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Abstract

In this paper, a new iterative approach to probabilistic robust controller design is presented, which is applicable to any
robust controller/5lter design problem that can be represented as an LMI feasibility problem. Recently, a probabilistic
Subgradient Iteration algorithm was proposed for solving LMIs. It transforms the initial feasibility problem to an equivalent
convex optimization problem, which is subsequently solved by means of an iterative algorithm. While this algorithm always
converges to a feasible solution in a 5nite number of iterations, it requires that the radius of a non-empty ball contained into
the solution set is known a priori. This rather restrictive assumption is released in this paper, while retaining the convergence
property. Given an initial ellipsoid that contains the solution set, the approach proposed here iteratively generates a sequence
of ellipsoids with decreasing volumes, all containing the solution set. At each iteration a random uncertainty sample is
generated with a speci5ed probability density, which parameterizes an LMI. For this LMI the next minimum-volume ellipsoid
that contains the solution set is computed. An upper bound on the maximum number of possible correction steps, that can be
performed by the algorithm before 5nding a feasible solution, is derived. A method for 5nding an initial ellipsoid containing
the solution set, which is necessary for initialization of the optimization, is also given. The proposed approach is illustrated on
a real-life diesel actuator benchmark model with real parametric uncertainty, for which aH2 robust state-feedback controller
is designed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, a new approach for probabilistic design
of LQ regulators was proposed in the literature [12],

∗ Corresponding author. Tel.: +31-15-27-86707; fax: +31-15-
27-86679.
E-mail addresses: s.kanev@its.tudelft.nl (S. Kanev),

b.deschutter@its.tudelft.nl (B. De Schutter),
m.h.g.verhaegen@its.tudelft.nl (M. Verhaegen).
1 This work is sponsored by the Dutch Technology Foundation

(STW) under project number DEL.4506.

to which we will refer to as the Subgradient Itera-
tion Algorithm (SIA), which was later on extended
to deal with general robust LMIs [4]. The main ad-
vantage of this approach over the existing determin-
istic approaches to robust controller design is that it
can handle very general uncertainty structures, where
the uncertainty can enter the system in any, possibly
non-linear, fashion. In addition to that, this approach
does not need to solve simultaneously a number of
LMIs, whose dimension grows exponentially with the
number of uncertain parameters, but rather solves one
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LMI at each iteration. This turns out to be a very pow-
erful feature when one observes that even for ten real
uncertain parameters most of the existing LMI solvers
will be unable to handle the resulting number of LMIs.
For an overview of the literature on probabilistic de-
sign, the reader is referred to [3,5,6,10,12–16], and the
references therein.
While enjoying these nice properties, the major

drawback of the SIA is that the radius of a ball
contained in the solution set (the set of all feasible
solutions to the problem) is required to be known a
priori. This radius is used at each iteration of the SIA
to compute the size of the step which will be made
in the direction of the anti-gradient of a suitably de-
5ned convex function. It will be shown later in this
paper that not knowing such a radius r can result in
the SIA failing to 5nd a feasible solution. Knowing
r, on the other hand, guarantees that the algorithm
will terminate in a feasible solution in a 5nite number
of iterations with probability one, provided that the
solution set has a non-empty interior [12,4]. The pur-
pose of this paper is to develop a new probabilistic
approach that no longer necessitates the knowledge
of r, while keeping the above-mentioned advantages
and the convergence property of SIA.
To circumvent the lack of knowledge of r, it is

proposed in [9] that one can substitute this num-
ber with a sequence {�s} such that �s ¿ 0, � → 0
and

∑∞
s=0 �s = ∞. While this indeed releases the

assumption that the radius r is known, it increases
the number of iterations necessary to arrive at a fea-
sible solution. In addition to that the choice of an
appropriate sequence {�s} remains an open question.
An interesting result concerning the algorithm in

[4] appeared recently in [11], where it is shown that
the expected time to achieve a solution is in5nite. In
[11] the authors also propose a slight modi5cation of
the approach from [4] that results in an algorithm with
5nite expected achievement time. Yet, this modi5ed
algorithm suKers from the “curse of dimensionality”,
i.e. the expected achievement time grows (faster than)
exponentially with the number of uncertain parame-
ters.
The approach proposed in this paper is based on the

