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Synthesis of Mechanical Networks: The Inerter

Malcolm C. Smith Fellow, IEEE

Abstract—This paper is concerned with the problem of synthesis the synthesis of mechanical networks. It seems interesting to
of (passive) mechanical one-port networks. One of the main con- ask if these drawbacks are essential ones? It is the purpose of
tributions of this paper is the introduction of a device, which will  his paper to show that they are not. This will be achieved by
be called the inerter, which is the true network dual of the spring. introducing a mechanical circuit element, which will be called

This contrasts with the mass element which, by definition, always hei hich i . inal - val
has one terminal connected to ground. The inerter allows electrical theinerter, which is a genuine two-terminal device equivalent

circuits to be translated over to mechanical ones in a completely t0 the electrical capacitor. The device is capable of simple re-
analogous way. The inerter need not have large mass. This allowsalization, and may be considered to have negligible mass and
any arbitrary positive-real impedance to be synthesized mechan- sufficient linear travel, for modeling purposes, as is commonly
ically using physical components which may be assumed to have 355med for springs and dampers. The inerter allows classical

small mass compared to other structures to which they may be at- . - . .
tached. The possible application of the inerter is considered to a results from electrical circuit synthesis to be carried over exactly

vibration absorption problem, a suspension strut design, and as a {0 Mechanical systems. . .
simulated mass. Three applications of the inerter idea will be presented. The

Index Terms—Brune synthesis, Darlington synthesis, elec- first isavibratipn absorption problem whose .classical solgtion
trical-mechanical analogies, mechanical networks, network iS @ tuned spring—-mass attached to the main body. It will be
synthesis, passivity, suspension systems, vibration absorption. ~ shown that the inerter offers an alternative approach which does
not require additional elements to be mounted on the main body.
The second application is a suspension strut design. Traditional
struts employ springs and dampers only, which greatly restricts

HERE is a standard analogy between mechanical atit available mechanical admittances. In particular, their phase

electrical networks in which force (respectively, velocitytharacteristic is always lagging. By considering a general class
corresponds to current (respectively, voltage) and a fixed pouftthird order admittances it will be shown that the use of in-
in an inertial frame of reference corresponds to electrical groustters offers a possibility to reduce oscillation in stiffly sprung
[9], [26]. In this analogy, the spring (respectively, damper, massjispension systems. The procedures of Brune and Darlington
corresponds to the inductor (respectively, resistor, capacitog)ll be employed to obtain network realizations of these admit-
It is well known that the correspondence is perfect in th@ances. The third application is the use of the inerter to simulate
case of the spring and damper, but there is a restriction am€mass element.
the case of the mass. This restriction is due to the fact thafThe approach used for the mechanical design problems in this
the force—velocity relationship satisfied by the mass, nhamegbaper owes a debt to the methods of modern control. Firstly, the
Newton’'s Second Law, relates the acceleration of the mgm®blems are viewed as an interconnection between a given part
relative to a fixed point in the inertial frame. Effectively thisof the system (analogous to the plant) and a part to be designed
means that one “terminal” of the mass is the ground and ttenalogous to the controller). Secondly, the part to be designed is
other “terminal” is the position of the center of mass itself [2G dynamical element whose admissibility is defined as broadly
p. 111], [15, pp. 10-15]. Clearly, in the electrical context, iks possible—passive in the present case (stabilizing for feed-
is not required that one terminal of the capacitor is grounddshck control). The advantage of this viewpoint is that synthesis
This means that an electrical circuit may not have a diregtethods come into play, and that new solutions emerge which
spring—mass-damper mechanical analog. would otherwise be missed.

There is a further drawback with the mass element as the
analog of the capacitor in the context fnthesiof mechan-
ical impedances. Namely, it may be important to assume that the Il. MECHANICAL NETWORKS
mechanigal device asso_ci_ated with the “black-box impedanc&j’_ Classical Network Analogies
to be designed has negligible mass compared to other masses in
the system (cf., a suspension strut for a vehicle compared to thélistorically, the first analogy to be used between electrical
sprung and unsprung masses). Clearly this presents a prob&el mechanical systems was the force-voltage analogy, as is
if (possibly) large masses may be required for its realization.readily seen in the early use of the term electromotive force. The

It appears that the aforementioned two difficulties have pralternative force—current analogy is usually attributed to Fire-
vented electrical circuit synthesis from being fully exploited fostone [9], though it appears to have been independently discov-

ered in [12], [7]. Firestone also introduced the ideas of through
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Fig. 1. Afree-body diagram of a one-port (two-terminal) mechanical element

or network with force—velocity paifF, v) wherev = v, — v;. Fig. 2. The standard network symbol for the mass element.

The subject of dynamical analogies relies strongly on the usetne force—current (sometimes termexobility) analogy

of energy ideas, with the product of through and across variab|gsieen electrical and mechanical networks can be set up by
being an instantaneous power. Although there is a senseyiBans of the following correspondences:

which both analogies are valid, the force—current analogy is
the one which respects the manner of connection (i.e., series,
parallel etc.) so that mechanically and electrically equivalent
circuit diagrams are identical as graphs [9], [12], [7]. At a mechanical ground < electrical ground
more fundamental level, this arises because the through and spring < inductor

across variable concepts allow a direct correspondence between damper «— resistor

nodes, branches, terminals, and ports in a network [30]. In kinetic energy «— electrical energy
the closely related bond graph approach to system modeling
[23], [16], [17], the use of effort and flow variables, whose

product has units of power, normally employs the force-voltagg,e correspondence between mass and capacitor was omitted
analogy, but this is not intrinsic to that approach [31].  om the previous list due to the fact that one terminal of the
The force—current analogy, described in more detail in S§rs5 element is mechanical ground, which means that the
tion 11-B, is the one preferred here. However, the contributioaleﬁning equation is analogous to that of the capacitor, but
of the present work is not dependent on which analogy is used\ot a5 general. This is embodied in the standard network

The property of the mass element, that one of its terminals is @S?mbol for the mass shown in Fig. 2 where the bracket and

ground, is a “restrictive” feature independent of whether its elegz sheqd Jine emphasize that must be measured relative to a

trical analog is considered to be the capacitor or the ind“Ctor'ﬁBnacceIerating (usually zero velocity) reference.
this sense, the defining property of the inerter is that it is the true1pe force—current analogy goes deeper than the correspon-

mechanical dual of the spring. dences listed in the previous paragraph because of the concept
of through and across variables [9]. In essendéya@ugh vari-
B. The Force—Current Analogy able (such as force or current) involves a single measurement

The formal definitions of nodes, branches, elements, etc. RNt @nd requires the system to be severed at that point to
electrical network theory are quite standard and do not needigke the measurement. In contrast,amnoss variable(such
be repeated here (see [2] for a summary). The analogous @svelocity or voltage) can be meas_ured without breaklng_lnt_o
slightly less familiar definitions for mechanical networks will pdhe system and the rele_vant quantity for netyvork a”a'YS'S IS
useful to record below (see [26] for a comprehensive treatmer“}? dnfference of the variable between two points, even if one
A (idealized)mechanical networbf pure translational type point is the ground. A gene.ral gpprqach to network analysis
consists of mechanical elements (such as springs, mas g%ed on such a formalism is given in [30]. One consequence

dampers and levers) which are interconnected in a rigid mantiefat the methods of mesh- and nodal-analysis can be applied

