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Abstract

We consider a team of mobile robots equipped with sen-
sors and wircless network cards and the task of navigating
to a desired iocation in a formation, We develop a set of
algorithms for (a} discovery; (b} cooperative localization;
and {(c) cooperative control, Discovery involves the use of
sensory information to organize the robots into a mobile
network allowing each robot to establish its neighbors and,
when necessary, one or more leaders. Cooperative control is
the task of achieving a desired goal position and orientation
and desired formation shape and maintaining it. Cooper-
ative localization allows each robot to estimate its relative
position and orientation with respect to its neighbors and
hence the formation shape. We show numerical results and
simulations for a team of nonholonomic, wheeled robots
with omnidirectional cameras sharing a wireless communi-
cation network.

1 Imtroduction

In real-world situations multi-agent robotic systems are sub-
ject to sensor, actuator and communication constraints, and
have to operate within uncertain and unstructured environ-
ments. We are interested in tasks that include surveil-
lance [4], search and rescue operations [6], exploration and
mapping of unknown or partially known environments [12],
and distributed manipulation [8} and transportation of large
objects [10]. In all these applications, there is a need to have
the robots estimate their relative positions and orientations
with respect (o their neighbors and maintain a desired for-
mation,

Figure 1: Our Clodbuster wheeled mobile robot platform (left)
with omnidirectional cameras. (right) and wireless net-
working.

We are interested in the leader-follower assignment
paradigm where each robot follows one or two leaders [3].
The choice of leader-follower controllers leads to the de-
scription of a control graph, that describes the assighment
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of these controllers and the interconnections in the system.
The stability and performance of the system depends on this
graph [5]. We use distributed cooperative sensing as our
tool for localization of robots relative to each other. We
are motivated by our experimental platform of wheeled mo-
bile robots with omnidirectional cameras and IEEE 802.11b
wireless networking (see Figure 1) [2, 5]. In this paper, we
present a framework for building dynamic, ad hoc computa-
tional networks of mobile robots for multi-robot coordina-
tion tasks based on distributed cooperative sensing and co-
operative control. Specifically, we will address the problem
of navigating a group of n nonholonomic wheeled robots
to a desired goal position and orientation while achieve a
desired shape, where shape refers to the distribution of the
robots relative to their neighbors.

2 Modeling

Kinematic Meodel: We consider a simple kinematic model
for our wheeled robot platforms shown in Figure 1. The it®
robot has the model:

8]

where x; = (x:, i, 6:) € SE(2), inputs w; = (v, w;)
€ R?, and »; and w; are the linear and angular control ve-
locities, respectively.

&; = [z

We advocate a leader-follower paradigm [3] in which each
robot, except for the leader, can follow one or two other
robots. To see this, consider the example in Figure 2. Robot
R; leads the group. R; maintains a specified separation
(1;;) and bearing (¢);;) with respect to R;, while Ry, regu-
lates its separation with respect to B; (I;z) and B; (). A
directed edge from R; to R; denotes a Separation-Bearing
Controller (5B;;C) in the figure, and edges from R; to Ry,
and R; to Ry are used to represent a Separation-Separation
Controller {55;;+%C). Details of the controllers are pro-
vided in [3, 5]. Very briefly, the Separation-Bearing con-
troller guarantees exponential convergence of the two rele-
vant shape variables — the separation and relative bearing
with respect to a leader — to desired values. Similarly, the
Separation-Separation controller ensures exponential con-
vergence of the separations with respect to two leaders to
desired values. In both cases, the orientation of the robot
is not directly controlled. The shape p = (35, 15, lix, Ljr)
determines the relative positions of the robots. The position
and orientation of robot R; can be used to describe the gross
position and orientation of the group g. This basic idea will
be generalized to a n robot team next.



Figure 2: A 3 robot trangular formation. R; follows R: us-
ing S$B;;C, while Ry follows both B; and R; using
58 C.

Network Model: We can associate with a team of 7 robots
three different networks: a physical nerwork that captures
the physical constraints on the dynamics, control and sens-
ing of each robot; a communication nerwork that describes
information sharing between robots; and a computational
network that describes the computations performed at each
robot and the flow of information across the group.

