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Abstract

A function approximator is introduced in this paper
that is based on Least Squares Support Vector Ma-
chines (LSSVM) and on Least Squares (LS). The po-
tential indicators for the LS method are chosen as the
kernel functions of all the training samples similar as
with LSSVM. By selecting these as indicator functions
the indicators for LS can be interpret in a support vec-
tor machine setting and the curse of dimensionality can
be circumvented. The indicators are included by a for-
ward selection scheme. This makes the computational
load for the training phase small. As long as the func-
tion 1s not approximated good enough, and the func-
tion is not overfitting the data, a new indicator is in-
cluded. To test the approximator the inverse non-linear
dynamics of a linear motor are learnt. This is done by
including the approximator as learning mechanism in
a learning feed-forward controller.

1 Introduction

The performance of many industrial machines critically
depends on their ability to let some end effector track
a desired motion. Designing machines that maximise
this ability is a truly mechatronic challenge, because
mechanical system properties as well as electronics and
control design may have a large influence on the track-
ing accuracy. As an example of this, one may think of
the difficulties faced by designers of lithographic equip-
ment for the exposure of wafers or of component moun-
ters for production of printed circuit boards. In our re-
search, we specifically consider the design of servo con-
trollers for motion systems in a mechatronic setting.
Such controllers will always involve a feedback compo-
nent in order to deal with plant uncertainty and to ob-
tain good disturbance suppression. To be able to track
a motion with small errors, a feed-forward controller
can be used in addition. The feed-forward controller
generates the control signal from the reference (the de-
sired motion) and is not error driven. The feed-forward
controller can be chosen as the (pseudo-}inverse of the
plant.
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Instead of mathematically computing the required
feed-forward compensation, it can also be determined
from the feedback control signal by using a function
approximator. This may have distinct advantages,
specifically for motion systems, as also unknown and
non-linear system properties such as friction can be
compensated in this way. The function approxima-
tor should learn the feed-forward control signal as a
function of the relevant commanded plant states. This
learning scheme is known as feedback error learning [10]
and the control configuration has been called Learning
Feed-Forward Contrel (LFFC) [12, 16]. Several exam-
ples of successful apphcation of LFFC have been re-
alised, e.g. Path tracking for an autonomous mobile
robot [12]; Accurate positioning with a linear motor
motion system [6].

It is of crucial importance that the function approx-
imator that is contained in LFFC is computationally
inexpensive because it has to output a control signal
every sample instance. An approximator that is based
on a set of basic functions is often used because of this.
Because the space is divided into regions, the number of
weights of this kind of approximators grows exponen-
tially with the dimension of the input space. When the
function to be approximated depends on several inputs,
the learning process will fail for such approximators,
something which is known as the curse of dimensional-
ity. Large memories, difficult training and bad generali-
sation are the problems we are than dealing with |2, 6].
This is a major restriction for LFFC because motion
systems commonly have a minimum input dimension
of three and for a multi degree-of-freedom system this
dimension increases substantially.

Recent insights in the field of statistical learning have
shown alternative ways to approximate functions that
are not liable to the curse of dimensionality {15]. Specif-
ically, so-called Support Vector Machines (SVM) have
shown to be good approximators for regression prob-
lems in high input dimensions. In previous work, we
have shown that these techniques can also be used in
LFFC [4], as a SVM is not computationally demanding
when calculating an output for a given input. How-
ever, the computational load of the training process
of an SVM is large, which implies that self-tuning or
adaptive functionality cannot be implemented in SVM-
based LFFC. This is a serious drawback. So-called
Least Squares Support Vector Machines (LSSVM) [14]
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are an improvement in this sense. Unfortunately, these
approximators are not sparse, which implies that a
computationally demanding pruning process is neces-
sary [5, 14]. Therefore, our research is aimed at finding
a function approximator that does not suffer from the
curse of dimensionality and is computationally cheap at
the same time, both in terms of training and applica-
tion. In this paper, we propose a function approximator
that better meets these demands. We demonstrate its
utility by considering a case, being an LFF-controlled
linear motor motion system.