[26], [15]. It is usual to restrict the motion to be parallel to olm(;ghanlcal neh(;vofrkg. q be th i0 ofth
fixed axis and relative to a fixed reference point in an inertial n this paper, we definenpedancéo be the ratio of the across

frame called theground. The pair of end-points of the Springvariable to the through variable, which agrees with the usual
and damper are callatbdes(or terminalg. For the mass, one electrical terminology. For mechanical networks, impedance is

terminal is the position of its center of gravity, whilst the othe en the ratio of velocity to forqe’ which agrees with some books
terminal is the ground. 26, p. 328], but not others which use the force—voltage analogy

A portis a pair of nodes (or terminals) in a mechanical systew'ls]' We defineadmittanceio be the reciprocal of impedance.

to which an equal and opposite forégis applied and which

experience a relative velocity Alternatively, a velocity can be C- The Inerter

applied which results in a force. Fig. 1 is a free-body diagram of We define the (idealnerterto be a mechanical two-node
a one-port (two-terminal) mechanical network which illustratggwo-terminal), one-port device with the property that the equal
the sign convention whereby a positi#egives a compressive and opposite force applied at the nodes is proportional to the
force and a positives = w» — v; corresponds to the nodesrelative acceleration between the nodekat is,F' = b(02— 1)
moving together. The product df andv has units of power in the notation of Fig. 1. The constant of proportionafitys
and we call(F, v) the force—velocity pair. In general, it is notcalled theinertanceand has units of kilograms. The stored en-
necessary for either node in a port to be grounded. ergy in the inerter is equal td /2)b(vy — v1)?.

force « current
velocity < voltage

potential energy <+ magnetic energy.
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Naturally, such a definition is vacuous unless mechanici rack pinions
devices can be constructed which approximate the behavi

of the ideal inerter. To be useful, such devices also need
satisfy certain practical conditions which we list as follows V/
R1) The device should be capable of having a small mas — | @ }
independent of the required value of inertance. o = '
R2) There should be no need to attach any point of the phy
ical device to the mechanical ground.

R3) The device should have a finite linear travel which is
specifiable, and the device should be subject to reaso
able constraints on its overall dimension.

R4) The device should function adequately in any spati,:j1
orientation and motion.

Condition R2) is necessary if the inerter is to be incorporated in ) . . ] ]
a free-standing device which may not easily be connected t§l@mpers, inductors, resistors, and capacitors approximate their
fixed point in an inertial frame, e.g., a suspension strut which f@athematical ideals. _
connected between a vehicle body and wheel hub. We mentiont is useful to discuss two references on mechanical networks,
that conditions of the above type hold for the ordinary springghich give some hint toward the inerter idea, in order to high-
and damper. light the new contribution here. We first mention [26, p. 234]
The aforementioned realizability conditions can indeed phich describes a procedure whereby an electrical circuit is first
satisfied by a mechanical device which is easy to construct.aedified by the insertion of ideal one-to-one transformers so
simple approach is to take a plunger sliding in a cylinder whidhat all capacitors then have one terminal grounded. This then
drives a flywheel through a rack, pinion, and gears (see Fig. gjl_ows a mechanical circuit to be constructed with levers, which
Note that such a device does not have the limitation that oneftts Similar dynamic properties to the electrical one while not
the terminals be grounded, i.e., attached to a fixed point in ARINg Properly analogous from a circuit point of view. Condi-
inertial frame. To approximately model the dynamics of the d&on R1) is not discussed in [26] though it seems that this could
vice of Fig. 3, letr, be the radius of the rack piniom, the radius be addressed by adjusting the transformer ratios to reduce the
of the gear wheel;; the radius of the flywheel pinion; the ra- absolute values of the masses required (with transformers then
dius of gyration of the flywheeln the mass of the flywheel, being needed for all capacitors), however, R3) might then be a

and assume the mass of all other components is negligible. Rgoblem. Another difficulty with this approach is with R2) since
sumingu; = 0 we can check that the following relation holds:a Pair of terminals of the transformer need to be connected to the

mass and the ground.
F = (ma2al)p 1 Second, we highlight the paper of Schonfeld [24], which is
principally concerned with the treatment of hydraulic systems
as distinct from mechanical systems and the interpretation of

: : . .acoustic systems as mixed mechanical-hydraulic systems, a
ertial effect of the flywheel mass comes into play, but this W'@vork which appears to have been unfairly neglected. In con-

) a0
only ghange (1) .by a.small proportion providinga; is large. nection with mechanical—electrical analogies, the possibility
To a first approximation, such an effect can be neglected, as

: a biterminal mechanical inertance is mentioned. The idea is
commonly done for springs and dampers. Note that even wi A :
. ) . . essentially to place a mass at the end of a lever, connected with
relatively modest ratios; = «az = 3 the inertance is a factor

of 81 times the mass. It is clearly feasible to introduce addi—rIkS o the two terminals, while increasing the lever length
. . ' y . . S and decreasing the value of mass arbitrarily but in fixed ratio
tional gearing; an extra gear wheel and pinion with ratiowill

. ; 5 . : [24, Fig. 12(d)]. Although this in principle deals with R1) and
multiply the inertance by a facters. Increasing the gearing ra-p ), there is a problem with R3) due to the large lever length
tios also increases internal forces in the device and the fIywhee% . - ; .

| locity (the latter is gi 11, Ly required or the vanishing small available travel. A variant on
angular velocity (the latter is given byr; (02 — 91) IN  is e 24, Fig. 12(e)] has similar difficulties as well as
the above model) W.h'Ch places higher demands in mangfaptu Sroblem with R4). It is perhaps the obvious limitations of
bqt these are pracpcal concerns and not fundameqtal IImItS't se devices that have prevented the observation from being
principle, it is feasible to keep the mass of the device small n :
an absolute sense, and compared to the inertance of the de\”gveloped or formalized.
' P il the light of the previous definition of the ideal inerter, it

Indeed a simple prototype inerter has been made which has an . . o
) ) . o may sometimes be an advantage to reinterpret combinations of
inertance to mass ratio of about 300he remaining conditions

R2)-R4) are also satisfied by the realization of Fig. 3. In t system elements as acting like an inerter. For example, in [17,

case of gyroscopic effects being an issue under R4), a systerOblem 4.18] two masses are connected together by means of

of counter-rotating flywheels could be introduced. It seems re%Tever arrangement (interpreted as a 2-port transformer con-

sonable to conclude that such a device can be regarded asnected to a 1-port inertia element in the bond graph formalism).