We model each network by a graph with  nodes, one node
for each agent. R is a finite set of nodes, Ry, Ra, ..., Rn.
The physical network is a directed graph, G, = (R, Ep),
where E,, consists of edges each of which represent the
flow of sensory information (relative state). Thus the edge
(Ri, R;} € E, whenever robot R; can see robot R;. G =
(R, E.) is an undirected graph representing the communi-
- cation network. The edge set E, consists of pairs of robots
that can communicate with each other (assuming omnidi-
rectional transmitters and receivers on each robot) Gp and
G, are determined by censtraints of the hardware, the phys-
ical distribution: of the robots, and the characteristics of the
environment. '

The key goal is to design the computational network. This
network is modeled by a directed acyclic graph H
(R, F). In our work, £, is fully connected with n? — n
edges, and E consists of edges that belong to E, U E,.
There are two special cases: (a) robots are guided simply
via communication (£ = F,); and (b) only via line-of-sight
sensing (£ = E,}. The ability of R; to listen to R; allows
R, to broadceast its state and feedforward information for R;
to use feedforward contrel and to improve its estimates of
the relative state. The design of the graph H is based on the
task. In this paper we will primarily interested in control-
ling the formation of a group of mobile robots and hence we
call H a control graph.

Control Graphs: The control graph is a directed graph
H = (R,E). Anedge (R;,R;) € E if the input u; as-
soctated with the robot R; depends on the state of the agent
R,. Because each robot has two inputs, we will also assume
the in-degree of each vertex is also at most two [3]. If a
robot ; has an in-degree of one, we will associate with the
robot a Separation-Bearing controller which maintains the
robots separation, l;;, and bearing, 1;;, with respect to R;
(see Figure 2). If a robot Ry has an in-degree of two, and
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incoming edges from R; and R;, this will mean the robot
is controlled by a Separation-Separation controller which
maintains the robot separation with respect R; and R;. A
column in the adjacency matrix with all zeros corresponds
to the group leader. A row of zeros signifies a terminal fol-
lower.

In addition, we are interested in: (a) the position and
orientation of the formation reference frame in space de-
noted by g; and (b) the shape of the formation denoted
by r. In our case, g is an element of the motion group
SE(2), while 7 € R*"~1 (for our planar formations),
the shape vector, describes the distribution of the robots
around g in Cartesian coordinates. If we assume that g de-
notes the position and orientation of the leader of the for-
mation, i.e. g = (z1,¥1,81), the shape vector is: =
|Z2. 52, %3, 3, - - - Ty ﬂn]T where (Z;,7;) = (zi—-z5, yi—
;) are the coordinates of robot R; in a formation fixed
frame (relative to R;).

Given the control graph H, we can reparametrize the shape
using the variables that are being regulated by the con-
trollers corresponding to the edges. For example, if R;
is the leader, the coordinates (Z;,#;) can be replaced by
p; = [lij %] (see Eqn. 1 and Figure 2} where the transfor-
mation p; = Tj(r) yields: '

tij
‘d”l'j

where d is the offset on the follower shown in Figure 2. We
will use p to define this reparametrized shape vector since it
is more closely related to the control graph. Obviously, fora
given r, pis not unique. There is an eguivalence relation ~
on pairs (p, H), so that (p, H) ~ (5, H) if they correspond
to the same shape vector 7.

\ﬂi‘j —dcos 93:)2 + (g; — dsind;)?,

7 — arctan 2(dsinf; — §;,%; — dcosf;) — 6;.

Thus our group of robots can be modeled by a tuple F =
(g,p, H) where g(t) € SE(2) is the reference trajectory
of the lead robot, p represents the shape with respect to the
formation reference frame (atached to the lead robot in our
case), and H is the control graph. It is important to note
when orientations are considered (as is the case for non-
holonomic systers), the shape g (or =) does not capture the
complete shape of the system.

