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Abstract

Given a multi-affine system on an N-dimensional rectan-
gle, the problem of reaching a particular facet, using multi-
affine state feedback is studied. Necessary conditions and
sufficient conditions for the existence of a solution are de-
rived in terms of linear inequalities on the input vectors at
the vertices of the rectangle, and a method for constructing a
multi-affine state feedback solution is presented. The tech-
nique is applied to the control of hybrid medels of bioregu-
latory networks.

1 Introduction

This paper studies multi-affine dynamical systems evolving
on rectangles and presents a controller design method for
reachability of a facet. This problem is motivated by the
control of multi-affine hybrid systems.

A hybrid system is a dynamic system that consists of dis-
crete and continuous components with complex interactions

{11]. The safety criticality of many embedded systems has-

resulted in significant research on computing reachable sets
for hybrid systems.

Piece-wise linear hybrid systems have received great atten-
tion in the past years. This class of systems consists of au-
tomata for which ecach discrete state is ar affine system on
a polyhedral set [12). Specialized tools like HyTech [8],
d/at [4], and CheckMate [3] have been developed for
verification of such systems. {CheckMate can also handle
low-dimensional nonlinear systems). A particular approach
to the reachability problem was developed by van Schuppen
in [13], which requires the solution of a facet reachability
problem of an affine system on a polyhedral set, given in

[5].
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This paper extends the results derived for linear systems in
[5, 7] to a class of non-linear dynamical systems. We deter-
mine necessary conditions and sufficient conditions for the
existence of a multi-affine control such that, independent
of the initial state, the trajectory of the closed loop system
reaches a particular facet of a rectangle in finite time,

‘The main motivation for this work are hybrid models of
bioregulatory networks, as the one described in [1, 2]. A
bioregulatory network is an ensemble of genes, together
with their products (mRNA and proteins), and other species
affecting the expression of the genes. Traditionally, the level
of gene transcription is modeled as a sigmoidal function of
the concentration of the regulatory species. However, exper-
imental data on numerous systems in biology suggests that
regulation can be modeled as a piecewise constant function.
If we consider all the genes in the network with all the cor-
responding levels of activation, we end up with a switched
system with specific dynamics for each mode. The vector
fields are multi-affine, because of the rate equations that de-
scribe chemical reactions among species. The invariants of
the modes are rectangular and the facets correspond to genes
being turned on or off. An important question is whether
one can drive a genetic system from an arbitrary initial state
to a final state so that some genes are turned on while others
are not transcribed. To do this, the first problem to be solved
is driving a system with multi-affine dynamics within rect-
angular regions so that some desired facet is hit in finite
time. This is exactly the problem we formulate and solve in
this work.

2 Problem formulation

For N € N, let Ry denote the N-dimensional rectangle
described by:

Ry ={z =(z1,...an) € R |a; < z: < i}

where a4, b; € R, a; < b, 1 = 1,...,N. A multi-affine
function f : Ry — BR™ (with m € N) is a polynomial
in the indeterminates 2, . . .,z with the property that the
degree of f in any of the indeterminates zy, ..., zx is less
than or equal to 1. Stated differently, f has the form
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with ¢;,, iy € R™ forall 4y,... iy € {0,1} and using
the convention that if i, = 0, then 23* = 1.



Consider the following non-linear control system evolving
in Rn:

& = f{z) + Bu. @)
The drift term f : Ry — BY is a multi-affine function,
B € R¥*™ i a constant matrix whose columns give the
directly controllable directions, and the input % is assumed
to take values in a polyhedral set 7 C B™ only.

Problem 1. Consider the multi-affine system (2) on the
rectangle 2y, and let F; be a facet of 2, with normal vec-
tor n; pointing out of Ry. For any initial state zo € Ry,
we have to find a time instant Ty > 0 and an input function
u : [0,T) — U, such that

(i) Vt € [0,Tp] : =(t) € Ry,

(if) x(Ty) € Fj, and Ty is the smallest time-instant in
the interval [0, 0o) for which the state reaches the exit
facet F;,

(iii) nT&(Ty) > 0, ie. the velocity vector £(To) at the
point z{Ta) € F; has a positive component in the
direction of n;. This implies that in the point z(Tp),
the velocity vector &(7y) points out of the rectangle
Bx.

Furthermore, this input function u should be realized by the
application of a continuous feedback law

u(t) = k(z(2)), 3

with k : Ry — U a continvous function, that is indepen-
dent of the initial state xg.

For the solution of Problem 1, we are particularly interested
in multi-affine feedback laws k(z). Note that if the feedback
law k(z) in (3) is multi-affine, the closed-loop system is also
multi-affine:

& = f(z) + Bk(z), 4)

$(0) =Iy.

