
Proceedings of the 4111 IEEE 
Conference on Decision and Control 
Las Vegas, Nevada USA, December 2002 ThPO4-1 

On the Choice of Norm for Modeling Compressible Flow 
Dynamics at Reduced-Order using the POD' 

Tim Colonius' and Clancy W. Rowley3 and Jonathan B. F reud4  and Richard Ril. Murray5 

Abstract 

We use POD/Galerkin projection 'to investigate and 
derive reduced-order models of the dynamics of com- 
pressible flows. We examine DNS data for two flows, 
a turbulent hI=O.9 jet and self-sustained oscillations 
in the flow over an open cavity, and show how differ- 
ent choices of norm lead to different definitions of the 
energetic structures, and, for the cavity, t o  different 
reduced-order models of the dynamics. For the jet, we 
show that the near-field dynamics are fairly well repre  
sented by relatively few modes, but that key processes 
of interest, such a acoustic radiation, are not well c a p  
tured by norms that are defined based on volume in- 
tegrals of pressure and velocity. For the cavity flow, 
we demonstrate that vector-valued POD modes lead 
to reduced-order models that are much more effective 
(accurate and stable) than scalar-valued modes defined 
independently for different flow variables. 

1 Introduct ion 

The Proper Orihogonal Decomposition (POD)[6] is an 
atkactive means of using data to  generate an optimal 
set of basis funct,ions that represent the "energy" of 
the data, defined by a user-selected norm. This basis 
is optimal in the sense that a finite number of these 
orthogonal modes represent more of the energy than 
any other set of orthogonal modes. POD modes can be 
useful in modeling the dynamics of the pow, either by 
t.he 'inspiration' they provide in highlighting dynami- 
cally significant structure in the data, or quant,itatively 
by Galerkin projection of a relatively small number 
of modes onto the governing equations to generate a 
reduced-order model. If the reduced-order model faith- 
fully represents the dynamical process in a flow leading 
to  a particular end-product (examples being drag on a 
body or sound generated by turbulence), they may be 
used as a basis for a control design that att,empts to al- 
ter the end-product, such as reducing drag or radiated 
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sound 

There are, however, some obstacles to achieving this 
goal in practice. For compressible flows, one must 
first decide on an appropriate generalization of previ- 
ous concepts developed for incompressible flows. Gen- 
erally, POD modes can be defined for any vector of 
flow quant,ities, in any well-defined, weighted norm. We 
shall show that different choices of flow quantities will 
highlight different relations between the variables. A 
theme of our work, t,herefore, has been to  study how 
the choice of norm dictates the structure of the POD 
modes, the extent to which they represent particular 
quant,ities (aside from the norm for which they were 
designed), and, ultimately, t,he efficacy of a reduced- 
order models based on Galerkin projection of equations 
of motion onto the POD basis. 

Our primary application is to obtain reduced-order 
models for sound generation by large-scale structures in 
turbulent flows. We consider here two examples, self- 
sustaining flow/acoustic oscillations in the Row over 
an open cavity, and sound generation by a turbulent 
transonic jet. The sound radiated by turbulence is a 
very small fraction of the total energy, and norms that 
highlight the near-field energetic structures may not 
be an efficient way to  represent. the noise generating 
flow, even if the dynamics of these structures are ul- 
timately responsible for generating the sound. An in- 
triguing question is whether an appropriate norm ca.n 
be defined that would efficiently represent t.he sound 
producing dynamics of the flow, and a long term goal 
of the present work is to address this issue. In other 
words, we seek to determine what is a good norm to 
define such that relatively few modes contribute to  the 
genedion of radiated sound. This, we hope, will in 
turn lead to phenomenological models for sound radia- 
tion by large scale structures in turbulent jets and other 
flows. 

2 POD modes for Compressible Flow 

We seek a representation for a particular flow quan- 
tity, or a vector of flow quantities, functions of space 
and time, q(x, t ) ,  as an expansion in scalar or vector- 
valued orthogonal modes, rp,(x). The POD expansion 
provides an optimal convergent series representation of 



a specified L2 norm of q than any other expansion. 
For incompressible flow fields, this norm is typically 
taken to  he the fluctuation kinetic energy, and there- 
fore q = (u ,u,w) ,  where a, w ,  and w are the three 
velocity components (in an appropriately defined coor- 
dinate system), and the norm is defined over the entire 
volume of flow. In general, however, we can quite ar- 
bitrarily specify q, the region over which the norm is 
defined, and how the individual components of q are 
weighted in the norm. 

