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Abstract. The paper is devoted to an extension of
one particular fact within theory of partial stability,
the so-called Pozharitsky Theorem, to the case of par-
tial stabilization of nonlinear controlled system. It is
shown that under appropriate assumptions partial sta-
bilization of the system based on usage some Lyapunov
function constructed from first integrals of the unforced
system, implies that the Lyapunov function of a simpli-
fied form also leads to a controller that partially stabi-
lizes the system. The theoretical results are illustrated
by the problem of partial stabilization of the downward
equilibrium of the Inertia Wheel Pendulum.

1 Introduction and Problem Statement

Stability of a dynamical system with respect to part of
variables is a natural extension of the classical concept
of stability in the sense of Lyapunov. Partial stability is
intensively studied within last 50 years, see the books
[5, 8. This paper is devoted to an extension of one
particular fact within the partial stability theory, the
so-called Pozharitsky Theorem. Let us formulate this
statement precisely [4, 5):

Theorem 1 {Pozharitsky, 1957) Consider ¢ non-
linear system

Salt) = f(z,0) (1)

where x € B®, f(t,x) is vector funciton with f(t,0) =
0. Suppose that
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1. the state vector x has a partition

T
r= (ml,zg,...,zn) =

such that

Y
z

)

(a) The right-hand side of (1) is continuous and
provides the uniqueness of the solution of (1)
in the domain

t>0, |iyl|l<H, lz||<4cc (H =const>0)

{b) Any solution z(t) of the system (1) is well
defined for all t > 0, provided that its part
y(t) satisfies to the constraint

ly®ll < H

2. The system (1) has k first integrals
Lt,z) = const, p=1,...,k,

such that I,(t,0) =0, p=1,... k.

Given any Cl-smooth function
V(t,2) = F (Lit,2), bt 2), ... Ik(6,2))  (2)

with F(0,0,...,0) =0, and the function

Valt, ) F (Il(t,:c), ht.z),... Ii(t 2))

i 1 1
=sBta) + S LGD) + .+ 5T 2),(3)
consider both functions V(t,z) and V(i) as a Lye-
punov function candidates. If there exists any y-
positive definite function V(t,x) of the form (2), i. e.

Vit.z) 2 alllyl), aek,



then the function Vo(t,z) defined in (3) is aiso y-
positive definite, i.e. there exists 8 € K such that

Vo(t,x) 2 B(llvlD).

In other words, if there erists a Lyapunov function of
the form (2) that provides y-stability of the system (1)},
then the function Vy(t,z) will be by necessity the Lya-
punov function for the system (1) that guarantees the
partial stability of the system (1). &

As the reader can see this fact gives the simple and ef-
ficient algorithm for checking partial stability based on
a Lyapunov function constructed from first integrals of
the system. To check the partial stability following this
way is then sufficient to consider the simplest Lya-
punov function candidate (3), and if it does not
guarantee the partial stability, any other candi-
date (2) will not guarantee it.

It is worth also mentioning the origin for a such type
consideration. Prof. N.G. Chetaev suggested in [1] to
consider Lyapunov function candidates of the form

& k
Vit,z) = Z Aplp(t,z) + Z ,upIg(t, z)
p=1 p=1
with abjective to find parameters Ay, pp, that ensure
stability of the system (1). At present this form of a
Lyapunov function is known as Cheteer’s Method of
Bundles of First Integrals. As seen, Pozharitsky Theo-
rem shows that for the partial stability one should try
only the simplest case: A =0, yp =1, p=1,... k.

This paper is aimed at deriving a version of Pozharitsky
Theorem for partial stebilization of the time invariant
nonlinear controlled system of the form

2 2lt) = £(z) + glau. )

Here u € R™ is a controlled variable, f and g{x) is a
smooth vector field of appropriate dimensions. As in
FPozharitsky Theorem, we will assume that

I). The state space vector £ has a partition

o= (onanenmn) = (1)

and any solution z(t) of the system (4) with
u = 0, is well defined and unique for all ¢ > 0,
provided that its part y(f) satisfies to the con-
straint

lvOll < &
IT). The system (4) with u = 0 has & first integrals
I(z) =const, p=1,...,k

that satisfy to the conditions I,(0) = 0, p =
1,....k

To motivate further development, let us briefly men-
tion two examples. The first one is the stabilization of
the downward position of e spherical pendulum where
the bob consists of a closed reservoir filled with a lig-
uid. This system is described partly by the pair second
order differential equations, and partly by the partial
differential equation -covering the motion of the liguid
(the Navier-Stocks equations}.

The exact movement of liquid corresponds to an ele-
ment of the infinite dimensional state space, it is no
really of interest in the problem, while, some averaged
characteristics like, the vector of the total momentum
of the liquid, its total energy, are of interest. So the
problem of stabilization of the spherical pendulum at
its downward position without taking into account the
exact behavior of the liquid after transition falls into
the area of partial stabilization.