S . . . 518 system is linearized for small displacements then the be-
proximating the ideal inerter in the same sense that real SPMINQ2vior is the same as if an inerter were connected between the

1patent pending. two masses. Of course, such an arrangement has problems with

terminal 2 gear flywheel terminal 1

Ig. 3. Schematic of a mechanical model of an inerter.

whereay = v/r3 andaz = /7. If v1 # 0 the direct in-
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R3). Indeed, if large values of inertance were required for a mot

] Mechanical Electrical
erate amount of travel then the lever lengths and ratios would |
impractical. Foriiied v =k | LU et v =L
. . . . . L. L s A U1 Ls
A table of the circuit symbols of the six basic electrical 5 5
and mechanical elements, with the newly introduced inerte 4 oy — ) spring | % = L(vy — vy) inductor

replacing the mass, is shown in Fig. 4. The symbol chosen f

the inerter represents a flywheel. F Foye) =bs | & Ly =0s
1|7_ L v2 U1

. . 2 n
D. Classical Network Synthesis P = pilz=m) ierter i = gtlrn) capacitor
The introduction of the inerter mechanical element, and th
use of the force—current analogy, allows a classical theorem ¢ E.._]:’_..P_" Y(s) =c L._:’_.L Y(s) =1
synthesis of electrical one-ports in terms of resistors, capacita %5 %1‘ “ v
and inductors to be translated over directly into the mechanic|  F = c(w, — v;) damper i = J(vo—v1) resistor

context. We will now restate the relevant definitions and result:

in mechanical terms. . - , - .
. . . . Fig. 4. Circuit symbols and correspondences with defining equations and
Consider a mechanical one-port network as shown in Figadmittancey (s).

with force—velocity pair(F, v). The network is defined to be
passive[21, p. 26], [1, p. 21] if for all admissible, F" which g praction of resistive and reactive elements [11, Ch. 9.4], [4].

are square integrable qr-oo, T’ A classical alternative procedure due to Darlington [5] realizes
T the impedance as a lossless two-port network terminated in

/ F(t)u(t) dt > 0. (2) a single resistance. The possibility of achieving the synthesis

—co without the use of transformers was first established by Bott

gnd Duffin [3]. See [11, Ch. 10] and [2, pp. 269-274] for a

J('escription of this and related methods, and [6] for a historical
perspective. It is these procedures which provide the proof
for Theorem 2.

The quantity on the left-hand side of (2) has the interpretati
of the total energy delivered to the network up to tifieThus,
a passive network cannot deliver energy to the environment.
Theorem 1 [21, Chs. 4, 5], [1, Th. 2.7.1, 2[Consider a
one-port mechanical network for which the impeda#c¢e) ex-
ists and is real-rational. The network is passive if and only if one
of the following two equivalent conditions is satisfied. A. Problem Statement

1) Z(s) is analytic andZ(s) + Z(s)* > 0in Re(s) > 0. Suppose we wish to connect a magsto a structure so that

2) Z(s) is analytic inRe(s) > 0, Z(jw) + Z(jw)* > 0 steady sinusoidal vibrations of the structure at a constant fre-
for all w, at whichZ(jw) is finite, and any poles af(s)  quencyw, do not disturb the mass. The problem is posed as in
on the imaginary axis or at infinity are simple and have Rig. 5 where the mass is connected to the structure by a device
positive residue. whose mechanical admittanceXs). The mass may be sub-

In the aforementioned theorerdenotes complex conjuga-jected to a forcefy, and the displacement of the mass and the
tion. A pole is said to baimpleif it has multiplicity one. The structure are: andz, respectively. We seek to design and realize
residue of a simple pole df(s) atpo is equal tdim;—.,,(s — a positive-realy(s) so that ifz = sin(wot) thenz(t) — 0 as
p0)Z(s). Poles and zeros df(s) ats = oo can be defined as ¢ — .
the poles and zeros df(s~!) ats = 0. Thus the residue of a  The equation of motion for the maas in the Laplace trans-

I1l. V IBRATION ABSORPTION

simple pole at = oo is equal tdim;_.., Z(s)/s. formed domain is:
Any real-rational functionZ(s) satisfying 1) or 2) in The- R
orem 1 is callegositive real.Theorem 1 also holds with (s) Ms?s = Fr + sQ(s)(2 — &)

replaced by the admittandé(s).

Theorem 2: Consider any real-rational functidfi(s) which whence
is positive real. There exists a one-port mechanical network 1 . O(s)
whose impedance equals) which consists of a finite inter- T = 5 Iy + z
connection of springs, dampers, and inerters. Ms? + 5Q(s) Ms +Q(s)

Theorem 2 is also valid witt¥(s) replaced by the admit- yhere~ denotes Laplace transform. It is evident that the mass
tanceY(s). This theorem represents one of the key results fij| pe impervious to a steady sinusoidal disturbance pto-

classical electrical network synthesis, translated directly in@ing Q(s)/(M's + Q(s)) has a zero at = jwo, and that this
mechanical terms. The first proof of a result of this type wagill hold providing Q(s) has a zero at = juwp.

given in [4], which shows that any real-rational positive-real

function could be realized as the driving-point impedance &. Approach Using Inerter

an electrical network consisting of resist_ors, capacitors, in'Let us seek an admittance of the form
ductors, and transformers. The method involves a sequence

of steps to successively reduce the degree of the positive-real (s+a)(s? + w3)
function by extraction of imaginary axis poles and zeros and Qs) =c s(s2 + b5+ by)

®3)
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with ¢, a, by, b2 > 0. The reasoning for this choice 6f(s) R
is as follows. If the quadratic factors in the numerator and de- 2 7
nominator are removed then the admittance reduces to that of | L
a spring and damper in parallel. The factdr+ w3 gives the ’7

M

required zero a¢ = jwo in Q(s) and the quadratic factor in the
denominator allowg}(s) to approximate the behavior of the
spring and damper for largeand for smalls. —1 z
We require that)(s) is positive real so it can be realized pas- {

sively. Consider the positive real factor (s) = (s? +w3)/s prmeheee :
in Q(s). Note that(}; (jw) is purely imaginary, with a positive LQs) |
sign if 0 < w < wg and a negative sign it > wy. Consid- L :
ering the behavior of)(jw) nearw = wy it is evident that
Re(Q(jw)) > 0 for all w only if (s + a)/(s2 + bys + by) is l

z

real whens = jwq. The latter condition holds providing that

by = wg + aby. (4) Fig.5. Vibration absorption problem.
Itturns out that (4) is also sufficient fép(s) in (3) to be positive gt
real where, a, by, ba, > 0. Rather than verify this directly, we Fr
will now consider how(}(s) can be realized. =
A standard first step in synthesizing a positive real function is ’—'
to remove any imaginary axis poles and zeros [4], [11, Ch. 9.4]. M _1 r
For the function in (3) it turns out to be simplest to remove first
the zeros at = +jwo by considering?—*(s). We obtain
) s(s2 + bys + b) k1 1 k/wf
Q (3) = 2 2
(s + a)(s? + w3)
_ by s 1 s —
T s24 w2 ¢ s+ta
=1 Z1(s) + Za(s) ®) k2 c

using (4). Equation (5) gives a preliminary decomposition of

()(s) as a series connection of two network elements with me- 1
chanical impedances, (s) and Z»(s) respectively. The first of z
these elements has an admittance given by

Fig. 6. Realization of)(s).

attached to the mas¥ (see [8]). In the Laplace transformed

domain, the equations of motion are
which represents a parallel combination of an inerter with

constantc/b; and a spring with constantv? /b:. The second ms?y =ky(Z — 9)
element, called thminimum reactiv@art in electrical networks Mss =Fp + ky(§ — &) + (ks + c18)(5 — &).