Because the function approximator is based on
(LS)SVM and LS, these will be treated first in section 2.
With this background the method is introduced in sec-
tion 3. Subsequently, the method is used as learning
mechanism in the simulation-based case study, which
is presented in section 4. The paper will end with con-
clusions in section 5.

2 Function Approximation - Basics

Consider a given set of training samples {Zx, ¥ }r=1...¥,
in which z, is the input vector and yy is the corre-
sponding target value for sample k. The goal of func-
tion approximation is to learn the underlying relation
between the input and the target value. After learn-
ing, a function approximator implements a mapping
x — §(z) that can be evaluated for any . The per-
formance of a function approximator is measured by
means of the approximation error ey, which is defined
as ex = yr — §{zx). This section summarises the theory
of two learning mechanisms, namely LS and LSSVM.

2.1 Least Squares
The Least Squares method learns a linear relation be-
tween a set of indicators fi(z), k= 1...n and the out-

put §:
hs(z) = arfilz) +oefalz) +.. Fanfalz) (1)

In this equation, the a’s are the n parameters that get
a value during the training by minimising the summed
squared approximation error over all examples. The
indicators can be non-linear functions of the input vec-
tors. Define the matrices X and ¥ containing respec-
tively the indicators for all the k samples and the target
values:

Al@)  falz} -+ faled) n
filza) falze) - Fales) ¥ Y2

fn(zN) N
)

in which the subscript of £ and y denotes the sample

number. Then the minimisation problem is given by

filzw) falow)

the following matrix expression:
min || Xo - V)3 (3)
2]

It can be solved by setting the derivatives equal to zero,
resulting in the normal equations [7, 13]:

(XTX)a=XTY (4)

2.2 LSSVM .
With SVM, the relation underlying the data is repre-
sented as:

fovmlz) = wTo(z) + b (5)

in which ¢ is a mapping of the vector « to some feature
space, b is the bias and w is a weight vector of the same
dimension as the feature space. The mapping ¢(x) is
commonly non-linear and makes it possible to approx-
imate non-linear functions. In the case of LSSVM we
search for that weight vector that will give the small-
est summed square approximation error over all sam-
ples (in the case of Vapnik’s SVM another criterion is
used). A regularisation parameter v is used to avoid
overfitting. This results in the minimisation problem:

N
%}EI(w,e) =z w+ kazﬂek, (6)

with equality constraint
v = wl o) + b+ ex. (7

This problem can be solved using optimisation the-
ory [1]. Instead of minimising the primary objective
(6) with constraints (7), a Lagrangian can be formed
of which the saddle point gives the optimal values. The
optimal values can be found by setting the derivatives
of the Lagrangians equal to zero. By removing the w
and the e through substituticn, a set of linear equations
is found by which the optimal values can be calculated:

el =[] o

In this equation I is a column vector of appropriate
dimension filled with ones, @ is a vector with the La-
grangian multipliers and ¥ is previously defined. The
elements of matrix Q equal Qy = (d(zk), d(z)) =
®(xk, 21} and is a matrix which contains all the inner-
products between the training samples in the feature
space. The function ®(z,,x;) is called a kernel func-
tion. The innerproduct is defined as (¢p{zx), d{z;)) =
é{xr)T d(x;). The mapping ¢{z) from input space to
feature space does not have to be made explicitly in
order to calculate the elements of Q; it can be calcu-
lated in the input space. Possible mappings result in
an approximation by polynomials, splines or radial base
functions [15]. )
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The output of the approximator can be calculated for
new values of r with « and 6. The output is given by

(w, ¢(z)) + b,

(S0 axdlme), o(2)) +b,
ZN:_‘{ Gk<¢(2k), ¢($)> + b?
Ek=1 o ®(xi, z) + 0.

The curse of dimensionality is circumvented because
the input space is never divided into small regions: the
dimension of the input space plays no role. Equation
(9) only contains the innerproducts of an input with the
training samples in some feature space and this results
in a scalar, irrespective of the dimension of the input
vector. Hence, the number of parameters depends not
on the input dimension but on the number of training
samples. But, to approximate the training data, not all
the training samples are required. A large portion of
the parameters ¢x can be made equal to zero. If the oy
is zero, the kernel function doesn’t have to be evaluated
for that training sample to calculate the cutput. Those
training samples for which o} are non-zero are called
support vectors.