3 Organization into an Ad Hoc Network

The main goal of this paper is to be able to organize and
move a group of robots to a desired location while achieving
and maintaining a desired formation. We assume that each
robot has a definite identity that can be determined by vi-
sual observations as well as by communication. Our robots
use a broadcast protocol for communication. We assume
all robots can hear ¢ach other. Robots that cannot “talk™ or
cannot “listen™ are left out of the group. However, we do al-
low visibility constraints. Our robots have a limited field of
view and each robot can only see neighbors within a spec-



ified disk. Finally, we assume a planned trajectory g2%(t)
and a desired formation r%°* are specified either by a hu-
man operator or by an agent that is at a superior level. In
order to accomplish our goal, it is necessary to develop the
computational network based on edges in the physical and
communication network. Because the leader-follower con-
trollers for this network must be assigned on the fly, we calt
the network ad hoc.

We envision four steps to establishing the ad hoc network
(see Figure 3) ~ (a) leader election to determine the leader
of the group; (b) a discovery process in which the sensory
information and the physical network associated with vis-
ibility are used to establish a spanning tree rooted at the
leader; (c) a control graph or assignment of controllers to
each robot to maximize control performance, and (d) coop-
erative localization to combine sensory information and in-
formation broadcast from other robots in order to obtain rel-
ative position and orientation information required for con-
trol.

1 Simpe rrn
Trajectory R

Figure 3: The four step procedure for creating ad hoc computa-
tional networks for mobile robots.

The overall approach is described in Figure 3. The leader
election process allows the group to establish a leader for
the specified task. The discovery process allows robots to
use sensory information to establish their neighbors, and
construct a spanning tree rooted at the leader. This spanning
tree is used to initialize the robot controllers by establishing
a default control graph, H;n;;. Local heuristics are used to
adapt and refine the control graph depending on the shape
of the formation and on environmental conditions. The co-
operative localization process explained later in Section 5
provides the shape vector p(t) corresponding to the control
graph H (¢} at time ¢. .

We utilize a simple election scheme where every robot con-
nected by the wireless network votes for leadership. We use
a broadcast protocol (UDP based) for communication. Re-
call our assumption that every robot can communicate to ev-
ery other robot in the network through broadcast messages.
Owr election algorithm ensures that the system stabilizes to
elect a single leader from any initial state. It is also robust
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to failure of leader nodes (leads to re-election) and we avoid
deadlock by assigning fime cuts for donmancy at each robot.
The choice of a number for a vete by each robot can be ei-
ther randomly generated or, as in our case, can depend on a
local metric at that robot (node) that quantifies its “leader-
ship” capability. For given distribution of r» nonholonomic
robots and a desired goal position we can define the vote for
the &*" robot to be

1

1 .
dyoahk “n ZjEJk dj

Ay = 2

where, d; . = d(x;, ) is a distance metric for points in
SE(2), and J;, < ({1,2,...,n} — k) is the set of all vis-
ible neighbors of Ry. Thus, the robot that is nearest to the
goal with the furthest mean distance to its neighbors has the
highest vote. Obviously a different task would merit a dif-
ferent choice of Ay,

The discovery process is the process of identifying all robots
in the group based on sensor measurements and on broad-
cast information, and establishing a spanning tree that con-
nects all robots in the group. The broadcast protocol is used
to implement a fast distributed breadth first search [1} on the
graph G, induced by the sensor visibility constraints.

In Figure 3, the cooperative localization runs at sensor
frame rate every 75 seconds, while the refinement of the con-
trol graph is done every 7, seconds, and the leader-election
followed by the discovery process is repeated every 7, sec-
onds, where n; > 7, > 7. In the next two sections, we
describe distributed approaches to cooperative localization
and the assignment of edges in the control graph.

4 Cooperative Control

We now specifically address the following problem —
given a distribution of n robots and a desired planar shape
parametrized by p, find a control graph H that assigns a
controller for each robot subject to the following two con-
straints: (a) kinematic constraints that must be satisfied by
the relative position and orientation berween neighboring
robots; and (b) sensor and communication constraints based
on the limits on range and field of view of sensor and com-
munication device(s) that prevent a robot from obtaining
complete information about its neighbors. Among the fea-
sible control graphs that satisfy the constraints, we select
those control graphs that locally maximize safety (minimize
the likelihood of collisions) and formation stability.