For compressible flows, the best choices of variables, 
norms, and weightings are not obvious. Some first at- 
tempts at performing POD for these flows used more 
than one norm-one for each relevent flow variable, and 
we refer to  the modes so-determined as scalar-valued 
modes. The only connections between flow variables in 
these cases is that they are computed with the same 
snapshots from the overall flow solutions. However, 
there are interrelations between the various variables in 
a compressible flow. For example, the divergence of the 
velocity is closely related, through the continuity equa- 
tion, to  the density (and through the equation of state, 
in turn, to other thermodynamic variables). It would 
seem that an appropriate vector-valued norm will bet- 
ter preserve such relations. One possibility is to use 
a vector of, say, primative variables (density, velocity, 
pressure) or conserved quantities (density, momenta, 
total energy), but there is no physical interpretation 
of the norm in that case (even if nondimensional ver- 
sions are used so as to  avoid, say, adding densities and 
velocities). Moreover, the general compressible Navier- 
Stokes equations (plus continuity and energy) then in- 
volve division by the density a.nd’this complicates the 
Galerkin project of the equations onto the POD modes. 

Rowley et a1[9] found that a norm based on the stag- 
nation enthalpy was particularly useful, wherein q = 
(u ,w,w,a) ,  where a the speed of sound. The stagna- 
tion enthalpy was then 

where again, R is the region of interest. For flows 
that are isentropic (or nearly so), this definition yields 
equations of motion with only quadratic nonlinearities 
and results in a particularly simple Galerkin projection. 
This definition is used in the development of reduced- 
order models for cavity oscillations discussed below. 

In constructing POD modes for turbulent jets, we have 
defined a more general set of variables that include 
pressure. The principal reason for this was to com- 
pare with earlier studies [l] where modes defined on 
the pressure alone were used. So we generalize the 
above norm and use q = (U, U ;  w,  a , p )  with scaling fac- 

tor a = (al,. . . ,a5) and define 

where a consistent non-dimensionalization of q is im- 
plied. The constants Q determine the specific norm. 
Choosing a = ( 1 , 1 , 1 . ~ , 0 )  recovers the stagnation 
enthalpy norm used by Rowley,[9] and a = (1,1,1,0,0) 
recovers the standard kinetic energy norm used in in- 
compressible flow. 

Finally, it is well known that for homogeneous (peri- 
odic) coordinate directions, Fourier modes are identi- 
cal to  POD modes. In the jet flow we describe below, 
we anticipate this result by starting with the azimuthal 
Fourier transform of q, 

M 

s(z,r,t) = q(2,r) + qm(z,r,t)eims, (3) 
m=1 

where we have removed the mean, q, and compute 
POD modes for each m as 

In t,he examples considered below, we use data from Di- 
rect Numerical Simulation (DNS) of the full unsteady 
compressible Navier-Stokes equations in two and three 
dimensions. Computational methods and validations 
are described in some previous papers[lO, 51. W e  corn- 
pute POD modes using the method of snapshotsjl2j 
from simulation data saved at discrete times. 