Another motivating example is the stabilization of the
downward equilibrium of the novel pendular system,
the so-called Inertia Wheel Pendulum, introduced in
[6]. Below we suggest a stabilizing controller, when
only a position and velocity of one of two independent
variables of the system are available for measurements.

The paper is organized as follows. The main result
is stated in Section 2. As an example of its applica-
tion, the problem of partial stabilization of the down-
ward equilibrium of the novel Inertin Wheel Pendulum
is considered in Section 3, while some computer sim-
ulations of the results are drawn in Section 4. Some
conclusions then are collected in Section 5.

2 The Main Result

Theorem 2 Suppose that the assumptions I) end II)
are valid and that there exists a C1-smooth function F :
R* = Rsq such that o Lyapunov function candidate

Viz)=F (11 (z), Io(), . .. ,Ik(z)) (5)

satisfies to the following conditions:

1. The function V(t) is y-positive definite, that is
the inequality

V(z) 2 alllyll), a€k (6)
holds;
2. The feedback control defined by
_ r [OV()]" -
wn)=-poley [ZE]

ensures the y-asymptotic stebility of the closed
loop system (4), (7) with PP being some m x m
positive definite matriz.
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Suppose, in addition, that

IIX). There is no solution x(t) of unforced system (4}
such that the rank of the m x k matriz function

6!1851 [3)] 8l (2(t))
T1 8z,
glx(t))” : : {8)
8 (=(1)) 81 (=z(1))
8zy Gitn

is less than k for all t > 0, and such that z(t)
- belongs to any neighborhood O of the set

I::{:r: I (x) ...=Ik{:t:)=0}c{a::y=0} 1)

IV). Any solution x(t) of the closed loop system (4)
with the feedback controller

o= s [P’
8n(z)

8 {z)
Be: Bk:{l Ii(z)
=-g(z)” : : N [$10)]

has o non-empty compact w-limit set. Here the
function V,(x) is defined in (3).

Then the feedback controller (10} makes the closed loop
system (4), (10) y-asymptotically stable. m

Some comments to Theorem 2

1. As the reader can see the contribution of Theo-
rem is that an existence of y-stabilizing controller
{7) derived by usage of some appropriate Lya-
punov function V{z) implies that the controller
(10) of simplified form is also y-stabilizing. This
fact can be seen as a direct extension for Pozhar-
itsky Theorem: a presence of some Lyapunov
function V (¢, x) implies an existence of Lyapunov
function Vy(t,z) of the simplified form (3).

. The assumption ITI) restricts the consideration
to the case when the number of independent first
integrals I, (z),..., Iy(x) of the unforced system
(4) is less or equal to the number m of control
inputs, 1. e.

k<m

. The matrix (8) may loose the rank on the set Z,
see (9), while it is important that its rank remains
equal to k in some vicinity of 7.

4. Tt seems that the assumption IV) is the main
difficulty in checking Theorem conditions. We
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specially avoid mentioning particular sufficient
conditions guaranteeing its validity. In the ex-
amples, such a property may be obtained due
to topology of the phase space (if, for example,
some of coordinates are periodic or hounded for
sure) or it comes from properties of first inte-
grals I; («) (if, for example, the function Vp(x} is
proper on the state space of the system). Another
ways to checking this assumption are presented
in Secticn 3, where the partial stabilization of
the downward equilibrium of the Inertin Wheel
Pendulum is treated in detail.

3 Example: Partial Stabilization of Downward
Position of Inertia Wheel Pendulum

The Inertia Wheel Pendulum is a physical pendulum
with a symmetric disk attached to the end. The disc is
controlled by a DC-motor that can chiange the angular
acceleration of the disc, while the physical pendulum
itselfi is freely rotating. The details and the description
of hardware can be found in [6, 7].

The mathematical model of this system derived in [6,
7, s

dibh + diaby
dp16) + daa;

(11)
(12)

where #, is the angle that the pendulum makes with the
vertical line; @2 is the angle that describes the position
of the symmetric disc; and

—rmgsin{6,)

T

dyp = mif +meli+ + {13)
diz = dn =dyiz = 1z (14)
m = myla +mely (15)

Here I, is the length of the pendulum; I, is the position
of the center of mass of the pendulum; m; is the mass
of the pendulum; my is the mass of the disc; J1, Jo
are inertia of the pendulum and the disc around their
centers of masses.

Changing the variables #;, &2 t0 new ones, as done in
[3, 7],

a=6, @=06+6

brings the system (11), {12) into simplified decoupled
form

—mgsin(q) — 7

(16)
(7}

i

di1 G

T

il

dyo §o

The problem is: to stebilize the dounward equilibrium
of the pendulum, that is 1 = 0, ¢1 = 0, while the
available megsurements are only the current values of



the angle q;, and its velocity ¢ .

