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Abstract

The estimation of Linear Time Invariant (LTI) models is a standard
procedure in System Identification. Any real-life system will however be
nonlinear and time-varying, and the estimated model will converge to the
LTI second order equivalent (LTI-SOE) of the true system. In this paper
we consider some aspects of this convergence and the distance between
the true system and its LTI-SOE. We show that there may be cases where
even the slightest nonlinearity may cause big differences in the LTI-SOE.
We also show a result that gives conditions that guarantee that the LTI-
SOE is close to “the natural” LTI approximant. Finally, an upper bound
on the distance between the LTI-SOE of a nonlinear FIR system with a
white input signal and the linear part of the system is derived.

1 LTI Model Identification

To estimate Linear Time Invariant (LTI) models from observed data is a stan-
dard tool in systems and control, see e.g. [1]. A brief summary of the basic
procedure is as follows:

A general LTI-model of a dynamical system can always be described as

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (1)

Here, q is the shift operator, and G and H are the transfer matrices from
the measured input u and the noise source e, which is modeled as white noise
(sequence of independent random variables). For notational convenience we will
from now on only consider Single-Input-Single-Output systems, but the theory
is the same in the multi-variable case.

The transfer functions are parameterized by a finite-dimensional parame-
ter vector θ, and this parameterization can be quite arbitrary. For black-box
models, it is common to parameterize G and H in terms of the coefficients of nu-
merator and denominator polynomials, perhaps constraining G and H to have
the same denominators. This leads to well established model classes, known
under names like ARX, ARMAX, OE, BJ, etc. The model parameterizations
could also correspond to state-space models in discrete or continuous time.

Whatever the parameterization, the problem is to estimate the parameters
in (1) based on observed input-output sequences {y(t), u(t), t = 1, 2, . . . , N}.
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A common approach is formed by Prediction error methods that first deter-
mine the prediction errors associated with (1):

ε(t, θ) = H−1(q, θ)(y(t)−G(q, θ)u(t)) (2)

This requires θ be confined to a region D, so that the filters H−1 and H−1G
are stable. Then the θ that minimizes the norm of the errors

θ̂N = arg min
θ∈D

VN (θ) (3a)

VN (θ) =
1
N

N∑
t=1

ε2(t, θ) (3b)

is determined, typically by numerical search.
How will these methods perform? Well, that depends on the input-output

data. A typical approach to analysis is to assume that the data indeed have
been generated by a system like (1) for some particular parameter vector θ0,
and for e being a sequence of independent random variables. In that case the
asymptotic statistical properties (convergence and asymptotic distribution) of
θ̂N can be calculated readily. We refer to [1] for an analysis of this kind, as well
as for more details on model structures and estimation techniques.

2 Estimating LTI Models of Nonlinear Systems

The question we discuss in this paper is what happens with the model θ̂N in
case the data originate from a non-LTI system. The use of linear models of
nonlinear systems can be discussed in several different frameworks and related
material can be found e.g. in [3], [4], [5] and [6]. In this paper we will consider
input and output signals that are jointly quasi-stationary (cf. [1]) and that have
well-defined spectral densities according to the following definition.

Definition 2.1 A signal s(t) is said to be quasi-stationary if it is subject to

E{s(t)} = ms(t), |ms(t)| ≤ C ∀t
E{s(t)s(r)} = Rs(t, r), |Rs(t, r)| ≤ C ∀t, r

lim
N→∞

1
N

N∑
t=1

Rs(t, t− τ) = Rs(τ), ∀τ

∞∑
τ=−∞

|Rs(τ)| < +∞

Two signals u(t) and y(t) are said to be jointly quasi-stationary if they, in
addition to being quasi-stationary by themselves, are subject to

E{y(t)u(r)} = Ryu(t, r), |Ryu(t, r)| ≤ C ∀t, r

lim
N→∞

1
N

N∑
t=1

Ryu(t, t− τ) = Ryu(τ), ∀τ

∞∑
τ=−∞

|Ryu(τ)| < +∞
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Let Φu(z) and Φyu(z) denote the z-transforms of Ru(τ) and Ryu(τ), respectively.