Bz}

(9)

I

In LSSVM, the Lagrangian multipliers get a value
which is preportional to the error at that training sam-
ple. This means that (unlike in Vapnik’s SVM) nearly
all the multipliers are non-zero and are required for
the calculation of the output (9). If the number of
training samples is large, this becomes infeasible. To
circumvent this, pruning is applied: the learning pro-
cess is executed repeatedly, and samples that only have
a small influence on the output are omitted in consec-
utive steps. In {14] it is argued that the sample with
the smallest absolute multiplier (i.e., the smallest error
in the current pass) should be omitted. However, this
approach is suboptimal; in [5] a pruning scheme is in-
troduced that minimises the approximation error that
results gfter omission. This approach performs signifi-
cantly better, although the computation load increases.

2.3 Evaluation
If we evaluate both learning methods and compare their
properties, we may note the following:

¢ The calculation of the output of both function ap-
proximators is identical ift The Least Squares in-
dicator functions are chosen equal to the LSSVM
kernels of the training samples: fx(z) = ®(zx,2);
To account for the LSSVM bias b, the first row of
X in (2) should contain only 1’s,

Thus the support vector methodology gives rise to a
new set of indicator functions for least squares that
can be interpret from a support vector setting.

In LSSVM, all the training samples are mapped to
a feature space and in this space a linear function
is sought that minimises the sum of squared errors.
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The number of multipliers is equal to the number of
training samples giving rise to a set of linear equa-
tions with dimension N +1 (one extra for the bias}.
The number of parameters, the Lagrangian multi-
pliers, is reduced by omitting samples with little
influence. This pruning leads to a loss of (valuable)
information, as the omission of samples not only im-
plies a reduction of parameters, but also a reduction
of points at which the approximation is evaluated.
In the least squares method one tries to minimise
directly the sum of squared error by changing the
Lagrangians. This makes it possible to use only a
subset of the training samples to construct the in-
dicators, while all training samples are used for the
training of these indicators.

LSSVM initially uses a parameter for each training
sample and subsequently reduces this number. This
is computational unattractive, because it means
that the iterative solution of matrix equation (8)
starts with a maximum dimension, which is subse-
quently reduced. The calculation time is large if the
number of samples is large relative to the number
of support vectors required for the approximation.
In least squares, one is able to work the other way
around: start with few indicators, and include more
if the performance is too low. This is computation-
ally more attractive. Neither method is guaranteed
to find the optimal subset [11].

3 Support-vector-based Least Squares

Based on the above observations, we propose a new
Least Squares learning method that is based on support
vector machine:

e Indicator functions are chosen conform point 1
above, That is, kernels at a training sample as used
in (LS)SVM are potential indicator functions.

A limited number of indicator functions is selected
out of the N candidates, with IV equal to the num-
ber of training samples. For this, we need to specify
an indicator selection procedure.

Learning is done recursively; as long as the perfor-
mance measured over all training points is not suffi-
cient and overfitting has not yet occurred, the num-
ber of indicators is increased in consecutive steps.
For this, we need stop criteria.

3.1 Indicator selection

Consider an illustrative example, refer figure 1. We
have collected a set of 25 data points of the function
y = sin(z — 0.25)/(x —0.25) given by the black line. We
wish to approximate the function with the new method
by means of radial base functions, i.e., peiential indi-
cator functions are fi(z) = {¢(zk), P(2)) = ®(z),2) =



Angle [rad}

0.25

Figure 1: The elements Figure 2: Angle between
of the training the error vector
set and 6 of the and the poten-
potential indica- tial indicators
tors

exp(—|jz — zx]|3),k = 1...25. Six of these potential
indicator functions are shown in gray in the figure.
So, potential indicators differ in where their centres
are located. Qut of all these indicators a sufficiently
large yet minimal set should be selected to approxi-
mate the training data. This is a known problem in
regression [3, T, 9, 11].