The nonlinear kinematic controllers §BC and SSC have
singularities {(see [5]) which constrain the choice of con-
trollers based on the configuration of the group. The
Separation-Bearing Controller is not defined for a pair of
robots (R;, R;) having initial relative orientation satisfy-
ing 16; — 8;] = =, which corresponds to them facing to-
wards or away from each other. Further, the Separation-
Separation Controller is not applicable for robot Ry to fol-
low R;, R; when the inter-robot separations are such that



€5k = lir, + Ljx — Ui; is zero (refer to Figure 2). Thus, the
assignment of edges in the control graph is constrained by
these fundamental limitations of the Separation-Bearing and
Separation-Separation Controllers.

In order to prevent collisions, we want to ensure that the
separation between robots B; and R; is above a threshold,
In addition, we will consider the rate of change of this sep-
aration and ensure that relative motion between the robots
do not cause this separation to decrease below the threshold
rapidly. Consider each robot R; with control inputs u; has
dynamics given by Eqn, (1). Suppose R; has to maintain a
separation constraint ¢;; = ¢(@;, ;) < 0 with a neighbor-
ing robot R;.

3

where, Ly, ¢;; denctes the Lie derivative of ¢;; along f(x,).
R; can estimate the time to colfision with R; as:

i = E_f‘.c'ijul: + Ech,'ju]-

O0tij = cij/éij @
If robot R; can estimate u; either by using an estimator
[2] or by explicit communication [9] (this is what we call
feedforward information), it can compute ¢;; and thus esti-
mate &i;;. Both the magnitude and sign of &¢;; can be used
to identify pairs of robots (R;, R;), that are on a collision
course.

Figure 4: Two 5 robot formations with all SBC links (left), and |
SBC and 4 SSC links (right).

Although acyclicity of the control graph guarantees stabil-
ity, the performance associated with a control graph de-
pends on the the maximum depth, which we define to be
the maximum length of the shortest directed path {assum-
ing all control links have same weights) from the leader to
any follower. As this depth becomes greater, the formation
shape errors have a tendency to grow. A more precise result
that quantifies this relationship can be found in [11]. The
comparison between the two formations in Figure 4 illus-
trates this. The nodes in the formation on the left have a
greater depth and this results in larger transient errors. We
use a simple heuristic that locally minimizes the maximum
depth. When deciding between two control graphs that are
otherwise similar we prefer the one with smaller maximum
depth.

The control graph assignment algorithm (see Algorithm 1)
has to select the appropriate controller for every robot so as
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Algorithm 1 Control graph assignment algorithm (CG A)
initialize adjacency matrix H(z, j) := 0;
forall robot & € {1,2,...,n}, &k # leader do
H(i, k):=1 for SBC, edges(i, k) €spanning tree of
Gyps
di:= depth of node k& in G,
find set P, of robots visible to k with depths dy, dx —1;
if P, = @(disconnected) then
report failure at k, break;
Sy:=P, sorted by ascending timeT oCollision with k;
if numO f Elements(Sy) > 2 then
pick last two elements 4, § € Py
if i35 = (L + ljk — l,;j) # 0 then
H(i,k)=1, H(j, k):=1 for $8;;C:
else
repeat above check for remaining § € Sy in order;

to maintain connectivity of the graph with the maximum al-
lowable in-degree of two. We assume that each robot can re-
cover the required relative state information for implement-
ing the chosen controller from the cooperative localization
process. We follow a two step procedure — (2) assign an ini-
tial acyclic teader-follower graph H;y,;; with single leader
based control links (this is a tree); and (b} refine (add/delete
edges) control graph based on local optimalily measures:
Once the leader is identified, Hy,;; is derived via commu-
nication by having each robot identifying its neighbors in
the physical network. If each robot broadcasts the identities
of its neighbors in a prescribed order, a breadth-first search
can be used to establish a spanning tree H;,y. If there are
robots with no neighbors in the physical network (i.e. with
no visible neighbors), we have a disconnected graph.

