpose, the first step of the solution
method is the reduction of the periodic matrix Ak to
an EPRSF. Then, the Cholesky factors of the grammi-
ans are computed directly by solving reduced periodic
Lyapunov equations (i.e., with Ak in EPRSF). Since for
each element of the pK×mK TFM the minimal realiza-
tion problem involves the same periodic state matrix,
the reduction to EPRSF has to be done only once to
put the original periodic system in a coordinate form
with the state matrix in EPRSF. This is achieved by
applying an orthogonal Lyapunov similarity transfor-
mation to the original system, which preserve the TFM
of the system.



This minimal realization method based on balancing
technique is not restricted to asymptotically stable pe-
riodic systems. For an unstable system, a simple scal-
ing can be used to enforce the stability of the starting
representation. For instance, it is possible to replace
only A1 by αA1, where 0 < α < 1 is chosen such that
αΦA(K+1, 1) has eigenvalues in the open unit disc. For
the α-scaled system, we can apply either the square-root
or balancing-free square-root approach to determine a
minimal system. Finally, the computed Â1 needs to be
rescaled to Â1/α.

3.3 Computation of poles and zeros

To compute the poles of a periodic system (Â, B̂, Ĉ, D̂),
the eigenvalues of the monodromy matrix Φ

Â
(K+1, 1)

must be determined. This computation can be done
without forming this matrix product explicitly, by re-
ducing the K-periodic matrix Âk to the PRSF in the
case of constant dimensions, or to the EPRSF in the
case of time-varying dimensions.

It is possible to compute the zeros by cleverly exploiting
the structure of the system pencil

Ŝ(z) =

[
Â− zÊ b̂

ĉ d̂

]
(16)

by eliminating the simple eigenvalues at infinity. We
present only the main idea of the procedure to com-
pute the finite zeros. A more general algorithm which
allows to compute the infinite zeros and the Kronecker
structure has been recently developed in [14]. Consider
Š(z), a system pencil with permuted block rows and
columns

Š(z) =




Ŝ1 −T̂1 O · · · O

O Ŝ2 −T̂2 · · · O
...

. . . . . . . . .
...

O ŜK−1 −T̂K−1

−zT̂K O · · · O ŜK




(17)

with

Ŝi =

[
Âi B̂i

Ĉi D̂i

]
, T̂i =

[
Iri+1 O
O O

]

for i = 1, . . . , K. Here ri, i = 1, . . . , K are the time-
varying dimensions of the state vector of the minimal
order periodic system (Â, B̂, Ĉ, D̂).

Consider the orthogonal transformation matrix U1 to

compress the matrix
[
−T̂1

Ŝ2

]
to

[
R1

O

]
, where R1 is

a full row rank matrix. Applying UT
1 to the first two

blocks rows of Š(z) we obtain for the nonzero blocks

UT
1

[
Ŝ1 −T̂1 O

O Ŝ2 −T̂2

]
=

[ ∗ R1 ∗
S2 O −T 2

]

which defines the new matrices S2 and T 2. Then, con-
struct the transformations Ui for i = 2, . . .K−1 such
that

UT
i

[
Si −T i O

O Ŝi+1 −T̂i+1

]
=

[ ∗ Ri ∗
Si+1 O −T i+1

]

where Ri is a full row rank matrix. Applying the trans-
formations Ui successively to the ith and (i+1)th block
rows of the pencil Š(z), we get the reduced pencil




∗ R1 ∗ · · · ∗
∗ O R2 · · · ∗
...

...
...

. . .
...

∗ O O · · · RK−1

SK − zTK O O · · · O




which is orthogonally similar to the original system pen-
cil Ŝ(z). Since the matrices Ri have full row rank, the
subpencil SK−zTK contains all finite zeros of the origi-
nal pencil. This pencil has column dimension r1+1 and
row dimension at most r1 + 1. To compute the finite
zeros of the periodic system, we can apply now a gen-
eral algorithm, like that of [11], to compute the finite
eigenvalues of this low order subpencil. This method
requires for a system with constant state dimension
r = ri, about 2 × (13.3K + 27.5)r3 flops in the worst
case.

3.4 Computation of gain

To compute the gain, the main computation is to solve
a potentially large order linear system Hw = g, with

H =




H11 H1,K

H21 H22

. . . . . .
...

HK,K−1 HK,K


, g =




g1

g2

...
gK




where Hii = Iri for i = 1, . . . ,K, Hi+1,i = −Âi for
i = 1, . . . , K−1, H1,K = −AK/z0, g1 = b̂K/z0, and
gi = b̂i−1 for i = 2, . . . , K. The solution vector w =
[ wT

1 wT
2 · · · wT

K ]T is obtained in a partitioned form
similar to that of g.

To solve Hw = g we use the standard Gaussian elimina-
tion method [4] to compute first the LU factorization
of H as PH = LU , where P is a permutation ma-
trix, L is a unit lower triangular matrix and U is an
upper triangular matrix. Then, by using forward and
backward substitutions, the solution w is computed as
w = U−1L−1Pg. For the particular structure of H
above, L is block-bidiagonal, and U has nonzero blocks
only on the diagonal, on first supra-diagonal as well as
in its last block column. The following algorithm fully
exploits the sparse structure of H and combines the LU
factorization step with the solution steps by applying
the elementary row transformations also to the right
hand side g, such that in parallel with the computation
of nonzero blocks of U we compute also L−1Pg.



Algorithm.

if K = 1, then solve (Ir1 − Â1/z0)w = g and exit

Comment. Compute the block-LU factorization PH =
LU and g ← L−1Pg.

for i = 1, . . . ,K−1

Compute the LU factorization Pi

[
Hii

Hi+1,i

]
= Li

[
Uii

O

]

Compute

[
Ui,i+1 Ui,K gi

Hi+1,i+1 Hi+1,K gi+1

]
:=

L−1
i Pi

[
O Hi,K gi

Hi+1,i+1 Hi+1,K gi+1

]

end

Comment. Compute w = U−1g by backward substitu-
tion.

Solve UKK wK = gK and UK−1,K−1 wK−1 = gK−1 −
UK−1,K wK .

for i = K−2, . . . , 1

Solve Uiiwi = gi − Ui,i+1wi+1 − Ui,K wK

end

The main computations in this algorithm are the K−1
successive LU decompositions of (ri+ri+1)×ri matrices
and the application of ri elementary transformations to
(ri + ri+1) × (ri+1 + rK + 1) matrices. For a constant
system with dimension r = ri, this algorithm performs
about 5r3/6 flops to compute the LU-decomposition of
a 2r × r matrix and additionally, 2r3 flops to apply r
elementary transformations [4]. Thus, the solution of
the equation Hw = g with the above algorithm can be
computed with about max{3(K − 1)r3, r3/3} flops.

4 Conclusion

A reliable numerical algorithm has been proposed to
compute the TFM corresponding to lifted represen-
tations of periodic systems. The proposed algorithm
is generally applicable to periodic systems with time-
varying state dimensions. No assumption on the min-
imality of the original representation is needed. The
individual entries of the TFM are obtained in a can-
celled, minimal zeros-poles-gain form. The computa-
tion of minimal realizations is based on accuracy en-
hancing balancing-free square-root techniques. All sub-
sequent computations of poles, zeros and gains are per-
formed using numerically stable algorithms. The com-
putational complexity of the proposed algorithm for one
element is O(Kn3) and is much less than the compu-
tational complexity O(K3n3) resulting when applying
existing procedures [10] directly to the stacked lifted
representation of the periodic system.
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