1t follows from (2} that each indicator generates a col-
umn vector in X with a dimension equal to the number
of samples N. The residual of the current approximator
for the given training set is given as e = Y — X @, which
is also a vector of dimension N. Now we wish to add
an indicator. Qut of all potential indicators, we wish

to select the one that most significantly decreases the -

summed squared approximation error. If an indicator
could be found that is linearly related to the residual
vector e, the inclusion of that indicator would make
the residual zero. The presence of such an indicator
is not likely; however, its closest mateh is that poten-
tial indicator vector that. will generate a column vector
in X that makes the smallest absolute angle with the
residual vector e. This potential indicator should thus
be selected. The same is found in [3, 8, 11] to minimise
the sum squared error.

The proposed indicator selection procedure is shown in
figure 2; it plots the angle between the function to be
approximated and all potential indicator vectors. If no
indicator has been selected yet, the training samples
equal the elements of the error vector. It can be seen
that the minimal angle occurs at =z = (.17 and hence
this sample defines the first indicator to be selected,
which makes sense intuitively.

3.2 Stop criteria

When it is known which potential indicator will give
the largest error reduction, it still has to be decided
whether or not to included this candidate indicator as
an actual indicator. There are two reasons for not in-
cluding it: The approximation is good enough, or the
candidate indicator is fitting noise rather than a part
of the function. The first reason simply requires a stop
criterion that specifies what value is acceptable for the
summed squared approximation error. The second rea-

Figure 3: 62 =0.1

Figure 4: ¢ = 0.001

son for stopping can be tested with statistics.

To avoid fitting noise, a candidate indicator should not
be added to the set of indicators if its weight o; is
known, with some given probability, to be zero. To test
this, we can calculate this probability; if it is smaller
than some user-defined bound, the candidate indicator
should be included, ‘because its weight is not likely to
be zero. To test this, define the extra sum of squares §
as the difference between the summed squared approx-
imation errors over all samples before and after the
inclusion of the candidate indicator. In [7] it is shown
that S is distributed as x% if and only if the indicator
weight is zero:

2 ,
pz;mxfﬁa":o (10)

In here ¢? is the variance of the noise. If the indicator
weight is zero, S should be x? distributed if the addi-
tive noise on Y is Gaussian. For example, the summed
squared approximation errors changes from 11 to 10
while the variance of the noise is 0.25. This gives a
realisation of the variable p of 4. From the x? distri-
bution it is found that the probability of a realisation
larger than 4 is 4.6%. Thus we know with probahility
95.6% that the indicator is unequal to zero.

Pla;=0p>4)=46%— P(o; #0lp > 4) = 95.6%
(11}
In figure 3 and figure 4 a sine function based on data
corrupted by noise of different variances is approxi-
mated. The function was approximated by a piece-
wise linear approximation and an indicator was still
included if it was unequal to zero with 95% probability.
The dots are the training samples and the line is the
approximation. In figure 3 approximation is stopped
earlier than in figure 4, because, due to the high noise
level, it would earlier start fitting noise. '

4 Simulations

The goal of the set of simulations is the testing of the
learning mechanism described above in an LFFC set-
ting. The simulations will be performed with a model
of a synchronous linear motor. Such a system can
be described as a moving mass with non-linear distur-
bances in the form of {position-dependent) cogging and
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(position- and velocity-dependent) friction. The differ-
ential equation is then given as:

mZ+ f(¢,z)+elx)=F (12)

in which f is the friction, ¢ is the cogging, F the applied
force and m the mass. If the applied force would be set
equal to

F =m&q + f(Zq.24) + e(zq) {13)

the actual motion would equal the desired motion if the
initial conditions were the same. The subscript d means
desired in this equation. The mass was assumed to be
known and compensated for by a perfect fixed feed-
forward. However, the functions f and ¢ are supposed
to be unknown. These functions should be learnt to
give the total feed-forward force. This force can only be
approximated if #4 and z4 are available as inputs to the
function approximator. The model that is used in the
simulations is more extensive to obtain more realistic
simulation. The linear transfer function also included
the first three tdentified vibration modes. Next to this,
cogging and friction were fitted to measurements and
a discrete controller was used.