[11, Ch. 8.1], has an admittance given by

. ca Solving forz andy gives

Zy (s)=c+—
° & =(1+s"/wi)

which represents a parallel combination of a damper with con- (ks +c15)2 + Iy,
stantc and spring of constanta. Writing k1 = w3 /b and U= 32 e+ ko ) -
. 2 1 -k
k2 = ca we therefore obtain the realization €fs) as shown (Ms? + 15 + (ks + Ra))(1+ 5/wi) = Fa
in Fig. 6. Thus, whenFy, = 0, the massV has zero steady-state ampli-

We remark that the new feature in the admittagke) is the tude in response to a sinusoidal disturbance att unit ampli-
presence of the parallel combination of the inerter and sprirtgde and frequenay, (which is the desired vibration absorption
This is, in fact, a tuned linear oscillator with natural frequencgroperty) while the steady-state amplitude of the attached mass
of oscillationwy. mis

C. Comparison with Conventional Approach VE3 + Gwg )

It is interesting to compare the solution obtained in Fig. 6 ks
with the more conventional approach shown in Fig. 7 wheltis evident that the amplitude of oscillation of the maas
the vibration absorber consists of a tuned spring-mass systeray be large ift, is small compared ta/k3 + ciwd. Thus,
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wopss as we will see below. For any # wy it is straightforward to
’_L show that
m .
L m | | juo + by
| ™ ( had 6
) Yy z—)x(Jw) - — Mw? ¥+ cjw + k2 ( )
< k4 = mw§

LLLLLL S ask; — oco. The transfer function on the right-hand side of (6) is
s Fr the one obtained when the spring—inerter combination in Fig. 6
- is removed. Because of the pointwise convergence described by
[7 (6), Tfl_)m has the appearance of a “notch” filter (with zero at

w = wp) with an increasingly narrow notch asbecomes large.

It is evident that the vibration absorption property is more sensi-
tive to variations in the disturbing frequeney ask; becomes
large. That is, if the structure is designed for a disturbance fre-
quencywy, butin reality the frequency isp+¢ wheree is small,
then the resulting disturbance attenuation will be ineffective if
1 k1 has too large a value. Similar considerations apply for the

z conventional approach of Fig. 7. For any# wq

s

Fig. 7. Conventional vibration absorber. @ crjw + ks
—Mw? +cijw + ks

in practice,m and %k, will need to be sufficiently large to . . .
. . s . . asky — 0. Again, asky becomes smaller, there is an increas-
avoid excessive oscillation im. This may be a disadvantage.

if it is undesirable to mount too much additional massidn ingly narrow notch at. = wo, _and the ylprat|qn abso_rptlon_
. . . : A roperty becomes more sensitive to variations in the disturbing
By contrast, in the solution using the inerter in Fig. 6, th fequency
“‘compensation” for the oscillation of the structure to whikh ="\ * ¢ 1 t0 consider the responsesdb load distur-
is attached occurs entirely within the device implementing th%ncesF These take the form
admittance(s). The desired effect is achieved for any value o L
k1 > 0. What then is the role of, in the performance of this W S+ cwdkT s + wB(1 4 ok
system? Clearly, the choice éf plays a role in the transient TFL—@ = . (s)
response and the response to other disturbances of the structyra.
Also, the response to load§, depends oi%, . In particular, the
static spring stiffness under load$, equalsk ko / (k1 + k2),
which suggests that; should not be too small compared to
k» for the massM to be well supported. Unlike the vibrationfor the two approaches. We can check that for any wo
absorber of Fig. 7 there is no objection to increasingn the
grounds of adding extra mass to the structure. L) (jw) —
It is instructive to compare the dynamic response of the two Fr—a
solutions to the vibration absorption problem. B (re-

g

(2) . s2 + wg

Fp—a do(s)

1
—Mw? + cjw + ko

spectively,7{).) denote the transfer function fromto ¢ for aski — oc. A similar result holds foffé?% asky — 0 but
the solution of Fig. 6 (respectively, Fig. 7). Then with ¢, k2 replaced by, k3. We also obtairTSL)_@(jwo) =
—1/Mw2 andT® _(jwy) = 0. Thus, the two solutions differ
1 (CS+I€2)(S2 +UJ2) . . Fr—a™, . .
7D = 0 in their response to sinusoidal load disturbances of frequency
o dy(s) wo. Although the load disturbances response is not a primary
and y y consideration in this problem, the effect of these constraints may
73 _ (18 + k3)(s” + wp) need to be considered in the choice of parameters. For example,
. da(s) if 1/Mw3 is significantly larger than /| —Mw? + cjwo + k2|,
then the dynamic load response in the inerter approach may
where not be satisfactory. Similar considerations apply for the conven-
tional approach of Fig. 7.
di(s) =Ms* + ¢(1 +Mw§k1_1)33 To conclude this discussion, we can say that the inerter

offers an interesting alternative solution to a standard vibration
absorption problem. The dynamic response properties of the two
solutions are broadly similar, as are the asymptotic properties
as the additional mass or inertance becomes small or large.
CIearIy,Tg(l_))'% (jwo) = TZ(Q_))T (jwo) = 0, aswas required of eachThe inerter approach has a potential advantage in that there is
approach. The two transfer functions have a similar form, amd need to mount additional mass & and to be concerned
behave similarly in the limit as; — oo (respectivelyky, — 0) about possible limits of travel of this additional mass.

+ (Mwd(1 + koky ) + ko)s® + cwds + kow
do(s) = Ms* + c18° + (Mwd + ks + ky)s? + ciwds + ksws.
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Fig. 8. Frequency responsés_ ; : inerter (-), conventional ¢
Fig. 9. Response of to a unit step af’;,: inerter (=), conventional ()
D. Numerical Example

Consider the problem as posed in Fig. 5 with= 10 kg and
wo = 10 Hz. Suppose itis required that a constant léad= 10 ’
N produces a deflection atof at most 1 mm, so that the static ’—
spring stiffness is at least 1m=1. If Q(s) is chosen to be a e _]
springk in parallel with a dampet, then in Fig. 5 { %

es+k B 20s/wn +1 144 Q(s)i
Ms2+cs+k  s2/w2+2(s/w, +1 ; [

wherew? = k/M, ¢ = ¢/2VkM. Settingk = 10* Nm~! ’_
gives|T: .z (jwo)| = 0.828 when{ = 1 and|T:—z(jwo)| — My
0.339 as¢ — 0. Thus, even in the limit as the damping rafio jzu
vanishes (which is likely to be unacceptably oscillatory in any
case), the maximal reduction in amplitude is to 34% of the dis- ke
turbance amplitude. For critical damping the reduction is only
to 83%. Evidently, the ordinary spring—damper arrangement is —l
unlikely to provide an acceptable solution for this problem. =