Ellipsoid Algorithm (EA). The algorithm can be used
for 5nding exact or approximate solutions to LMI
optimization problems, like those arising from many
(robust) controller and 5lter design problems. The un-

certainty � is assumed to be bounded in the structured
uncertainty set �, and to be coupled with a probability
density function f�(�). It is further assumed that it is
possible to generate samples of � according to f�(�).
The interested reader is referred to [3] for more details
on the available algorithms for uncertainty generation.
Then, similarly to the SIA, at each iteration of the EA
two steps are performed. In the 5rst step, a random
uncertainty sample �(i) ∈� is generated according to
the given probability density function f�(�). With
this generated uncertainty a suitably de5ned convex
function is parameterized so that at the second step of
the algorithm an ellipsoid is computed, in which the
solution set is guaranteed to lie. The EA thus produces
a sequence of ellipsoids with decreasing volumes, all
containing the solution set. Using some existing facts,
and provided that the solution set has a non-empty
interior, it will be established that this algorithm con-
verges to a feasible solution in a 5nite number of
iterations with probability one. To initialize the algo-
rithm, a method is presented for obtaining an initial
ellipsoid that contains the solution set. It is also shown
that even if the solution set has a zero volume, the
EA converges to the solution set when the iteration
number tends to in5nity—a property not possessed by
the SIA.
The remaining part of the paper is organized as

follows. In Section 2 the problem is formulated,
and the SIA is summarized. In Section 3 the EA
is developed and its convergence is established. In
Section 4 a possible method for 5nding an initial
ellipsoid containing the solution set is presented. The
complete EA method is illustrated in Section 5 on
the design of a robust H2 state-feedback controller
for a real-life diesel actuator benchmark model,
taken from [1]. Finally, Section 6 concludes the
paper.

2. Introduction to the problem

2.1. Notation and problem formulation

The notation used in the paper is as follows. In de-
notes the identity matrix of dimension n×n; In×m is
a matrix of dimension n×m with ones on its main
diagonal. The dimensions will often be omitted in
cases where they can be implied from the context.
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‖ · ‖ denotes any matrix norm. A¿ 0 (A¿ 0) means
that A is positive de5nite (positive semi-de5nite). We
also introduce the notation ‖x‖2Q := xTQx for x∈Rn

and Q∈Rn×n with Q¿ 0, which should not be mis-
taken with the standard notation for the vector p-norm
(‖x‖p). A vector of dimension n with all elements
equal to zero will be denoted as 0n.
Let the space of all symmetric n-by-n matrices be

denoted asSn, and letC+n denote the cone of symmet-
ric non-negative de5nite n×n matrices [12]. Then we
de5ne the projection �+: Sn → C+n in the following
way:

�+A := arg min
X∈C+n

‖A− X ‖F :

This projection can be found explicitly as follows.
For a matrix A∈Sn the eigenvalue decomposition ex-
ists and has the following form A=U�UT, where U
is an orthogonal matrix containing the eigenvectors
of A, and � is a diagonal matrix with the eigenval-
ues �i; i = 1; : : : ; n, of A appearing on its diagonal,
i.e. � = diag{�1; : : : ; �n}. Then it can be shown that
(see [12])

�+A= Udiag{�+1 ; : : : ; �+n }UT;

with �+i =max(0; �i); i = 1; : : : ; n.
In this paper, we consider the following uncertain

transfer function:

G�(�):

[
u

�

]

→

[
z

y

]

de5ned as

G�(�) =

[
C�

z

C�
y

]
(�In + A�)−1[B�

u B�
� ]

+

[
D�

zu D�
z�

D�
yu D�

y�

]
; (1)

where A�∈Rn×n; B�
u∈Rn×m; B�

�∈Rn×n� ; C�
z ∈Rnz×n,

C�
y ∈Rp×n; D�

zu∈Rnz ×m; D�
z�∈Rnz ×n� , D�

yu∈Rp×m;
D�

y� ∈Rp×n� ; u∈Rm is the control action, y∈Rp

is the measured output, z ∈Rnz is the controlled out-
put of the system, and �∈Rn� is the disturbance
to the system, and where the symbol � represents
the s-operator (i.e. the time-derivative operator) for
continuous-time systems, and the z-operator (i.e. the

shift operator) for discrete-time systems. The uncer-
tainty � is characterized by an uncertainty set � and
a probability distribution over this uncertainty set f�.
Many controller (and 5lter) design problems are

known to be representable in terms of LMIs [2].