3 Reduced-order models  of cavity 
flow/acoustic oscillations 

Self-sustained oscillations over open cavities are 
thought to arise from a naturally occurring feedback 
loop[8]. Small flow disturbances are amplified by the 
free shear layer spanning the cavity, scattered into 
acoustic waves at  the cavity trailing edge, propagate 
upstream, and excite further disturbances in the shear 
layer. Recently there has been renewed interest in at- 
tenuating these oscillations by means of active con- 
trol. These efforts have involved open-loop control[l3], 
or phase-locked loops, designed to cancel flow distur- 
bances at  a particular frequency17, 2,  11,  14, 41. None 
of the cont.rol strategies att,empted so far have used an 
explicit dynamical model for control design, or analy- 
sis of performance or robustness. In many cases, even 
a simple low-dimensional model can capture important 
features of a system, and both indicate effective control 
strategies, and reveal limitations of active control. 
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We report here reduced-order models based on 
the PODIGalerkin approach using data from tww 
dimensional DNS. A detailed study of the physics of 
cavity oscillations, based on the DNS, is presented in a 
recent paper(l01. The data used for the reduced-order 
models presented here are from a run with L I D  = 2, 
where L and D are the cavity length and depth, a 
freestream Mach number of 0.6, LIB = 58.4, where 
B is the momentum thickness of the boundary layer a t  
the leading edge of the cavity, and a Reynolds num- 
ber based on 9 of 68.5. We use the (tnwdimensional) 
volume based norm based on the primitive variables 
independently (scalar modes for U, U, p,  and p )  as well 
as t h e  vector norm based on (a = ( l , l , l , ~ ~ O ) ) .  
The volume is defined as a portion of the (2D) DNS 
domain near the cavity (see ref.[9] for details). We ob- 
tain an approximate version of the Navier-Stokes equa- 
tions, valid for cold flows at moderate Mach number, 
and project these equations onto the POD basis. The 
approximate equations involve only quadratic nonlin- 
earities, and the resuking projections are much simpler 
than those based on the full compressible Navier-Stokes 
equations [SI. 

By contrast with the fully turbulent jet flow discussed 
below, the two-dimensional cavity flow is transitional. 
We compute POD modes based on snapshots of t.he de- 
veloping flow (transient portion of the simulat,ion %.here 
the self-sustaining oscillations are being est,ablished), 
as well as the fully-developed limit-cycle flow. As we 
might expect, the 1att.er is well represented by just a 
few modes; we find in this case t.hat modes come in 
pairs, and seem to represent constant frequency oscil- 
lations (like sine and cosine). For the vector-valued en- 
thalpy modes, the first six modes capture 99.6% of the 
energy for the fully-developed flow. The struct.ure of 
the modes (figure l) ,  depicted in terms of curl (vortic- 
ity) and divergence of velocity (acoustic) fluctuations, 
shows clearly the instability wave spanning the cavity 
shear layer (vorticity) and the acoustic coupling pro- 
duced by radiation near t.he trailing edge (divergence). 

The behavior of reduced-order models, based on 
Galerkin project onto the POD basis are depicted in 
figure 2, for both scalar and vector-valued modes. Note 
that in the scalar case, a "4 mode" model requires 4 
modes for each flow variable (U, U, h) ,  resulting in 12 
modes altogether, and 12 ODES to be solved, whereas 
in the vector case, a "4 mode" model requires exactly 4 
ODES to be solved. For all cases: the initial condition 
is obtained hy projecting a snapshot from the DNS (the 
first snapshot used for the POD computation) onto the 
POD modes. 

All of the scalar-valued models are accurate for short 
time, but deviate significantly for longer time. Further- 
more, taking more modes does not always help: for long 
times, the most accurate model is the 2-mode model! 

Mode 1 (47.15%) Mode 2 (44.67%) 

Node 1 (3.50%) Mode 2 (3.42%) 

Figure 1: Vorticity (top) and dilatation (bottom) for 
vector-valued POD modes (snapshots from 
fully developed flow). Negative contours are 
dashed. 

The l0-mode model actually blows up, and t,he 20- 
mode model looks qualitatively very different for long 
time, with a complicated, chaotic-looking waveform. 
By contrast, the simulations based on vector-valued 
modes are qualitatively accurate even for long times. 
The 4-mode case drifts to a larger amplitude for long 
time, and t,he 6-mode and 11-mode cases are closer. 
This is in sharp contrast to the scalar mode case, where 
taking more modes made the dynamics worse for long 
time. A plausible reason why the vector-valued modes 
do bet,ter than scalar modes is the following: certain 
terms in the equations, namely the dilatation us i uY, 
are sensitive, in that t.hey involve a delicate cancellation 
between two large numbers (even though uz and uY are 
not small, the dilatation ur + U ,  always remains small). 
If scalar-valued modes are used, U and U may drift apart 
slightly after some time, so that they no longer can- 
cel each other, and the resulting error in dilatation can 
drive the equations in a non-physical way. We have ob- 
served this effect directly in Galerkin simulations from 
scalar-valued POD modes. When vector-valued modes 
are used, the dilatation is computed much more ac- 
curately, as it .is effectively computed for each POD 
mode, and not from a sum of POD modes for different 
variables which may drift apart. 