Φu(z) =
∞∑

τ=−∞
Ru(τ)z−τ

Φyu(z) =
∞∑

τ=−∞
Ryu(τ)z−τ

The spectral densities Φu(eiω) and Φyu(eiω) will then be well-defined for all
ω ∈ [−π, π].

Note that the class of quasi-stationary signals contains both purely stochastic
and purely deterministic signals as well as signals that have both stochastic and
deterministic components.

The basic result that is used in our context is as follows (cf. [1] and [2]).
Suppose that the input-output signals fulfill the requirements in Definition 2.1
and that the model (1) is an output error model, i.e. that H(q, θ) = 1. Then,
as N →∞

θ̂N → arg min
θ

∫ π

−π
‖G(eiω, θ)−G0(eiω)‖2Φu(eiω)dω (4)

where

G0(eiω) =
[
Φyu(eiω)
Φu(eiω)

]
causal

(5)

and where [. . . ]causal denotes taking the causal part.
The convergence theory is thus rather straightforward, and we shall in the

following section investigate how G0, the LTI Second Order Equivalent (LTI-
SOE) depends on the true underlying system and the input properties.

Before that, let us however note a few special features of the convergence to
the LTI-SOE:

• Even if the true system is causal, the ratio Φyu/Φu may correspond to
a non-causal function, so taking the causal part in (5) is essential. This
resembles the situation in linear systems, when output feedback is present.

• Even if the data from the system is noise-free, the convergence of the esti-
mates will exhibit “stochastic features”: The LTI-SOE will be approached
typically with the rate 1/

√
N and the path taken to the limit will depend

on the actual realization of the input.

3 Properties of LTI-SOE:s for Almost Linear Sys-
tems

The use of a linear model is very natural when the true system is close to
being linear. In many cases, the behavior of an almost linear system can be
understood, at least intuitively, from the theory of linear systems. Hence, it is
a legitimate question to ask whether this linear intuition can be extended also
to LTI-SOE:s for almost linear systems.
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For example, if the nonlinear contribution to the output is small for a certain
input one might assume that the corresponding LTI-SOE would be close to the
linear part of the system in some sense. However, as we will see in the following
example, this is not always the case.

Example 3.1: The distance between the LTI-SOE and the linear part
of a system

Consider the system

y(t) = u(t) + 0.4u(t− 1) + α(
3
4
u(t− 1)− u3(t− 1))

= GL(q)u(t) + αh(u(t− 1)) (6)

where GL(q) = 1 + 0.4q−1 and where h is a static nonlinearity with h(x) =
3
4x− x3. The parameter α defines how close the system is to the linear system
GL. For a bounded input, small values of α will give a system output that is
close to the output from GL. Assume that the input signal is

u(t) = sin(0.1t) + ε sin(0.3t) (7)

where ε = 0.001. For this input, a small value of α, like for example α = 0.01,
will give an output that is very similar to the output from GL (i.e. the output
when α = 0).

The small differences between these output signals will however give rise to
totally different LTI-SOE:s. This can be seen if we estimate two output error
models with nf = nb = 2, and nk = 0 (cf. [1]). The parameters of these models
have been estimated from two data sets consisting of 10000 noise-free input
output measurements with α = 0 and α = 0.01, respectively. The estimated
model G1 that is obtained when α = 0 is of course equal to GL. This is however
not the case for the model estimate G2 that is obtained for α = 0.01. Figure 1
shows the differences between GL, G1 and G2 in the frequency domain.
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Figure 1: The frequency responses of GL = G1 (solid) and G2 (dashed).

If we use many measurements we know from (4) that the estimated LTI
model will approximate the LTI-SOE of the system for this particular input.
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The estimated models will be as close to the LTI-SOE:s as possible at the
frequencies 0.1 and 0.3 rad/s. Thus we can conclude from Figure 1 that the two
systems (with α = 0 and α = 0.01) have very different LTI-SOE:s.