Control Problem: Find a feasible solution to the LMI

U (x; �)6 0; x∈X ⊆ RN ; for all �∈�;
where U (x; �)=UT(x; �) is aPne in x, and where the
set X is assumed to be convex. The controller is then
parameterized by any solution x∗. Such a controller is
called robust whenever the uncertainty set � has more
than one element.

The set of all feasible solutions to the control prob-
lem is called the solution set, and is denoted as

S
:= {x∈X: U (x; �)6 0; ∀�∈�}: (2)

It is assumed throughout this paper that the solution
set S is non-empty.
The goal is the development of an iterative algo-

rithm capable of 5nding a solution to the control prob-
lem de5ned above. To this end the following cost
function is de5ned:

v(x; �) := ‖�+[U (x; �)]‖¿ 0; (3)

which is such that v(x; �)=0 for all �∈� if and only
if x∈S.
Thus, the initial problem is reformulated to the

following optimization problem:

x∗ = argmin
x∈X

sup
�∈�

v(x; �): (4)

Note that x∗ is such that v(x∗; �) = 0 for every �∈�
due to the assumption that S is non-empty.
In [4] it is shown that the function v(x; �) is con-

vex in x and a subgradient of v(x; �), denoted here as
∇v(x; �), is derived.

2.2. The subgradient iteration algorithm (SIA)

For 5nding a feasible solution to the optimization
problem (4), an algorithm was proposed in [4]. It orig-
inated in [12], where it was developed speci5cally for
the design of a state-feedback LQ regulator. We will
refer to this algorithm as the SIA due to the fact that
it is based on subgradient iterations.
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De5ne the operator �X :RN 
→ X as follows:

�Xx
:= argmin

y∈X
‖x − y‖:

Further, the following assumption is imposed for the
SIA.

Assumption 1 (Strong Feasibility Condition): A
scalar r ¿ 0 is known for which there exists x∗ ∈X
such that

{x∈X: ‖x − x∗‖6 r} ⊆ S:

Assumption 1 implies that the solution set S has
a non-empty interior, and that a radius r of a ball
contained in S is known. This is often is a rather
restrictive assumption due to the fact that usually no a
priori information about the solution set is available.
This assumption will be released in the next section
where the newly proposed algorithm is presented.
The SIA is then summarized as follows (see [12,4]

for more details).

Algorithm 1 (Subgradient Iteration Algorithm: itera-
tion i+1): Given x(i) and 0¡"¡ 2, perform the fol-
lowing steps:
Step 1. Generate a random sample �(i) ∈� with

probability distribution f�.
Step 2. Select the step size

#i =




"v(x(i) ;�(i))+r‖∇v(x(i) ;�(i))‖
‖∇v(x(i) ;�(i))‖2 if v(x(i); �(i)) �= 0;

0 if v(x(i); �(i)) = 0
(5)

and compute

x(i+1) =�X[x(i) − #ki∇v(x(i); �(i))]: (6)

As an initial condition x(0) to the algorithm can be
selected any element of the setX. As a stopping crite-
rion one may, for instance, select the condition that for
a given number of iterations L (usually L�1) the step
size #i−k=0 (or equivalently v(x(i−k); �(i−k))=0) for
k=0; 1; : : : ; L. A “weaker” stopping condition could be
that the vector x(i) did not change signi5cantly in the
last L iterations. Once the algorithm has terminated,
a Monte-Carlo simulation could be performed to esti-
mate the empirical probability of robust feasibility [4].
Whenever the obtained probability is unsatisfactory,

the number L can be increased and the algorithm can
be continued until a better solution (achieving higher
empirical probability of robust feasibility) is found.
The following technical assumption needs to be

additionally imposed.

Assumption 2. For any x(i) �∈ S there is a non-zero
probability to generate a sample �(i) for which
v(x(i); �(i))¿ 0, i.e.

Prob(v(x(i); �(i))¿ 0)¿ 0:

This assumption is not restrictive and needs to hold
also for the algorithm, proposed in the next section.
The assumption is needed to make sure that for any
x(i) �∈ S there is a non-zero probability for a correc-
tion step to be executed. By correction step it is meant
an iteration (6) with x(i+1) �= x(i).
It is shown in [4] that for any initial condition

x0 ∈X, the SIA 5nds a feasible solution with prob-
ability one in a 5nite number of iterations, provided
that assumptions 1 and 2 hold. It is also shown that
the number

ISIA = ‖x(0) − x∗‖2=(r2"(2− ")) (7)

provides an upper bound on the maximum number of
correction steps that have to be executed.
Although there are a lot of applications for which

the subgradient algorithm performs well, in general
it possesses the weakness that assumption 1 is too
restrictive, i.e. the number r is not known. As it is
demonstrated below, if it is selected not small enough,
so that the condition in assumption 1 does not hold,
then algorithm SIA results in an oscillatory sequence
{x(i)}i=1;2; ::: that actually diverges from the solution
set. On the other hand, if r is selected too small to make
sure that assumption 1 is satis5ed, then the conver-
gence rate of the algorithm can drastically slow down
since the maximum number of correction steps is re-
versely proportional to r2. To experimentally illustrate
this discussion we consider the following example.