To simplify the notation and without restricting the gener-
ality, we will solve the problem on the unit cube Ky =
[0,1]V rather than on the arbitrary rectangle Ry. Indeed,
by the affine coordinate transformation 2 = §(x) = Ax+b,
with

A= diag{

1 NxN
e, R >N,
bl—(h’ bN—'aN}e

T
e I
b —a by ~ an

the problem is translated to the unit cube because S maps
Ry to Ky in such a way that vertices are mapped to ver-
tices, edges to edges, facets to facets etc. Moreover, since S
simply consists of a translation and a scaling operation, the
system remains multi-affine in the new z-coordinates. In the
rest of the paper, when we refer to Problem 1, we assume
that the rectangle R is the onit cube K.
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3 Multi-affine functions on the unit cube

For any full-dimensional polytope Py in RY, a facet of Py
is the intersection of Py with one of its supporting hyper-
planes. More generally, a face of Py is the intersection of
P with several of its supporting hyperplanes, If the dimen-
sion of the intersection is n (with 0 < n < N) the face is
called an n-face.

Let {z;,...,zn) € [0,1]" be a point in the unit cube
K. and denote the 2% vertices of Ky by (41,...,in).
i1y.-,in € {0,1}. Let m € Nand m < N. Then ev-
ery N — m-dimensional face F' of the unit cube Kn =
{{z1,...,zN) | Z; € [0,1], (£ = 1,...;N)}, character-
ized by m equations of the form

Ty, 0 or =z

L,

Xy 0 or Lip 1,

where 11, ... ,im € {1,...,N} and i # i; forj # k, is
isomorphic with the N — m dimensional unit cube Ky _y;.
If f : Ky — R™ is a multi-affine function, and F is an
N — m-dimensional face of i, then the restriction f |p of
f to F'is a multi-affine function on the N — m-dimensional
unit cube K _m.

Lemma 1. Let f : Ky — BR™ be a multi-affine function,
and assume that

Y(it,..,in) € {0,137V : flir,...,in)=0. (5
Then f = 0.

Proposition 1. Ler N € N and consider 27 fixed vectors
Uiy,in € B™, ((i1,...,in) € {0,1}). Then there exists
a unique multi-affine function f : Ky — B™ such that

V(i yin) € {0,117 ¢ fl1,. . in) = viy, iy, (6)
which is given by

™

f($1,...

LV INY =

N
> TGz v,

it,,in €{0,1} k=1
' (N

Proof. Tt is obvious that f defined in (7) is multi-affine.
Moreover, for every (iy,...,in) € {0, 1}V:

N . .
[0 =)t tea =
k=1
1 if (Il,...,Q:N)Z(il,..,,iN),
0 if (x1,...,z~5) € {0, 13" \{(F1,....in)}.
So indeed f(i1,...,iN) = viy,..y forall (iy,...,ix) €

{0, 1}%.

If g : Ky — R™ is a multi-affine function satisfying (6),
then h := f — g is multi-affine, and h{i;,...,iy) = 0 for
all (iy,...,in) € {0,1}*. By Lemma 1, h = 0, hence f
defined in (7) is unigue. O



Proposition 2. Let f : Ky — R™ be a multi-affine func-
tion, and let (A1,...,An) € [0,1]%. Then f{A1,...,An)
is @ convex combination of {f(t1,...,in) | t1,...,in E
{0,1}}, ie. f(A1,. .., AN) is a convex combination of the
values of [ at the vertices of K.

Proof. Let (A,...,An) € [0,1]V. Since f is a muiti-
affine function, representation (7) is also valid for f, with
Viy...in — f(il, - ,iN) for all (i], e ,‘l:N) € {U., l}N.

So, in the point (A, ..., An) we have
f(Alv"'))\N) =

N
> JIa- 20N flnin). @)
i1, inE{01} k=1
Also the identity function A = 1 is multi-affine. In this
situation, representation (7) applies with v;, . i, = 1 for
(i1,...,in) € {0,137, So in the point (A1, ..., An):

N
Y JIa-a) A =1L

i1,emin €401} k=1

)

Combining (8) and (9), it is apparent that (8) represents
F(A1,...,An) as a convex combination of the values of f
at the vertices of K. O

Corollary 1. Let f : Ky — R™ be a multi-affine func-
tion. Let (Ay,...,An) € Ky, and let F be the face of Kn
of lowest dimension of which (A\y,...,An) is an element.
Then f(Ay,...,AN} is a convex combination of the values
of f at the vertices of F. : '