In order to use these models for control analysis or syn- 
thesis, it is of course necessary to introduce the effects 
of parametric variation and actuation into the models. 
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Figure 2: Behavior of reduced-order models. For each 
model, two plots show the same simulation over 
different time intervals. Scalar POD modes: 
coefficient of u-velocity mode 1, for projection 
of DNS (o), and POD/Galerkin models with 
2 modes (-.------), 4 modes (---), 10 modes 
(----) , and 20 mod- (---). Vector POD 
modes: coefficient of mode 1, for projection 
of DNS (o), and POD/Galerkin models with 4 
modes ( - - - - - - - ) ,  6 modes (----), and 11 inodes 
(-1. 

Some efforts for the former will be presented in the full 
paper. For the cavity flow, it turns out the most of 
the parameters may be scaled out, and initial attempts 
at  finding "universal" modes show some promise. The 
presence of an actuator will presumably change the flow 
structures, so POD modes need to be taken in the ac- 
tuated flow, perhaps stacking snapshots from different 
runs. Precisely how t o  do this remains an open ques- 
tion, and is a topic for future research, but the present 
results are promising: since the unactuated flow can 
be accurately modeled by as few as 3 POD modes, it 
is likely the actuated flow may also be described by a 
model of very low dimension. 

4 POD modes in turbulent Jets 

In this example we consider a fully turbulent jet with 
Mach number 0.9 and Reynolds number 3600 that was 
computed with DNS io a previous study[5]. We com- 
pute POD modes for a variety of norms, including 
turbulent kinetic energy (a = (1: 1,1,0:0)), stream- 
wise velocity, (a = ( l , O , O , O , O ) ) ,  and pressure (a = 
(O,O,O,O, 1)). We define norms over both individual 
planes normal t o  the jet axis (to compare with previ- 
ous experiments[3]), the entire volume of the DNS, and 
on the surface of a large sphere in the acoustic field. 

We discuss here some preliminary results relating to 
the  structure of the POD modes, computed with var- 
ious norms, and the convergence with which the POD 
modes reconstruct, the acoustic far-field. 

For most norms we consider, we find a significant 
amount of energy in relatively few POD modes. 
The  norms based on surface-integrals converge more 
rapidly, in general, requiring 100 mod= to capture 85% 
of the energy, for the case of streamwise velocity at  a 
position near the end of the potential core. By con- 
trast, 500 three-dimensional modes are required t o  cap- 
ture the volume integral of pressure or kinetic energy 
to around 80%. 

For the pressure norm, we find in general that  the most 
energetic POD modes have a wave packet structure, 
and that pairs of such modes represent advection of 
the structures at nearly constant phase speed, as was 
also the case for the cavity modes described in the pre- 
vious section. One of each pair of the 8 most energetic 
pressure modes are shown in Figure 3, and corresponds 
t,o the axisymmetric and first helical Fourier modes in 
the azimuthal direction, as indicated on the plots. The 
most energetic modes bear a strong resemblance t o  the 
growth and decay of instability waves, and appear t o  
coincide with the formation of vortices (both axisym- 
metric and helical). The third and forth most ener- 
getic modes (both axisymmetric and helical) shown a 
streamwise period doubling consistent with a vortex- 

3276 



pairing phenomena, 

F igure  3: Most energetic POD modes (volume based norm 
of the pressure). In the labels, m refers to the 
azimuthal mode number (rn = 0 is the axisym- 
metric mode, m = 1 is the helical mode) and n 
refers to the POD mode number. The modes 
come in convecting pairs, with modes n = 2 
and n = 4 resembling n = 1 and n = 2, respec- 
tively, bud phase shifted by 90 degrees. 

The most energetic mode based on kinetic energy, by 
contrast, appears as a long, slowly rotating structure 
wit.h azimuthal wavenumher two, and it is most intense 
past the end of the potent,ial core. There is little dis- 
cernable “propagation” of the kinetic energy modes. 