Example 1. Consider the discrete-time system

M: xk+1 = xk + uk ; (8)

and the following standard LQ cost function is mini-
mized

JLQR =
∞∑
i=1

‖xk+i‖2Q + ‖uk+i‖2R:
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Fig. 1. Performance of the subgradient iteration algorithm (SIA) for system M: (left) level curves of v([X Y ]T) together with a plot of
the sequence {[X (i); Y (i)]T}16i=1, (middle) plot of v([X (i); Y (i)]T) versus the iteration number i, (right) a zoom on the solution set.

It is shown in [8] that the control action uk = Fxk =
YX−1xk achieves an upper bound of xTk X

−1xk on the
cost function if and only if X = X T¿ 0 and Y are
such that


X (AX + BY )T XQ1=2 Y TR1=2

AX + BY X 0 0

Q1=2X 0 I 0

R1=2Y 0 0 I


¿ 0:

(9)

By (randomly) selecting Q=1; R=10; r=1; "=1;
X0 = 0:1545; Y0 = −1:7073, the subgradient itera-
tion algorithm does not converge to the solution set,
but rather begins to oscillate, as it can be seen from
Fig. 1. The feasibility set is represented by the in-
nermost contour in Fig. 1 (left). The contours in
Fig. 1 represent diKerent level sets. A level set
LS(c; �∗) for the function v(x; �) for a given �∗ ∈�
and for a given positive number c is de5ned as

LS(c; �∗) := {x∈X: v(x; �∗)6 c}: (10)

The reason for these oscillations is that there exists
no ball of radius r = 1 inside the solution set (see
Fig. 1 (right)). Clearly, for this trivial example one
can obtain convergence by simply reducing r a bit
(for instance, taking r = 0:5 results in convergence to
a solution in six iterations), but in general for larger
systems of LMIs simple trial-and-error method with
diKerent values of the radius r may not be the best
option.

The approach proposed in this paper is based on the
Ellipsoid Algorithm (EA). Similar to the SIA method,

at each iteration of the EA two steps are performed.
In the 5rst step a random uncertainty sample �(i) ∈�
is generated according to the given probability density
function f�(�). With this generated uncertainty the
convex function U (x; �(i)) is parameterized and used
at the second step of the algorithm where an ellipsoid
is computed, in which the solution set is guaranteed
to lie. The EA thus produces a sequence of ellipsoids
with decreasing volumes, all containing the solution
set. Using some existing facts, and provided that the
solution set has a non-empty interior, it will be estab-
lished that this algorithm converges to a feasible so-
lution in a 5nite number of iterations with probability
one. To initialize the algorithm, a method is presented
for obtaining an initial ellipsoid that contains the so-
lution set. It is also shown that even if the solution
set has a zero volume, the EA converges to the solu-
tion set when the iteration number tends to in5nity—a
property not possessed by the SIA.

3. The ellipsoid algorithm (EA)

The algorithm presented below releases the
restrictive assumption 1, and retains only assumption
2. Convergence in a 5nite number of iterations with
probability one is also guaranteed.
Assume that an initial ellipsoid E(0), that contains

the solution set S, is given

E(0) = {x∈X: (x − x(0))TP−1
0 (x − x(0))6 1} ⊇ S

with center x(0) ∈X and P0 ∈RN ×N such that P0 =
PT0 ¿ 0. The problem of 5nding such an initial
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ellipsoid will be discussed in the next section. De5ne
the half-space

H (0) := {x∈X: ∇Tv(x(0); �)(x − x(0))6 0}:
Due to the convexity of the function v(x; �) we know
that H (0) also contains the solution set S, and there-
fore S ⊆ H (0) ∩ E(0). We can then construct a new
ellipsoid, E(1), as the minimum volume ellipsoid such
that E(1) ⊇ H (0) ∩ E(0) ⊇ S, and such that the vol-
ume of E(1) is less than the volume of E(0). This, re-
peated iteratively, represents the main idea behind the
EA [2,7].
Suppose that after iteration i we have x(i) ∈X and

Pi = PTi ¿ 0 such that

E(i) = {x∈X: (x − x(i))TP−1
i (x − x(i))6 1} ⊇ S:

The EA is then summarized as follows.