As seen the problem exactly falls into the subject of
partial stabilization with respect variables g,, ¢;, while
the rest of variables gs, g5 are not of interest,

3.1 The Controller 1
The unforced system {16), (17) has two independent
first integrals

T
L = - 0 +mg(1 cos(ql)) {18)
das .
L = ——;2q§ . (19)

Both integrals are non-negative. Theorem 2 suggests
to choose the controller 7 as follows, see (10},

=gl [6‘—8})] —i-L (20

where the Lyapunov function candidate V5{q) is chosen
as Volg) = 317 (g), and g = (‘h, gt gz, 42)-

To conclude partial stability of the closed loop system
(16), (17), (20) let us check the assumptions of Theo-
rem 2. Some of them, like the given by the next state-
ment, are obvious.

Lemma 1 The function Vo(g) s q1, ¢1-positive defi-
nite around the downward equilibrium g, =g, =0. m

Lemma 2 (Assumption [IT) There s no solution
q(t) of the unforced system (16), (17) around the down-
ward equilibrivim g1 = ¢ = 0 such that the matriz (8}
looses the rank for all t > (0. m

Proof. In this case the matrix (8) is just a scalar equals
to ( - q'rl) and it is obviously not identically equal to
zero for any solution of the unforced system (16), (17)
except the downward ¢1 = ¢; = 0 and upright g1 = ,
¢1 = 0 equilibria. m

Lemma 3 (Assumption IV) Any solution of the
closed loop system (16), (17), (20} has non-empty
compact w-limit set belonging to the cylindrical phase
space. m

Proof. Let us choose any point (q?, q?, 99, qg,) that

is closely located to the downward equilibrium, and
consider the solution

aft) = (a8, 4 (1), @), &)

of the closed loop system (16), (17}, (20) with the origin
in this point. The equations (16}, (17) are decoupled,
so we can consider and analyze separately the dynamics
of the variable ¢, see (16), and, then, the dynamics of
the variable gz, see (17).

The dynamics in g (t) is covered by (16), (20), and
satisfies to the differential inequality

%VO (q(t),q"(t)) = %%If (ql(t),riz(f))

= -0 (a.am) <o @

The function V,(g(f}) is proper of the sub-space
{q1,41) € S* x R' of the cylindrical phase space of the
system (16), (17). This fact, the inequality (21} and
Barbalat lemma imply that the solution ¢, (¢), ¢1(¢) has
non-empty w-limit set, remains in the neighborhood of
the downward equilibrium, and

@ilt)- L (th(t).(h(t)) -0, as t— +oo.

This limit relation, in turn, implies that the solution
q1(t), g1 (t) converges to the downward equilibrium, i.e.

a(t) =0, @a{t) =20, as t—- + (22)

On the cylindrical phase space the variable ¢ (¢) € 51
is always bounded, therefore to prove a existence and
compactness of w-limit set for g(t), we has to show that
the function ¢2(#} is bounded.

The dynamics in go is covered by (17), (20}, that is
d@2(t) =7 = &1(8) - L (@ () 01 (8))

Therefore

i) = - [ a1 (00.60)}as (29

To show that the integral in the right hand side of
(23) has a limit as ¢ — +00, we use the Abel criterion
which states: For any scalar smooth converging to zero
function f(t) the boundedness of the integral
+ oo
#s)ds

0
tmplies the boundedness of the integral

+oo
fo Fe)uls)ds

provided the function p(t) is nonnegative and monoton-
tcally decreasing.

We can directly apply the Abel criterion to our case.
Indeed, put

IO =al), #0)=h(a0.a0),
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then the improper integral has the value

t-+4o00

0o t
/ a(s)ds = lim | qu(s)ds
] Q

Jim o) - a©@) = —a:(0)

Here we use the already proven limit relation (22) for
gy (). At the same time, the function Iy (q; ()}, 41 (t)) is

nonnegative, and due to (21} is monotonically decreas-
ing. As aresult the Abel criterion allows us to conclude
that the integral in the right hand side of (23) has a
limit when t = +oq. Therefore ¢2(t) has also limit as
t — <00 and, hence, it is bounded. This finishes the
proof. m

Remark 1 As the reader can see from the proof of
Lemma 3, an existence and compactness of w-limit set
for the closed loop system (16), (17}, (20) was derived
by a particular property of the dynamics of the closed
loop system, but not by a properness of the storage
function Vp(g) that is commonly in use in literature.
In our case the function Vg(g) is, in fact, not proper. m

3.2 The Controller II

The partial stabilization of the downward equilibrium
of the Inertia Wheel Pendulum shown in Section 3.1
was made by usage only one first integral of the system,
Ii{q). A simple question: What is original {simplest)
form of the first integral 1, ? leads to some ambiguity
in the choice of Vj(q). Indeed, for any smooth scalar
function F, the function F(I;(q)) is again first integral,
and only some personal preferences defines the expres-
sion for I (g).