Let us begin with the conventional approach of Fig. 7. ASg 10. Quarter-car vehicle model.
m becomes smaller, the “notch” in the frequency response be-
comes increasingly narrow. Also, we can observe an oscillatory IV. VEHICLE SUSPENSIONS
component in the time response which is hard to dampen by
adjustinge: . There is clearly a practical limit to how large A- Quarter-Car Model
can be. Let us choose the parameters= 2 kg, ks = mwj = An elementary model to consider the theory of active and pas-
7.896x 10 Nm~1, ks = k = 10*Nm~ ande; = 1.6 VEM = sive suspensions is the quarter-car of Fig. 10 (see, e.g., [25] and
506.0 Nsm*. The resulting frequency responﬁgji is shown [14]) consisting of the sprung mass,, the unsprung mass,,
in Fig. 8 and the step responsé]béli)_ﬁ is shownin Fig. 9. The and a tyre with spring stiffnesk;. The suspension strupro-

steady-state amplitude of equals\/m/lm — 499 Vides an equal and opposite force on the sprung and unsprung
times the amplitude of the sinusoidal disturbance. at masses and is assumed here to be a passive mechanical admit-

Turning to the approach of Fig. 6 using the inerter. To achie{@"ce?(s) which has negligible mass. The equations of motion
a static stiffness of = 10* Nm~! we need to choosk, ! + N the Laplace transformed domain are

Try =

ky' = E~'. At either extreme fot; (close tok or tending mos2s, = b, — sQ()(Zs — %) @)
toward infinity), we can again observe an oscillatory component s = 5O(5)(20 — 2) 4 bt — 2. ®)

in the time response which is hard to dampen by adjustifige

following parameter choices give a reasonably wide notch agging the force—current analogy, the quarter-car model has
moderate overall damping; = 9 x 10* Nm™", k; = (9/8) X an electrical analog as shown in Fig. 11, with the two masses
10* Nm=', ¢ = 1.7VEM = 537.6 Nsm!. This requires an pecoming grounded capacitors and the two external inplits
inerter of inertance 22.80 kg. The resulting frequency responggads on the sprung mass) afd(road undulations modeled
Tfi)m is shown in Fig. 8 and the step responsél‘éL_)i is as a velocity source) becoming current and voltage sources,

shown in Fig. 9. respectively.
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of achievable admittances is still the same as that given by The-
orem 3 (see [28]). Thus, the most general SD admittance with
(positive-static stiffness) using springs and one damper is given

-1
k; by

Zr i'> _ y: — (Ths+1) 11

( | 96 ) =k T (11)
_ —1 wherel; > 77 > 0 andk > 0, while the most general form

N My mg _ F, . K
with two dampers is
(Tus + 1)(Tes + 1)

Yo(s) =k 12

28) = b T s 1) (12)
wherels > 15 > 14 > 13 > 0 andk > 0. To investigate the
possible benefits that inerters might provide let us consider the
class ofarbitrary positive real mechanical admittances of the
same order a¥>.

A fully active suspension allows a much greater design Theorem 4: Consider the real-rational function
freedom than the traditional suspension struts [27], [29], but 2
. . aps” +ars+1

there are drawbacks in terms of expense and complexity. Y(s) = (13)

: ; : s(dos? +dys+1)
Currently, passive suspension struts make use only of springs
and dampers. In electrical terms this corresponds to circuitheredy, d; > 0 andk > 0. Then,Y (s) is positive real if only
comprising inductors and resistors only. The driving-poirt the following three inequalities hold:
impedance or admittance of such circuits is quite limited

I
L

Fig. 11. Equivalent electrical circuit for quarter-car model.

B. Suspension Struts

compared to those using capacitors as well, as is shown by the 1= aody — ardo 2 0 (14)
following result which is translated directly from its electrical B2 i=ag—dop >0 (15)
equivalent [11, pp. 58-64]. B3 :=a; —d; > 0. (16)

Theorem 3:Consider any one-port mechanical network ] . )
which consists of a finite interconnection of springs anfurthermoreY'(s) is an SD admittance of McMillan degree

dampers. If its driving-point admittance exists then it is Hree if and only ifdy > 0, d > 0, 51 > 0 and the following
(real-rational) positive real functiol(s) with the following in€quality holds:

properties: all its poles and zeros are simple and alternate on By =2 = Bifls <0 17)
the negative real axis with a pole, possibly at the origin, being > )
the rightmost of these. (These last four inequalities together imply > 0 andgs > 0).

For convenience we call a function satisfying the conditions  Proof: AssumeY’(s) is positive real. We can calculate that
of Theorem 3 aspring-damper (SD) admittand@ electrical
networks the term RL admittance is used). Any SD admittance  Re(Y (jw)) =k
Y (s) must satisfy the following two conditions:

ay; — dl + w2(a0d1 - aldo)
(diw)? + (1 — dow?)? ~
By considering the behavior near= 0 andw = ~, we con-

—90° < arg(Y(jw)) < 0° ) clude that (14) and (16) must hold. Nowf > 0, then
—20 dB < Bode-slopé|Y (jw)|) < 0 dB (10)

(18)

1 do

for w > 0. This follows by considering the contribution of each a0 —do = dy (aocy — ardo) + di (@ =)

pole and zero in turn, which givestg(Y (jw)) = —¢o +¢1 —  which means that (15) must hold. &, = 0 then (15) must

$2 + Pz — P14 --- Wheredl® > do > ¢1 > ¢2 > --- > 0°. zgain hold since, < 0 implies Y (s) has zeros with positive

A similar argument proves (10). These conditions on an Sfda| part which contradicts the positive realness assumption. So

admittance do not apply to a general positive-real admittangs; ;s consider the remaining case whére= 0 andd, > 0.

which may exhibit phase lead and has no fundamental restijghis case, a pole occurs on the imaginary axis at;/v/do.

tions on the local Bode-slope. It seems clear that there coyg (14), itfollows that;; = 0, whence the residue at the pole

be significant advantages in optimizing the performance of pagequal tat(ao —do) /(2do). Since this must be nonnegative this

sive suspension systems over the class of positive-real functio&@ain establishes (15), completing all cases.