4 Necessary conditions for feedback control to a facet

Proposition 3. Ler Py be a full-dimensional polytope
in RN with vertices vi,...,on, (M > N +1). Let
Fy,..., Fg denote the facets of Py, with normal vectors
ni,...,ng, respectively, pointing out of the polytope Px.
Fori e {1,...,K}. ler Vi € {1,..., MY} be the index
set such that {v; | 7 € V;} is the set of vertices of the
facet Fy. Conversely, for every j € {1,..., M}, the set
W; € {1,..., K} contains the indices of all facets of which
v; is a vertex. Consider the system

= f(z) +G(z) - u, {10

on the polytope Py, where f : Py — RN and G :
Py 3+ RN*™ gre assumed to be Lipschitz-continuous
functions, If there exists a feedback u k(zx), with
k : Py — U a Lipschitz-continuous function, that solves
Control Problem I with exit facet Iy, then there exist inputs
uy,...,un € U such that

17(0) = Zo,

(N vjev:

@ nf(f(v;) + Glvj)u;) >0,
by Vie Wi\{1}: nf(f(v;) + G(v;)u;) <0.
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@ Yie{l,...,M\W:

(@ Vie W;: nl(f(v;)+Gly)uy) <40,
®) Yicw, nf (f(v;) + Glvs)u;) < 0.

Idea of the proof: Suppose that the Lipschitz - continuous
function k : Py — U generates a feedback law u(t) =
k(x(t)), that solves Control Problem 1. Then the inputs
u; = k(y;) € U, (§ = 1,..., M}, obtained by applying
feedback k to the vertices vy, ..., vy, satisfy (1) and (2).
The proof of this claim is carried out in a similar way as for
affine systems (see [6], proof of Proposition 3.1).

The necessary conditions stated in Proposition 3 consist of
a set of strict and non-strict linear inequalities on the in-
puts to the system at the vertices of the polytope Py. Since
also the input set U is assumed to be polyhedral, the exis-
tence of a solution uy,...,usy € U may be checked, us-
ing existing software for polyhedral sets, like e.g. [10, 14].
The computation is further facilitated by the fact that the
inequalities for each input are completely decoupled. Note
that the formulation in Proposition 3 is more general than
needed in this paper; the claim is valid for arbitrary full-
dimensional polytopes Py and for systems described by
Lipschitz-continuous dynamics.

5 Sufficient conditions for feedback control to a facet

In this section, first sufficient conditions for the solvability
of Control Problem 1 are stated in terms of the feedback
function k. These conditions have to be satisfied on the
polytope Py or its facets. For multi-affine systems on the
N-dimensional unit cube, convexity properties are used to
transform these conditions into requirements on the inputs
to the system at the vertices of the cube K. These condi-
tions turn out to be comparabe with the necessary conditions
described in Proposition 3.

Theorem 1. Let Py be a full-dimensional polytope in RY
with facets Fy, ..., Fg, and let ny, . .. ,ng denote the nor-
mal vectors of I, . . ., Fg, respectively, pointing out of the
polytope Py, Consider the system

= flz) +G(z) - u,

on the polytope Py, with f and G Lipschitz-continuous
functions. If there exists a Lipschitz functionk : Py — U,
such that

z(0) = zo,

(i) Yz € Pn: n(f(z) + Gz} k(z)) > 0,
(i) Vi € {2,....K} Y € F; : nl(f(z) + G(z) -
k(z)) <0,

then the feedback law u = k(z) solves Control Problem 1
with exit facet F}.



Proof. If in condition (ii) the inequality is strict, then the
proof is straightforward. Since the polytope Py is compact,
and the function z + =] (f(z)+G(z)-k(z)) is continuous,
condition (i) implies that there exists a ¢ > 0, such that for
all z € Py: nf (f(z) + G(z) - k(z)) > c. So the closed-
loop system will move in the direction of F) with a strictly
positive speed of at least ¢, and the polytope Py is left in
finite time. Condition (ii) with strict inequality indicates
that the state of the closed-loop system can not leave Py
through any of the facets F»,..., Fx. So the state of the
closed-loop system will leave Py through F) in finite time.