We use Figure 5 to illustrate a typical scenario showing
assignment of a feasible control graphs that optimizes the
local heuristics at each node. The visibility graph (left)
with an assigned leader allows the robots to use a broadcast
protocof to to establish the spanning tree (f;,;;) (middle).
The local addition of links results in a refined control graph
(right).

= = Mcxe links from lower 16 higher depiy
~esnse = Aitional control links ar same depeh

—— Sensor Visihilly  —=t-Contoi links frot spansing s

Figure 5: Control graph assignment procedure.

An obvious concern regarding stability of the formation
arises when we switch between control graphs and shape
vectors in continuous time to achieve and maintain a desired
physical shape. In [5] we presented a switching strategy for
a triangular formation of three nonholonomic robots. The



system was modelled as a closed-loop hybrid system with
three basic modes corresponding to three control graphs
with the same desired physical shape. It was shown under
some assumptions on the sensor and motion constraints that
the system had 2 common quadratic Lyapunov function [7]
and a stable equilibrium point. We are currently research-
ing similar techniques for proving convergence for n robot
formations.

Figure 6: A 6 robot formation with different initial configurations
(top). The separations r;; (relative to the leader R;)
converge to the desired values (bottom).

In Figure 6 we simulate the performance of the CGA al-
gorithm from two injtial configurations with the same de-
sired shape - an equilateral triangle with six equally spaced
robots (1.2 half length for each side). Notice the final con-
tro} graph H is different in the two cases even thought the
desired (and the final) formation shape is the same in both
cases.

5 Cooperative Localization

Our use of a broadcast model for intra-formation communi-
cation provides a surplus of measurements and constraints.
These can be used by individual robots to improve their
state estimates as necessary. A natural question is then how
should each robot assimilate these additional data to best es-
timate the formation pose, and consequently improve con-
troller performance? .

‘We assume a sensor mode! capable of estimating both range
and bearing to other teammaltes, uncertainty expressed in a
known variance ¢ and covariance matrix C, and an objec-
tive of localizing a formation of n robots in SE(2). With the
above sensor model, each robot 1s able to estimate the posi-
tion of its visible neighbors without communication. How-
ever, estimating relative orientations in such a manner is not
practicable. To accomplish this, team members must com-
municate. By exchanging respective angular measurements,

2982

twa robots can infer their relative orientations from the mea-
surement differences (this approach extends to SE(3)} as
well if three or more robots share measurements [91).

Estimating the pose of the formation can then be accom-
plished simply by chaining together mutually visible, com-
municating pairs of robots. This can be formulated as a
breadth-first search (BES) on the graph . The pose of
each of the robots can then be estimated as its correspond-
ing node is visited in the graph. The approach is compu-
tationally efficient. However, it fails to fully exploit sensor
measurements (redundant edges) and geometric constraints
{cycles), and as a consequence provides the least accurate
estimates of the approaches discussed.

In contrast, we could attempt to estirate the pose of the en-
tire formation at once using standard, iterative optimization
techniques with all sensor inputs. Our objective function
would be the disparity between the robot position ¢stimates
and those obtained from sensor measurements. While such
an approach should yield an optimal estimate for the for-
mation pose, there are several drawbacks. Neither solution
convergence nor a global minimum is guaranteed, though
both might be expected with a good initial estimate (from
BFS for example). More importantly, the dimension of the
problem state space is 3n — 3, which for large n makes the
method unsuitable for real-time applications.