The use of iner'Fers as well as springs and dampers provides theg, the converse directioRe(Y (jw)) > 0 from (18) so we

means to do this. need only check the residue conditions for any imaginary axis
» ) poles. The pole at = 0 has residué& > 0. A pole ats = c©

C. Low Degree Positive Real Admittances can occur ifdy = d; = 0 in which case the residue ig > 0.

It is a general result of network synthesis [11, pp. 127-13#] d; = 0 andd, > 0 then a pole occurs on the imaginary axis
that any SD admittanc& (s) can be realized as in Fig. 12,ats = j/v/dy. Again,a; = 0 from (14) and the residue at the
wheren is the number of zeros df (s). Even if transformers pole is equal td:(ao — do)/(2ds) which is nonnegative. This
(levers) are allowed in addition to springs and dampers the clggeves positive realness &f(s).
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* and then
d032+d1$—|—1 _ﬂs /3184—/32 (21)
Ky ks k, k(B2s + B3) Pk Pak(fas + 33)
do B | B/ (B3k)
=20 o Ly DR 22
" . bk T BE s s P2
do sBuk )1
=— k3 - . (23
/32k3+</3+/313+/32 (23)
5] (5 Cn

The decomposition in (22) is obtained by subtracting off the
minimum of the real part of the second term in (21), and the
'Y same procedure is used on the inverse of that term to give (23).
Equations (22) and (23) together with (20) give the realizations
shown in Figs. 13 and 14 with the following expressions for the
constantsk;, = k2 /dy:
Turning to the final claim,Y (s) is an SD admittance of

Fig. 12. Realization of a general SD admittance.

McMillan degree 3 if and only ifY'(s) is positive real and k53335 k33 k33
satisfies the pole-zero interlacing property of Theorem 3 a :/3—4 €2 = B 1= By (24)
(with strict inequalities). Using [10, Ch. XV, Th. 11] the ks kB4
interlacing property holds (with strict inequalities) if and only c3=kfs ca= 3 T (25)
if dos® + ags* + dis® + a1s® + s + 1 is Hurwitz. Using the ! 2
Liénard—-Chipart criterion [10, Ch. XV, Th. 13] the latter holdSye can observe that
if the only if the following inequalities holddy > 0, d; > 0
apg ai 1 0 — /3_4 — /3_4 = </3_4>2
» {ao al} o » & d 1 0 o a9 c3 =1 32 Cq4 = C2 ik by = by z) -
do dl ’ 0 apg Qi 1 ’
0 dy dp 1 Sinced < B4/63 < 1weseethats < c¢1,cq < cp andby < by,

so the realization of Fig. 14 is the more efficient one in the sense
of having smaller parameter values.

Itis useful to point out that the Brune procedure was relatively
imple for the admittance (13), since the minimum real part oc-
Urred at zero or infinite frequency where the imaginary part was

zero. Thus, the use of a “Brune cycle” involving transformers,
D. Realizations Using Brune Synthesis or the alternative Bott—Duffin procedure, was not required.

We can check that the two determinants in (19) are equé to
and—/. It can also be seen that (17) impligs > 0, whence
B2 > 0 follows from 3; > 0.

Before studying the possible benefits of the admittance (1
let us consider how it could be realized.

The synthesis ofjeneral positive-real functions cannot beE
achieved with such a simple canonical form as Fig. 12 and re . . o )
quires the more sophisticated procedures of Section II-D. ForT0 illustrate the potential application of the inerter we
the realization of the admittance (13) we can assume withdignsider the simple idealized problem of designing a sus-

. A Strut Design Example

loss of generality that pension strut which has high static stiffness to applied loads
Al) B > O: F; but which has well-damped time responses. We choose
A2) /3i > 0’ the following parametersm, = 250 kg, m, = 35 kg,

k. = 150 kNm~! and require that the strut behaves statically

like a spring of stiffnesgd:;, = 120 KNm~*! [27], [29]. We

cansider the set of system poles of the quarter-car model of (7),
), which is equal to the set of zeros of

We can justify this as follows. I3, = 0, then eitherag =
dy = 0 or 33 = 0 [by combining (14) and (16)], which in both
cases leads to a loss of McMillan degree and the possibility
realization in the form of Fig. 12. IB, < 0, then (17) implies
£ > 0, B3 > 0and (14) then implied; > 0. This is sufficient
for the pole-zero interlacing property of Theorem 3 to hold (the 1+ Q(s)
case ofdy = 0 can be checked as in the proof of Theorem 4) so

that realization in the form of Fig. 12 is again possible. Now,
B4 = 0 andgy > 0 (which implies that3; > 0) then we can

(M +ms)s? + ky
mys(my,s? +ky)

(26)

\];Ve consider the least damping ratiQ;, among all the system

check that-/3; /3, is a common pole-zero pair in (13) so agairg.JOIes for a glve_rQ(s). We seek t(.) maxmgémin as a func-
o o ; tion of the admittancé&)(s) for various choices of admittance
realization is possible in the form of Fig. 12. classes

e e BoseUe % o 941110180 Design 1. S0 admitance Wi one Dapete con-
' sider the case of)(s) = Yi(s) as in (11) withk = k;,. The

Y(s) = aps® +ar1s+1 _ E k(P25 + B3) (20) optimization of¢,,,;, overZ; and1; appears to be convex (see
© Us(dos? +dis+1) s dos?+dyis+1 Fig. 15) with a maximum afy = 7.1465 x 10~2, 73 = 0 and
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Fig. 15. Plot of damping rati@.:» versusl; and7% in Design 1.

Fig. 13. First realization of the admittance (13).
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Fig. 16. Response af, to a unit step at,.: Design 1 () and Design 3 {-

3) Design 3: Degree 3 Positive-Real Admittandeor the
Fig. 14. Second realization of the admittance (13). same optimization problem, but with the admittar@és) =
Y (s) as in equation (13); = k; and no SD restriction, direct
Cmin = 0.218. This corresponds to the simplest suspension stggarches using the Nelder—Mead simplex method led to clear
of a spring in parallel with a damper with admittance improvements. The following parameters

Qs) = scp 4 ki,
S
where the damper constant is given fy = 8.58 kNsm™*.
Fig. 16 shows the step response frepto z, with rather light gave avalue of,,,;,, = 0.481. The improved damping is demon-
damping in evidence. This highlights one of the difficulties witlstrated in Fig. 16 compared to the case of Design 1. The posi-
conventional suspension struts which are very stiffly sprung.tive-real nature o¥’(s) is illustrated in the Bode plot of Fig. 17,

2) Design 2: SD Admittance With Multiple DamperBor  which also clearly shows that this solution is employing phase
the same optimization problem, but wif(s) = Y2(s) asin advance. The latter fact proves thats) is not an SD admit-
(12) andk = £y, direct searches using the Nelder—Mead simance, as is also seen By = 2.7847 x 10~ > 0. The values
plex method led to no improvement on the value(gf, = for the constants in the realizations of Figs. 13 and 14 are given
0.218 obtained in Design 1 with one damper. This situation apy k, = oo
pears to persist for a higher number of dampers as in Fig. 12.

Further direct searches in the parameter space converged to-  ¢1 =11.996 KNsm™* ¢, = 55.091 kNsm

ward a set of pole-zero cancellations, and consequent reduction by =269.10kg ¢z = 9.8513 kNsm™*

in McMillan degree mQ(_s), leaving only the solution obtained cs = 45239 KNsmit by = 181.46 kg.

in Design 1. These claims are backed only by computational

evidence, with a formal proof being lacking. These values appear to be within the bounds of practicality.

ap =1.8415 x 1072 a; = 8.6105 x 1072
do=0 dy =4.0112x 1073 (27)
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Fig. 17. Bode plot for the admittandé(s) of Design 3. Fig. 18. Responses of Design 3 to a step input,atz, (=), zo — zu (=),
z, — z, (), and deflection of damper; (—-).
Fig. 18 shows the response of the sprung mass, suspension I I
1 2

working space, tire deflection, and relative displacement of the

dampere, (in the realization of Fig. 14) to a unit step road dis- Z1(s) 141 Lossless V2

turbance. Note that the inerter linear travel has a similar overall — network R&
magnitude to the strut deflection due to the fact that the damper
¢y is quite stiff and has small travel.