The extension of the proof to the non-strict inequality in (7i}
may be carried out in a similar way as for affine systems
(see [6]). O

Theorem 2. Let Kn be the N-dimensional unit cube in
B, and consider the multi-affine system
& = f(z) + Bu, 2(0) =39 € Kn

on Ky, with B € RV*™ f : Ky — RY multi-affine,
and u € U, with U C R™ a polyhedral set. Each vertex
(i1,---,in) € {0,1}Y of K is also a vertex of the facets
zp =i (k= 1,..., N), with normal vectors (—1)+e,
pointingout of K. Lat Fy ;= Ky {zx e BY |
1} be the exit facet of Ky, Assume that in every vertex
(E1s- .. in) € {0,1}Y there exists an input u;, ;. Such
that ¥(i1,- .., in) € {0,1}:

(1) €F(firy-rin) + Bugy, .in) > 0,
(2) VYke{2,...,N}:
(=18 t+1eT (f(iy, ..., in) + Bu,,. i,

Let k : Ky — U be the unique multi-affine function sat-
isfying

V(i]_,.“,iN) & {O, l}N : k(‘.’:l,. ..,iN) = Ugy, i

that may be constructed using formula (7). Then the con-
tinuous multi-affine feedback law u = k{x) solves Control
Problem 1.

Proof. The closed-loop dynamics is described by the muli-
affine function f(z) 4+ Bk{zx). According to Preposition 2,
for every € Kn, f(z) + Bk(z) is a convex combination
of {f(i1,--»in) + BE(ir,. .-, in) f i1y hinv € {0, 1}}.
Since by construction k(#1,...,in) = ui,,....in, condition
(1) in (11) implies that

vz € Kn: el (f(z) + Bk{z)) > 0,
and condition (¢) of Theorem 1 is satisfied,

Similarly, if Fj is a facet of Ky, different from F, and if F
is described by z; = i; for a fixed i; € {0, 1}, then Corol-
lary I and the definition of & imply that for every z € Fj,
the value of f(x) + Bk(zx) is a convex combination of

{f(il,...—,ijv) +BU1’1:____,'~ | 1:1,... ,T:j_l,l.j+1,...,iN [
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{0,1}}. Hence condition (2) (in combination with condi-
tion (1)) of formula (11) implies that

Yz € Fy: (-1 el (f(z) + Bk(z)) <0,

and condition (i) of Theorem 1 is satisfied. O

For multi-affine systems on the unit cube the sufficient
conditions stated in Theorem 2 differ only slightly from
the necessary conditions in Proposition 3: for vertices
(0,42,...,in) of the facet z; = () the necessary condition

V‘iz,...,i}\re{o,l}l

e’lr(f(oriﬂv e
is replaced by the strict inequality

JiN) + BuO,fzgn--i.v) >0,

Vig,...,in € {0,1} :

el (F(0,i2,...,in) + Bug,...in) >0,

to obtain a sufficient condition.

Checking the sufficient conditions in formula (11) of The-
orem 2 requires the solution of 2%V systems of N linear in-
equalities in m unknowns: for each vertex of Ky, one sys-
tem of N linear inequalities in the unknown v € K™. If
a solution exists, construction of a multi-affine feedback is
immediate, using formula (7).

Remark 1, Conditions (1} and (2} in formula (11} of The-
orem 2 provide polyhedral sets Uy, ;.. of controls at
the vertices (iy,-..,in) that solve Problem 1. If all the
sets U, . ;n are non-empty, then one can choose & rep-
resentant u;, .. iy from each set and construct the feed-
back control using formula (7). An interesting special
case is when {V; | i cron} Un...iv # @. An element
€ n£1,...,i,ve{o,1} Ui, ,...in can be used as a constant {in-
dependent of the current state) control that solves Problem
1. Note thar this is consistent with (7): if us, . 5y = G In
all vertices of a cube, then u{z) = 1. This case might be ex-
tremely useful for practical situations when the state is not
available for feedback.

6 Case study: gene transcription control in Vibrio
Sischeri

Vibrio fischeri is a marine bacterium that can be found both
as free-living organism and as a symbiont of some marine
fish and squid. As a free-living organism, V. fischeri exists
at low densities and appears to be non-luminescent. As a
symbiont, the bacteria live at high densities and are, usually,
luminescent.

The luminescence in V. fischeri is controlled by the tran-
scriptional activation of the lux genes [9]. A detailed de-
scription and mathematical modeling is given in [2], where



a conventional, highly non-linear, purely continuous model
is compared to a lower dimensional, switched system with
multi-affine dynamics in each mode.

Under reasonable assumptions, the system of differential
equations describing the dynamics of one mode of the sim-
plified hybrid model is three dimensional # = [1 22 z3]T
with two inputs © = [1; u2]7 in the form given by (2) with

kewy ~ kijzias
kizixs — koxo
k21'2 - kl.’DlI;; —Nnr3

f)

1 0
, B=|0 0
0 n

The state variables represent cellular concentrations of dif-
ferent species and the parameters are binding, dissociation
and diffusion rates:

z; = protein LuxR (ml=%)

¥y = complex Ai-LuxR (mi~?)