The dramatic change in the estimated LTI model that can be seen when
a small nonlinearity is introduced is a clear indication on that the LTI-SOE
not always can be understood from linear theory. It should be noted that a
small linear, time-invariant deviation from GL only would have given rise to a
small deviation in the estimated LTI model as an LTI system cannot generate
harmonics.

In our example, no matter how small α we choose we can always choose an
even smaller ε in u and thus get an LTI-SOE far from GL. That is, no matter
how linear we make the system there is always a u that have an LTI-SOE far
from GL.

In the previous example we have seen that the LTI-SOE in some cases can
be far from the linear part of the system. Let ut−∞ denote the set of input
signals from time −∞ to time t. Consider a system y(t) = f(ut−∞, α) that
has a quasi-stationary output and where α, just like in the previous example,
is a parameter that defines the size of the nonlinear part of f . Assume that
f(ut−∞, α) → f(ut−∞, 0) when α → 0 ∀t ∈ Z and for all quasi-stationary u.
Assume further that f(ut−∞, 0) is a stable, causal LTI system GL, i.e.

f(ut−∞, 0) =
∞∑
k=0

gL(k)u(t− k) = GL(q)u(t) (8)

Let G0,α,u denote the LTI-SOE that is obtained for a certain input signal u and
a certain α.

The conclusion that we can draw from Example 3.1 is that we cannot in
general assume that

sup
u: u q.s.

∫ π

−π
|G0,α,u(eiω)−GL(eiω)|dω (9)

will approach 0 when α→ 0. (The supremum is taken over all quasi-stationary
u). For some systems we can, whenever there is a small nonlinear term in the
system output, find a u for which the LTI-SOE is far from GL.

On the other hand, in cases where the nonlinear parts of the system are
more significant, the LTI-SOE will be a much better model of the system for
signals that are similar to the signal that was used to generate the LTI-SOE.

Despite the fact that we even for an almost linear system cannot prove that
the LTI-SOE:s are close to the linear part of the system for all inputs it is often
possible to say something about the behavior of the LTI-SOE for a particular
input signal. As a matter of fact, for a fixed input signal and a nonlinear system
that fulfill some additional requirements we have the following theorem.

Theorem 3.1 Let y(t) = f(ut−∞, α) be a nonlinear system and let u be a given
deterministic sequence that is quasi-stationary. Let Ryu,α(τ) be the cross co-
variance function between y and u for a certain choice of α and let Φyu,α(z)
be the z-transform of Ryu,α(τ). Furthermore, let G0,α,u denote the LTI-SOE of
the system for a particular choice of α. Assume that the following holds
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(i) u(t) is such that
∫ π
−π

1
Φu(eiω)2 dω = Iu < +∞ and that G0,0,u = GL.

(ii) y(t) is such that it, together with u, fulfills the conditions in Definition 2.1
for every choice of α with |α| < αmax.

(iii) α = 0 gives a stable, causal LTI system f(ut−∞, 0) =
∑∞
k=0 gL(k)u(t−k) =

GL(q)u(t) and f(ut−∞, α)→ f(ut−∞, 0), α→ 0 pointwise for each t ∈ Z.

(iv) ∃Mu ∈ Z+, λu, 0 ≤ λu < 1, Ku > 0 such that |Ryu,α(τ)| < Kuλ
τ
u when

τ > Mu ∀α with |α| < αmax.

Then it follows that∫ π

−π
|G0,α,u(eiω)−GL(eiω)|dω → 0, α→ 0 (10)

Proof: First we want to show that Ryu,α → Ryu,0. Take an arbitrary
ε1 > 0.

|Ryu,α(τ)−Ryu,0(τ)| ≤
∣∣∣∣∣Ryu,α(τ)− 1

N0

N0∑
t=1

f(ut−∞, α)u(t− τ)
∣∣∣∣∣+

+
1
N0

N0∑
t=1

|f(ut−∞, α)− f(ut−∞, 0)| sup |u(t)|+

+

∣∣∣∣∣ 1
N0

N0∑
t=1

f(ut−∞, 0)u(t− τ)−Ryu,0(τ)
∣∣∣∣∣

Choose N0 such that the sum of the first and the third term above is less
than 2ε1/3. Then ∃δε1 > 0 such that |α| < δε1 ⇒ max1≤t≤N0 |f(ut−∞, α) −
f(ut−∞, 0)| < ε1

3 sup |u(t)| . Thus |Ryu,α(τ)−Ryu,0(τ)| < ε1 if |α| < δε1 , i.e.