Let us show that another form of I, results again in
the partial stabilization, while a transient performance
is proven to be exponential. Suppose that

dys
Inew(q) = V2 \/ - +my (1- COS(QI))

Then the Lyapunov function candidate is

R 1
Vonew(q) = ”Q‘Ilznew(‘I) = hig)
and the controller suggested in Theorem 2 is then

r=-ar |0 < e

To use Theorem 2 we need to check again assumptions
IIT) and 1IV).

Lemma 4 (Assumption IIT) There is no solution
q(t) of the unforced system (16), (17) around the down-
ward equilibrium ¢ = ¢1 = 0 such thai the matriz (8)
Iooses the rank for allt > 0. m

Proof. In our case the matrix (8) is just a scalar equals

0
to _-—
( Linew (Q))
equal to zero for any solution of the unforced system

(16}, (17) except the upright ¢, = =, ¢, = 0 equilib-
rium, while in the downward equilibrium ¢, = ¢, = 0
it has an uncertainty of the type 0/0. |

and it is obviously not identically

Lemma 5 (Assumption IV) Any solution of the
closed loop system (16), {17), (24) has non-empty com-
poct w-limit set belonging to the cylindrical phase space.
Furthermore for any solution g(t) of the closed loop sys-
tem the vuriable q; (1) exponentially converges to zero. m

Proof, We can proceed in the same way as in the proof
of Lemma 3, but let us show another arguments. Con-
sidering only the dynamics of the closed loop system
(16), (17), (24) we have

duGr = —mgsin(q) — ¢

As seen the linearization of this differential equation
around the downward equilibrium ¢; = i = 0 is
asymptotically stable, that is g (t) will exponentially
converge to the downward equilibrium provided that
the initial conditions are chosen close to this equilib-
rium.

Along any solution the variable g2 € 5! is bounded,
and to prove compactness of w-limit set we have to
check boundedness of ¢»(t). It is defined by (16), (24),
i.e.
daz §2(t) = 1.
Therefore
1t 1
g = — i d = - f) —
20 =g~ | @ = - (a0 - w0)

Due to the fact that g;(t) = 0 as ¢ = +o0, we can
conclude that §2(t) is bounded and the limit relation

. . _ .4 @
t-l)l-)r-noo (h[t) - dao

is valid. m

3.3 Computer Simulations

To check theoretical results of Section 3.1 and 3.2 we
simulate the closed loop system with both controllers
(20) and (24). The parameters of the system (16), (17)
were chosen as

dy; = 0.004571, doo = 2.495 % 107%,  1ms = 0.35481

that are physical parameters of the system located at
the Automatic Control Dept., Lund Institute of Tech-
nology. The initial conditions are

=1 =01, §=¢=0
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Figure 1 presents the behavior of ¢;{t) in the closed
loop system with the controller (20) and the controller
(24). As seen, the transient performance of the sys-
tem with the controller (20) is oscillatory (and may be
not acceptable to real-time implementation, while the
friction in the system will certainly help to damp these
slowly decreasing oscillations and this fact has been
verified by experiment). At the same time, the closed
loop system with the controller (24) shows quite fast
convergence q; (¢) to zero.

Time (sec)

Figure 1: The valyes of g (t) for the controller (20), the
blue line {--}, and the controller {24), the green
line (—)

4 Conclusions

This paper is aimed at revealing an interesting exten-
sion of one particular (classical) fact within the par-
tial stability theory to the case of partial stabilization
of nonlinear control systems. This fact, the so-called
Pozharitsky Theorem, states: If partial stability is de-
rived based on the Lyapunov function constructed from
first integrals of the system then partial stability can
be proven by using new Lyapunov function of a simple
form.

This fact substantially simplifies the search of an appro-
priate Lyapunov function leading to partial stability of
the system. Indeed, if the simplest choice of Lyapunov
function candidate constructed from the first integrals
of the system, does not result in partial stability, then
ne other choice of Lyapunov function candidate con-
structed from first integrals of the system will result in

partial stability.

Omitting some technical assumptions, the main result
of the present paper states that: an existence of a par-
tially stabilizing controller with the associated storage
function constructed from the first integrals of the un-
forced system, implies that the controller derived by
speed-gradient algorithm (2] from new storage function
of a simplified form is also stabilizing provided that any
solution of the closed loop system with this feedback con-
troller has non-empty compact w-limit set.

To illustrate this basic result the problem of partial
stabilization of the downward equilibrium of the novel
Inertia Wheel Pendulum is considered and solved.
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