23 = autoindocer Ai(mi—3)

ki = binding rate constant (30 Pm 1t~ !)
k» = dissociation rate constant (10 t~1)

n = diffusion constant (10 t™)

where m, [, and ¢t are units for mass, length, and time, re-
spectively. The control variable u; could be physically rep-
resented by a plasmid producing protein LuxR, while u;
is an external source of autoinducer. We want to design a
multi-affine feedback control so that all states in the rectan-
gle

Ry={z=[zzom3)" e B®|1<2; <2,i=1,2,3}

are driven through the facet x,
system, this could correspond to steering the system so that
the lux gene is switched on. Also, the controls are supposed
to be constrained in the rectangle

U=1{20<u <60, 1<u; <10}

The vector field of the uncontrolled system (» = 0) is plot-
ted in Figure 1 (a). We can see that the vector field already
has a positive component along e», as desired. On the other
hand, the uncontrolled vector field would steer the system
out of the rectangle through z; = 1 and z3 = 1, which is
not desired. So, in this problem, we expect the controls to
solve the “stay inside” condition.

First, for simplicity, we change the coordinates so that the
control problem is reduced to the unit cube K. In this par-
ticular case, this consists of translations z; = x; — 1. Inthe

unit cube the dynamics are described by ¢ = f(2) + Bu,
where

_ ~ky + ka — k121 + kpzp —~ kyz3 — kizizs

Flz)= k1 —ka+ k171 — kaza + kiza + krziza

—ky + ko —n—k1zy + koz2 — kyz3 —nzz — ky2123
It is easy to see that

€3 2lginin > 0, —€3 £l(iy 0,54y < 0, 1,13 € {0,1},

2. In the larger hybrid
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mainly because the binding rate k; is significantly higher
than the dissociation rate k,. The two above conditions are
equivalent to condition (1) in fornmula (11) of Theorem 2 and
prove that the vector field has a positive component along
e2 everywhere in K3, as observed at the beginning of this
section.

To make sure that the sysitem does not leave the rectangle
through any facet different from 22 = 1, we need to design
controls. For facet z3 = 1, we require eg"é [(ir,iz) S0
which is equivalent to

W <7, M <6, uM <13, wtt <12 (12)

On the opposite facet z3 = 0, the “stay inside™ conditions
—el %} (i, .4.0) < Otranslate to

w3 >3, ,uP?>2, ul® >6, ul®>5 (13)
For facet z; =1, eilrz' | (L,iz,ia} < Ois equivalent to
ul® < 50, uf® <110, u}'® <40, u1*' <100 (14)
Finally, for 21 = 0, —e] | (0,i.55) < 0 become
w)% > 20, v3% > 50, M0 > 10, w240 (15

According to the above conditions, we can choose the con-
60

trols at the vertices:
20
6 : U010 = | 3

50 0
U1 = 5 s U100 7 y U101 =

I
2]
o[ e[ 8

Going back to the original coordinates, the multi-affine
feedback control is given by u(z) = [u1{z), u2(x)]T with

it

30
u000={ 4 }, U0

(]
OO

uy(z) = —10(xg + 21 (-1 + z3) — 4x3),

ua(z) = 21 (3 + 2a(—1 4+ 23) — (2 + 75)zy O

The controlled vector field is plotted in Figure 1 (b).

A careful examination of (12) and (13) shows that a constant
uz = 6 solves the problem, according to Remark 1. We
cannct say the same thing about u, , because the intersection
of the allowed controls u; at the vertices is empty, as it can
be noticed from (14) and (15).

The controlled vector field with u; as in (16) and uz = Gis
given in Figure 1 (c).
7 Concluding remarks

For multi-affine systems on the N-dimensional unit cube,
necessary conditions were derived for the existence of a
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Figure 1: The orientation of the vector field in the rectangle 1 € z; € 2, i = 1, 2, 3 together with some trajectories originating within: (a)
the uncontrolled case, (b) the controlled case using (16), and (c) the controlled case withu; = 6.

continuous feedback law, that realizes the control objective
of steering the state in finite time to a particular facet of the
cube. These conditions consist of linear inequalities on the
inputs at the vertices of the cube. For the same control prob-
lem also a set of (slightly stronger) sufficient conditions in
terms of linear inequalities was obtained, and a method for
constructing a continuous multi-affine state feedback law
solving the reachability problem under consideration was
described. The method can be applied to the control of hy-
brid models of bioregulatory networks. A case study of gene
transcription control for the bacterium Vibrio fischeri was
presented. Such approaches may lead to novel methods for
designing and engineering biological circuits.
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