We have examined the extent to which a portion of the 
POD modes are able to “reconstruct” various statis- 
tical quantities in the flow, such as (local) turbulent 
kinetic energy. Reynolds stresses, and pressure fluctua- 
tions both near and far (acoustic) field. For the point- 
wise near field quantities, the results are for the most 
part consistent with the rate at  which the eigenvalues 
converge to the total (integrated) energy One surpris- 
ing result is that the pressure modes seem to have bet- 
ter overall pointwise convergence in the near field even 
for quantities that  do not explicitly appear in the norm, 
such as turbulent kinetic energy. 

In particular, we have found that all reconstructions 
based on norms defined over the near field give very 
poor convergence for the far acoustic field. While the 
basic directivity of the acoustic field is well represented 
by about 50 modes, it requires virtually all the modes 
t o  determine the sound pressure level to within one 
dB. These results are shown in Figure 4. For reference, 
we also show reconstruction of the far field pressure 
based on pressure integrated on the surface of a large 
sphere in the far field. Only a few modes in that. case 
capture the full acoustic field, and this indicates (not 
surprisingly) that the structure of the acoustic field is 
not particularly complex, only its relation with the near 
field dynamics. 

We have also examined the structure of POD modes 

Kinetic energy-barpdnorm 
(near-field volume) 

*.el* fmm jn aur 

Figure  4: Reconstruction of the far field sound pressure 
level from POD modes defined with various 
norms. 

(in the near-field) when the norm is based solely on the 
acoustic field (i.e. the large surface integral described 
above). The most energetic modes from this norm con- 
tinue t o  display a strong wave packet structure in the 
near field. The wave packets seem to have an  abrupt 
change in structure near the close of the potential core 
that may give rise to the acoustic radiation. 

Further work is needed to further elucidate t,he connec- 
tions between the POD modes, in various norms, and 
the sources of sound. Ultimately, our goal is to use that 
connection t o  develop reduced-order models, as noted 
above. 

5 Conclusions 

We have presented methods for applying POD and 
Galerkin projection t o  compressible flows, in the 
context of two models flows, namely self-sustained 
flow/acoustic oscillations in the flow over an open cav- 
ity, and a turbulent, transonic round jet. 

For the jet, we have investigated the extent to which 
POD modes based on different norms lead t o  differ- 
ent energetic structures, and the extent to which near 
and far field statistics can be reconstructed with lim- 
ited numbers of modes. While reconstruction of the 
far-field sound pressure level based on near field POD 
modes converges disappointingly slowly, our prelimi- 
nary results show some interesting connections between 
the structure of the modes and the radiated acoustic 
field. In future, we intend to examine the connection 
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between near and far-field modes to generate reduced- [ll] Leonard Shaw and Stephen Northcraft. Closed 
order models of sound generation by turbulent jets. loop active control for cavity acoustics. AIAA Paper 

99-1902. hIav 1999. 
~ - - ~ ”  ~~-~ ~~ ~~~~ 

For the cavity, a much simpler transitional flow, the 
POD modes-especially vector-valued modes based on 
a enthalpy norm-were capable of describing the flow 
at very low order. Galerkin projections of (approxi- 
mate) equations of motion onto these modes produced 
reduc&-order (with as few as 2  ODE^) which 

1121 L. Sirovich. Chaotic dynamics of coherent 
structures. Parts 1-111. Quarterly of Applied Math., 
XLV(3):561-582, 1987. 

M.J. Stanek, G. Raman, v. Kibens, J.A. Ross, 
J. Odedra, and J.W. Peto. Control of cavity res- 

were able to  predict the flow with quantitative accuracy 
for short time, and qualitatively for long time. It was 
shown why scalar-vahed modes, where the intimate 
connections between the various flow variables are es- 
sentially lost, lead to  reduced-order models with much 
more limited accuracy, and which are usually unstable 
for long times. 

nance through very high frequency forcing. A N A  pa- 
per 2000-1905, June 2000. 

[14] D.R. Williams, D. Fabris, and J. hlorrow. Exper- 
iments on controlling multiple acoustic modes in cavi- 
ties. AIAA paper 2000-1903, june 2000. 
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