The training samples for function approximation are
obtained from a set of repeated movements in which
the feed-forward signal is first learnt as function of the
time. This in fact implies that an Iterative Learning
Controller is implemented with a specific choice for the
learning filter, namely equal to the PI} feedback con-
troller [16]. The obtained feed-forward signal, a func-
tion of the motion time, has compensated for the state
dependent effects. This time-based feed-forward signal
is used as training data for a function approximator to
learn the feed-forward signal as a function of the de-
sired states. The mapping from the reference states
to the feed-forward signal has been learnt for several
choices of the potential indicator functions ®(zy, x):

» piecewise linear functions of the desired position:

flz);

+ piecewise linear functions of the desired position
plus piecewise linear functions of the desired veloc-
ity: f(z) + g(v);

¢ piecewise linear functions of both the desired posi-
tion and velocity: f(z,v);

To test the correctness of the approximation, a move-
ment was made that was not incorporated during train-
ing. This reference movement goes smoothly from 0
[m] to 0.4 [m] in 3 seconds and then it goes back again.
The tracking errors for the various approximators be-
fore and after training are given in figure 5.

First a learning mechanism is used that can approxi-
mate cogging only with a piecewise linear function. In
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Figure 5: The tracking error for different potential indi-
cator functions, before (gray) and after (black)
training.

the top of figure 5 it can be seen that the fast fluctu-
ation is decreased significantly. However, an error is
present when the direction of movement is changed, as
is a slowly fluctuating error. This slow fluctuation is
due to the position dependent friction and cannot be
learnt if only functions depending on the position are
allowed. The error during a change in motion direc-
tion can also not be learnt with only the position as
input. The set of functions from which the lesrning
mechanism could choose in the second experiment was
expanded to a piecewise linear function depending on
the position plus a piecewise linear function depending
on the velocity. As can be seen in the middle of fig-
ure 5, the error due to a changing motion direction has
almost vanished, however, the slow fluctuation (due to
position-dependent friction effects) is still present. In
the third experiment the set of function was expanded
to the set of all piecewise linear function with inputs
velocity and position. The result can be seen in the
bottom of figure 5. The slow fluctuation is gone and
only a small error signal remains.

For comparison, a two-dimensional B-spline network
has been used to approximate the same training data
and evaluated with the same reference motion. B-spline
networks were used in previous work on LFFC. The
tracking error of the B-spline LFFC and the last simu-
lation with LS is given in figure 6. It can be seen that
the new learning mechanism outperforms the BSN net-
work by far. This is due to the difference in sensitivity
for the curse of dimensionality.

The computation time of the LS method is much lower
than of the LSSVM method. When 1000 samples are
used, the training time of the least squares takes a few
second, while the LSSVM takes several minutes. Even
as it took more time to calculate the support vectors
and their corresponding Lagrangian multiplier, the re-
sults of the LSSVM were considerable worse. If the
pruning algorithm is used that is proposed in [5] the
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Figure B: tracking error for the BSN (gray) and the LS
{black) learning mechanism

computational time was several tens of minutes, but
the found parameters gave the approximately the same
petformance as the least squares algorithm.

5 Conclusions

In this paper, a Least Squares learning method has
been intreduced that is based on support vector think-
ng:

o All kernels at the training samples as used in
(LS)SVM are considered as potential indicator
functions.

e A limited number of indicator functions is selected
out of the candidates. An indicator selection pro-
cedure has been described for this.

¢ Learning is done recursively; as long as the perfor-
mance measured over all training points is not suffi-
cient and overfitting has not yet occurred, the num-
ber of indicators is increased in consecutive steps.
Stop criteria have been given for this.

This learning mechanism is used to learn the inverse dy-
namics of a linear motor with Learning Feed-Forward
Control. Tt was capable of approximating the position-
dependent cogging and the position- and velocity-
dependent friction. The tracking error of an unlearnt
movement could be reduced considerably in simula-
tions. The significant improvement over previous re-
sults is that this new function approximator is not sen-
sitive for the curse of dimensionality and yet features a
relatively small computational load, both during train-
ing and during application. This promises to make
realisation of a self-tuning LFFC for multi-degree-of-
freedom motion systems possible.
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