To address these shortcomings we propose a sequential
least-squares (SLS) approach, where the problem of esti-
mating the formation pose is decoupled into two sequen-
tial optimization sub-problems: recovering the orientation
of robots within the formation, and then recovering the po-
sitions. Each can be posed individually as a linear least-
squares problem. Consider first the task of recovering robot
orientations. Noting that the orientations of the robots 8;
can be retated by their relative azimuth angle measurements

"5, a4, this can then be posed as the following linear least

squares problem
min Z (
.05

With the orientations estimated, the positions of the robots
can be approximated similarly. Let {tz;;, ty;;]T represent
the translation from R; to R; as estimated by R;, C; is the
sensor covartance matrix for R;, and J;; corresponds to the
Jacobian relating polar and Cartesian coordinates evaluated
at ry;, 6, and ;. Solving for the robot positions (x;, ¥:)
can then be expressed as the following linear least-squares
problem

min E
Ti Ui

where T; = x; — x; and §; = w: — v;. This problem can
be solved in closed form. A shortcoming of the SLS ap-
proach is the assumption that orientations and positions can
be recovered independently, when in fact the two are tightly

(6: — 6;) — (o —
0.‘-2 + ch2-

aij) - ff)2

(3)

:T:‘J' + tIij
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coupled. As a result, there is a tradeoff between computa-
tional efficiency and optimality of the solution.

In an attempt to characterize the relative performance of
these localization approaches, we conducted simulations of
a six agent robot formation as reflecied in both the initial (A)
and final (B) configurations of Figure 6 (left). Range data
were subjected to normally distributed noise with a variance
proporticnal to the fourth power of the range, while azimuth
angle readings suffered from normally distributed noise of
constant variance. Using these imperfect measurements, we
proceeded 10 apply the three schemes to recover an estimate
for the formation pose.

Table | shows a sample localization trial of the initial for-
mation (A), emphasizing the parameters of interest for the
respective controllers as inferred from the localization data.
Results from over 150 simulation trials indicate that the per-
formance comrelated well with the complexity of the ap-
proach. BFS’s failure to utilize redundant measurcments
resulted in the least accurate estimates, with average errors
of 10.6¢m in position, and 0.8° in orientation. In contrast,
using the SLS approach resulted in significantly lower er-
rors in both position and orientation {(5.9¢m, 0.6°), though
not as good as the quasi-Newton based global approach pro-
vided (4.4¢m, 0.6°). The latter’s inability to improve orien-
tation estimates over the SLS approach was not unexpected,
as the latter generates an independent optimal estimate for
#;. Though by no-means exhaustive, these results show the
potential benefits from cooperatively fusing distributed sen-
sor measurements, and for the SLS approach as an effective,
computationally efficient methed for assimilating data.

BES | SLS | Global
R; | Cul Param | Actual | Est Est Est
2 I1s 1.034 | 0.903 | 0972 | 1.002
e 2.434 | 2413 | 2418 | 2.419
3 hs 1613 | 1.604 | 1.601 | 1.599
lzs i.189 | 1.188 | 1.208 | 1.204
4 Ioa 1.458 | 17385 | 1.523 | 1.490
Taq 1854 | 1.712 | 1.868 | 1.877
5 las 1312 | 1.404 | 1.385 | 1.365
Lss 1.128 | 1.088 | 1.137 | 1.123
6 Iss 1373 | 1.422 ] 1.423 | 1.423
g 4.059 | 4.055 | 4.055 | 4.055

Table 1: Localizer results in pose estimation.

6 Conclusions

‘We present a general procedure and a set of algorithms that
allows a group of nonhelonomic mobile robots to organize
themselves into an ad hoc computational network in order to
move to a specified position in a specified formation along
a specified group trajectory. Our procedure guarantees the
robots are able to organize themselves into a team utilizing
cooperative localization and control strategies. The prop-

erties of the leader-follower feedback controllers guarantee
convergence to the desired shape provided changes in the
control graph do not occur. Since our algorithms scale lin-
early with the number of robots, it is reasonable to expect
good performance for a large number of robots. The two
important issues that are yet to be addressed are: (a) stabil-
ity under changes in control graphs; and (b} fault-tolerance
with respect to failures in sensors, actuators, and communi-
cation links. Our preliminary work in stability analysis [5]
points to stability results for a team of three robots and pro-
vides some answers to the first question. The second area is
an area of current interest for us and we hope to report on
this in future publications.
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