Ryu,α(τ)→ Ryu,0(τ), α→ 0

We continue by proving that
∫ π
−π |Φyu,α(eiω)−Φyu,0(eiω)|2dω → 0. Take an

arbitrary ε2 > 0. By Parseval’s identity we get∫ π

−π
|Φyu,α(eiω)− Φyu,0(eiω)|2dω = 2π

∞∑
τ=−∞

|Ryu,α(τ)−Ryu,0(τ)|2 ≤

2π
C0∑

τ=−C0

|Ryu,α(τ)−Ryu,0(τ)|2 + 4π
∞∑

τ=C0+1

(|Ryu,α(τ)|2 + |Ryu,0(τ)|2 +

+ 2|Ryu,α(τ)||Ryu,0(τ)|)

Choose C0 such that the last sum is less than ε2/2 ∀α with |α| < αmax. (This is
possible according to assumption (iv)). Then, from the first part of the proof, it
follows that ∃δε2 > 0 such that |α| < δε2 ⇒ 2π

∑C0
τ=−C0

|Ryu,α(τ)−Ryu,0(τ)|2 <
ε2/2. Thus

∫ π
−π |Φyu,α(eiω)− Φyu,0(eiω)|2dω < ε2 if |α| < δε2 , i.e.∫ π

−π
|Φyu,α(eiω)− Φyu,0(eiω)|2dω → 0, α→ 0
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Schwarz’ inequality now gives∫ π

−π
|G0,α,u(eiω)−GL(eiω)|dω =

∫ π

−π

|Φyu,α(eiω)− Φyu,0(eiω)|
Φu(eiω)

dω ≤(∫ π

−π
|Φyu,α(eiω)− Φyu,0(eiω)|2dω

)1/2

·
(∫ π

−π

1
Φu(eiω)2

dω

)1/2

=(∫ π

−π
|Φyu,α(eiω)− Φyu,0(eiω)|2dω

)1/2

· I1/2
u

and the result (10) follows.
(N.B. Assumption (iv) can as a matter of fact be relaxed a bit. The impor-

tant thing is that Ryu,α(τ) is small enough for large τ independently of α.)

2

Theorem 3.1 gives conditions on the system and input that guarantee a contin-
uous behavior of the LTI-SOE of the system in the point where α = 0, i.e. when
the system is linear. This is of course not surprising, it is rather the kind of
behavior one would expect the system to possess. Hence, the interesting part of
the theorem is rather the conditions that are required to prove the result than
the result itself.

The previous theorem tells us that the LTI-SOE will converge towards the
linear part of the system when the nonlinearity tends to zero but not how
fast this convergence is. In order to be able to derive an upper bound on the
distance between the LTI-SOE and the linear part of a system with a nonzero
nonlinearity of a certain size we will have to make some new restrictions on the
types of systems and excitation signals.

Hence, we will from now on only consider nonlinear FIR systems with white
stochastic inputs that can be written like y(t) = f(utt−M ) and that are close
to a linear system z(t) =

∑M
k=0 gL(k)u(t − k). The following theorem gives an

upper bound on the distance between the LTI-SOE and the linear part of such
a nonlinear system.