F. Realizations Using Darlington Synthesis Fig. 19. Realization of a positive real impedance in Darlington form.

The realizations shown in Figs. 13 and 14 both require the
use of two dampers. Itis interesting to ask if the admittance (1Bjis corresponds to Case Bin [11, Ch. IX.6]. Deﬂmﬂg(s)
may be realized using only one damper. An approach which wii(s) in (13) givesm, = dis?, n1 = s(dos® + 1), ma =
achieve this uses the method of Darlington [5], [11, Ch. IX.6]. Ifi(aos® + 1), andny = kays, from which
t_he electrical qontext the mgthod aII_ow_s any positive-real func- nins — mime = ks2(Bs — f15%). (30)
tion to be realized as the driving-point impedance of a lossless
two-port network terminated in a single resistance as shown\yg now make the following two assumptions:
Fig. 19. Since there is na priori estimate on the minimum  Al) ag > 0;
number of inductors, capacitors (and indeed transformers) reA2) min(f3;, 83) > 0.
quired for the realization of the lossless network, we will need tphe first of these involves no loss of generality singe= 0
carry out the procedure to determine if the saving of one dampeiplies dy = 0, which means that (13) is an SD admittance
is offset by other increases of complexity, e.g., the need for maejuiring only one damper for its realization. The second avoids
than one inerter or the use of levers. various special cases which can be dealt with in a rather simpler
For a reciprocal two-port network with impedance matrix way than the general development which now follows.
7. 7 Since (30) is not a perfect square it is necessary to multiply
11 12 . .
Z = < ) numerator and denominator &y (s) by the polynomialP, =
212 Z» mo+no = v B3+ s (determined byn3 —n3 = 33— 1 5?).

we can check that in Fig. 19 This givesZ, (s) = (m} + n})/(m3 + n3) where

Z1(s) = Zu R_I(Z“}ffi; Z%)l/znﬂ (28) ml(s) = (do\//j_ls +dy B+ /L )

Writing - ni(s) =s (( Vs + di )s /33)

my+n1  nyomyfng 41 mé(s):k((GO\/ﬁ_?)'i'al\/ﬁ_)S + /33)
Z1:m2+n2:m—2n2/m2+1 ng(s):ks(ao\//}TS + a1 Bz + /31)

wherem;, m are polynomials of even powers oandny, ny  andn/n), — mim} = ks?(8; — $1s?)%. Then, using the corre-
are polynomials of odd powers ef suggests the identification spondences in (29) wity, replaced byn/, etc., we obtain the

ny N T =T following expression for the impedance of the lossless two-port:
Zyn=—, Zyp=R— Zp= VR Y= . 1 < ny @3(53 - /3132)>

mo mo mo _ =
(29) 2s) = mby \ VR s(35 — P15%) Rnl,
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We now write

Z(s) =sC1 +

Lin

S
(v tavm) v Y

where the constant matricés andC- are given by

do/Bs +di VL —VRp,
k(aovBs+a1vPL) vk (aov/Bs+aivBi)
—VRp Rao/B1
\/E(CLO\//}_?,"‘al\/ﬁ_l) a0 /Ps+ a1 V/P1
/3_3 \/R—ﬁl%al
PP k Vi
*T VBs+avb | VRBza )
—_— Ras
7
Following [11, Ch. VII.1] we note that any impedance matrix
of the form f(s)H, wheref(s) is scalar and

hir hi2
H =
<h12 h22>

is nonnegative definite, can be realized in the form of the T-cir-
cuit of Fig. 20 withXX; = 1, f(s) and

hi2 hao
H1 = hi1 — 7 H2 =

Ideal

Fig. 20. T-circuit realization of elementary lossless two-ports.

Network 1

)

Network 2

h12

. hi2
— H3 = —.
" " "

In order forp; > 0, itis necessary and sufficient thagn(n) =
sign(hlg) and

Fig. 21. Series connection of a pair of two-port networks.
2] has Choo_sinqm at the lower (respectively, upper) limit se¥fs (re-
3 o] spchver,_X 2_) to be zero. It will be convenlent to alvyays select
1 12 the lower limit. After suitable manipulation we can find expres-
We can now apply this realization procedure to each term sions for the inductances, = k,' andus = k; ' (whose
(31) and obtain the sum by taking a series connection of the timverses will be spring constants in the mechanical analogy)
resulting two-ports (see Fig. 21).

<lnl <

We begin withC, and observe thatet(Cs) = 0, which fixes ky = k1 VB (36)
the choice ofr and ensures that; = p» = 0. Since bothX; do (do Vs +dy \//3_1)
and X, then vanish from the T-circuit, this has the consider- fon = & aov/P3 + a1 VB 37)
able advantage that only a single oscillator (inductor—capacitor 37 do/Bas+di /B

or spring—inerter parallel connection) will be required, which is
a significant economy. Moreover, we may dispense with atra
former by a choice oR which givesn = 1:

3

We can now take the series connection of the two termsin (31)
'HUS the terminating resistor to yield the circuit diagram shown
in Fig. 22. A technical condition for the series connection in
R— —R 32 Fig. 21 to be valid is that no circulatory current can exist, which
=2 = 32) . P
aj is satisfied in this case because of the presence of a transformer

We now set the first element of the second term in (31) equal t63¢€ [11, Ch. V1], [13, pp. 325-326]).

parallel capacitor—inductor combination with impedatiee+ |t rémains to deduce the mechanical analog of Fig. 22. The
k1/s)~* to obtain the parameters ideal transformer can be implemented as a simple lever with

y pivot point at the common node of the spring—inerter parallel
b k (ao/Bs + a1 v/Bi) combination. The central pivot automatically corresponds to an

B3 (B2 +/P1P3) (33) ideall traq_iforn;er with nE(E:;a?tivte1 turns rr}atic.), v;/hicr:. ist\'/vhatfv;/ke
I 3 3 require. Therefore, we obtain the mechanical realization of the
= (ao Vs + \//_1) (34) admittance (13) witts, k1, k2, andks given by (33), (34), (36),

YT VB (Bt VBs)

We denote the capacitance bynd the inductance b&fl in
anticipation of the mechanical analogy.

Turning to Cy, we note that a transformer will be required
here withn < 0 and the range of transformer ratios given by

bV a [Bs
oA dvi) S M a e

and (37)

/{}CL% )\2 /31 \//3_3
=— d == =: 38
T an M ar (dovBs+diVBr) p- (38)

It is possible to directly calculate the admittance of the me-
chanical one-port networks in Fig. 23 as a function of the pa-
rameterscy, ko, k3, b, ¢, p, to be given by (39) at the bottom of
the next page. Clearly, the McMillan degree of (39) is one higher
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Fig. 22. Electrical circuit realization of the admittance (13).

o
. oy . ®
than the admittance we started with in (13). Since there are four

energy storage elements in Fig. 23 (three springs and oneFffy: 23. Third realization of the admittance (13).
erter), the extra degree is not unexpected from general circuit

theory considerations. How then is equality with (13) to be exnd (43) follows from:

plained? The answer is that there is an interdependence in the

parameter values @f;, ks, k3, b, ¢, p, as defined through (33), iy — & )do (do/Bs+di/Pr)
(34), and (36)—(38) which is sufficient to ensure a pole-zero b 2 k
cancellation in (39). In the case wheg = 0, which makes Y (do /B + dy //31) AN

ks = oo, this interdependence is expressed by
>dol(fPer/Ps+ P3P ) >0.
(k1p® + (21 — k3)p? + (k1 — 2k3)p — k3)pc® + bk = 0. =0 ([2 Ha + s /1) =

(The general relationship is significantly more complicated). jt @Ppears difficult to give any usefal priori estimates for the
is evident that the mechanical network in Fig. 23 parameteriZ&¥er ratiop. . .
a class of admittances which is strictly larger than those in (13)We now return to the suspension strut design of Sec-
if the parameter values fi, ko, ks, b, ¢, andp are allowed to tion IV-E-3. For the parameter values given in (27), the
vary independently. realization of Fig. 23 gives the following values for the con-
It is interesting to make any possible comparisons betwegf{@Nts using equations (33), (34), and (36)—(38)
parameter values required in Fig. 23 and those for the realization , o -1,
in Fig. 14 for the admittance (13). In fact, it is possible to show b=323.62kg k= 121.74 kNm kp = oo
ks =8384.7kKNm™ ¢ =10.837 kNsm™* p = 2.2546.

by <b (40)
e <c (41) These values_ appear to be wit_hin the bounds of practicality.
b <l (42) After carrying out the Darlington procedure for the real-
=" ization of the admittance (13), we note that the saving of one
ky 2 ko (43) damper from the realizations of Figs. 13 and 14 has been offset
To show (40), we note thab < ks < kao while by_the need for a I_ever_. Th_e extra spring and increa_sed_ _value
of inerter constant implied in (40) are perhaps less significant
 kao (aofs + 201 V/P1Bs + aifi/ao) differences.

kag.
(a0 — do)Bs + (a1 — d1) VP13 - o

For (41), note thats = k(a; — dy) ande = ka?/(ay — dy); V- SIMULATED MASS

(42) follows from: The previous two applications of the inerter exploited one
of its principal advantages over the mass element, namely that
e — k (ao VB3 +a \//3_1) neither of its terminals need to be grounded. There is also the
1= (ag — do) VB3 + (a1 — d1) V/B1 possibility that the inerter could be used to replace a mass

Sg(k'g + kg)cbp2 + S2k2]€3b + S(p2k'1(k'2 + ]Cg) + k‘gkg)c + klk'gk'g
s(s3cbp? 4 s2bka + sc(p?(k1 + k3) + (1 + p)2ka) + ko(k1 + k3))

(39)
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element with one of its terminals then being connected to cos
ground. This is illustrated in Fig. 24(a) and (b), which are in
principle equivalent dynamically with respect to displacement

disturbancesz.

Fig. 24(b) may be a useful alternative to Fig. 24(a) in a sit- M
uation where it is desired to test a spring—damper support or
absorber before final installation, and where it is impractical to
test it on a real mass element, e.g., where the mass very
large.

By contrast, it should be pointed out that, even in the context
of mechanical network synthesis, Fig. 24(b) may not be a phys-
ically feasible alternative to Fig. 24(a) in situations where it is
impossible to connect one terminal of the inerter to ground, e.g., l z
for a vibration absorber mounted on a bridge. @)

VI. CONCLUSION LIl

This paper has introduced the concept of the ideal inerter,
which is a two-terminal mechanical element with the defining
property that the relative acceleration between the two terminals b
is proportional to the force applied on the terminals. There is no
restriction that either terminal be grounded, i.e., connected to a
fixed point in an inertial frame. The element may be assumed to
have small or negligible mass. The ideal inerter plays the role
of the true network dual of the (ideal) mechanical spring. k

It was shown that the inerter is capable of simple realization.

One approach is to take a plunger sliding in a cylinder driving a

flywheel through a rack, pinion and gears. Such a realization sat-

isfies the property that no part of the device need be attached to l z

ground, and that it has a finite linear travel which is specifiable. (b)

The mass of the device may be kept small relative to the iner-

tance (constant of proportionality) by employing a sufficiently

large gear ratio. Such a realization may be viewed as approXp- 24. Spring-damper supporting (a) a mass element and (b) a grounded
. . - . . . _inerter acting as a simulated mass.

mating its mathematical ideal in the same way that real springs,

dampers, capacitors, etc. approximate their mathematical ideals.

The inerter completes the triple of basic mechanical netwoftis arrangement avoids any associated problems of attaching
elements in a way that is advantageous for network synthesise spring-mass to the machine, such as the need for an
The properties that neither terminal need be grounded and thmlesirably large mass to limit its travel.
device mass may be small compared to the inertance are crucia vehicle suspension strut design problem was considered as
for this purpose. It allows classical electrical circuit synthesis emother possible application of the inerter. It was pointed out that
be exploited directly to synthesize any one-port (real-rationapnventional struts comprising only springs and dampers have
positive-real impedance as a finite network comprising springseverely restricted admittance functions, namely their poles
dampers, and inerters. The use of the inerter for synthesis daad zeros all lie on the negativ real axis and the poles and zeros
not prevent mechanical networks containing mass elemeatternate, so that the admittance function always has a lagging
from beinganalyzedn the usual way as the analogs of groundefilequency response. The problem of designing a suspension
capacitors. Moreover, as well as the possibility that in sons&rut with very high static spring stiffness was considered. It
situations it is advantageous that one terminal of the masas seen that conventional spring and damper arrangements
element is the ground, there is also the possibility that tldways resulted in very oscillatory behavior, but the use of
inerter may have benefits tsimulatea mass element with inerters can reduce the oscillation. In studying this problem, a
one of its terminals being connected to ground. general positive real admittance was considered consisting of

A vibration absorption problem was considered as a pasvo zeros and three poles. The realization procedure of Brune
sible application of the inerter. Rather than mounting a tuneehs applied to give two circuit realizations of the admittance,
spring—mass system on the machine that is to be protectath of which consisted of two springs, two dampers and one
from oscillation (conventional approach), a black-box menerter. The resulting parameter values for the strut design
chanical admittance was designed to support the machaggpear within the bounds of practicality. As an alternative,
with a blocking zero on the imaginary axis at the appropriatee realization procedure of Darlington was used to finding a
frequency. The resulting mechanical network consisted ofraalization consisting of one damper, one inerter, three springs
parallel spring-damper in series with a parallel spring inerteand a lever.
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