Theorem 3.2 Let u(t) be a quasi-stationary sequence of independent random
variables with zero mean and let y(t) = f(utt−M ) be a nonlinear FIR system
such that ∣∣∣∣∣f(utt−M )−

M∑
k=0

gL(k)u(t− k)
∣∣∣∣∣ < a (11)

Assume that the output y(t) has zero mean and that it, together with u(t), fulfills
the conditions in Definition 2.1. Assume also that limN→∞

1
N

∑N
t=1 E{|u(t)|} <

+∞.
Then ∫ π

−π
|G0(eiω)−GL(eiω)|dω <

a2π
√

(M + 1)

(
limN→∞

1
N

∑N
t=1 E{|u(t)|}

limN→∞
1
N

∑N
t=1 E{u(t)2}

)
(12)
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Proof: We start by proving the following inequality∣∣∣∣∣Ryu(τ)−
M∑
k=0

gL(k)Ru(τ − k)
∣∣∣∣∣ < a lim

N→∞

1
N

N∑
t=1

E{|u(t− τ)|} (13)

∣∣∣∣∣Ryu(τ)−
M∑
k=0

gL(k)Ru(τ − k)
∣∣∣∣∣ =

∣∣∣∣∣ lim
N→∞

1
N

N∑
t=1

E{y(t)u(t− τ)} −

−
M∑
k=0

gL(k) lim
N→∞

1
N

N∑
t=1

E{u(t− k)u(t− τ)}
∣∣∣∣∣ =

lim
N→∞

∣∣∣∣∣ 1
N

N∑
t=1

E{(y(t)−
M∑
k=0

gL(k)u(t− k))u(t− τ)}
∣∣∣∣∣ ≤

lim
N→∞

1
N

N∑
t=1

E{|y(t)−
M∑
k=0

gL(k)u(t− k)||u(t− τ)|} <

a lim
N→∞

1
N

N∑
t=1

E{|u(t− τ)|}

The assumption that u(t) consists of independent random variables implies
that Φu(eiω) = Ru(0) and that Ryu(τ) = 0 when τ > M or τ < 0. This,
together with Parseval’s identity and equation (13) give∫ π

−π
|G0(eiω)−GL(eiω)|2dω =

1
Ru(0)2

∫ π

−π
|Φyu(eiω)−GL(eiω)Ru(0)|2dω =

2π
Ru(0)2

M∑
τ=0

|Ryu(τ)− gL(τ)Ru(0)|2 <

a22π(M + 1)

(
limN→∞

1
N

∑N
t=1 E{|u(t)|}

limN→∞
1
N

∑N
t=1 E{u(t)2}

)2

Finally, Schwarz’ inequality gives∫ π

−π
|G0(eiω)−GL(eiω)|dω ≤(∫ π

−π
|G0(eiω)−GL(eiω)|2dω

)1/2√
2π <

a2π
√

(M + 1)

(
limN→∞

1
N

∑N
t=1 E{|u(t)|}

limN→∞
1
N

∑N
t=1 E{u(t)2}

)
2

Theorem 3.2 tells us that the distance between the LTI-SOE and GL is less
than a bound that is proportional to a (where a is the size of the nonlinearity
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in equation (11)). Furthermore, this theorem shows the effect on the LTI-SOE
of a scaling of the input signal.

The use of ũ = cu as input instead of u will result in a new LTI-SOE.
The distance between this new LTI-SOE and GL will have an upper bound in
equation (12) that is 1

|c| times the original bound. When a white input signal
is used it is thus possible to reduce the distance between the LTI-SOE and the
linear part of a nonlinear FIR system that fulfill equation (11) simply by scaling
the input signal.

4 Conclusions

It is an important task in system identification to understand how general sys-
tems are approximated by LTI models. This includes the problem how to decide
the LTI-SOE and to assess its “distance” to the true, nonlinear system. This
task is technically difficult, and in this paper we have only investigated the
“skin” of the set of LTI models in the set of general systems. We have shown
that an LTI-SOE of an almost linear system can be far from the linear part of the
system for some inputs. Furthermore, we have given conditions on the system
and input that guarantee that the LTI-SOE approaches the linear part of the
system when the nonlinear elements of the system approach zero. We have also
derived an upper bound on the distance between the LTI-SOE of a nonlinear
FIR system with a white input signal and the linear part of the system.
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