Algorithm 2 (The Ellipsoid Algorithm: iteration
i + 1): Given x(i) ∈X ⊆ RN and Pi = PTi ¿ 0,
perform the following two steps:
Step 1. Generate a random sample �(i) with prob-

ability distribution f�.
Step 2. Form the ellipsoid

E(i+1) = {x∈X: (x − x(i+1))TP−1
i+1(x − x(i+1))6 1}

⊇S

with

x(i+1) =




x(i) − 1
N+1

Pi∇v(x(i) ;�(i))√
∇Tv(x(i) ;�(i))Pi∇v(x(i) ;�(i))

if v(x(i); �(i)) �= 0;
x(i) if v(x(i); �(i)) = 0;

Pi+1 =




N 2

N 2−1
(
Pi − 2

N+1
Pi∇v(x(i) ;�(i))∇Tv(x(i) ;�(i))PTi
∇Tv(x(i) ;�(i))Pi∇v(x(i) ;�(i))

)
if v(x(i); �(i)) �= 0;

Pi if v(x(i); �(i)) = 0:

(11)

The stopping criterion remains the same as for the
SIA.
Fig. 2 visualizes algorithm EA in the two-

dimensional case. The convergence of the approach
is established immediately, provided that assumption 2
holds, which implies that for any x(i) �∈ S there
exists a non-zero probability for the execution of a
correction step (i.e. there is a non-zero probability for
generation of �(i) ∈� such that v(x(i); �(i))¿ 0).

)( )xv∇

)

)( +ix

E
(i+1)

(i)
HH

S

E
(i)

Fig. 2. One iteration of the ellipsoid method in the two-dimensional
case.

Lemma 2 (Convergence of Algorithm EA). Consider
Algorithm EA, and suppose that Assumption 2 holds.
Let

(i) vol(S)¿ 0. Then a feasible solution will be
found in a 9nite number of iterations with prob-
ability one.

(ii) vol(S) = 0. Then

lim
i→∞

x(i) = x∗ ∈S

with probability one.

Proof. Algorithm EA generates ellipsoids with geo-
metrically decreasing volumes [2], i.e. for the ith cor-
rection step we can write

vol(E(i))6 e−i=(2N )vol(E(0)):

Due to assumption 2, for any x(i) �∈ S there exists a
non-zero probability for the execution of a correction
step (i.e. there is a non-zero probability, independent
on the iteration number i, for generation of �(i) ∈�
such that v(x(i); �(i))¿ 0). Therefore

lim
i→∞

vol(E(i)) = 0: (12)

(i) If we then suppose that the solution set S has
a non-empty interior, i.e. vol(S)¿ 0, then from Eq.
(12) and due to the fact that E(i) ⊇ S for all i =
0; 1; : : :, it follows that in a 5nite number of iterations
with probability one the algorithm will terminate at a
feasible solution.
(ii) If we now suppose that vol(S)=0, then due to

the convexity of the function, and due to Eq. (12), the
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algorithm will converge to a point in S with proba-
bility one.

The result in Lemma 2 outlines the advantages of
algorithm EA over the previously proposed algorithm
SIA. While in the case vol(S)¿ 0 algorithm EA pre-
serves the property of guaranteed convergence with
probability one in a 5nite number of iterations, it of-
fers the advantages over algorithm SIA that

• no a priori knowledge about a number r ¿ 0 sat-
isfying the condition in Assumption 1 is necessary
(we will discuss how to 5nd an initial ellipsoid in
the next Section), and

• it converges (although at in5nity) even in the case
that the set S has an empty interior.

Finally, similarly to the bound ISIA on the maximum
number of correction steps for the SIA (see Eq. (7)),
we can derive such an upper bound for the proposed
ellipsoid method.

Lemma 3. Consider AlgorithmEA, and suppose that
Assumption 2 holds. Suppose further that the solution
set has a non-empty interior, i.e. vol(S)¿ 0. Then
the number

IEA = 2N
⌈
ln

vol(E(0))
vol(S)

⌉
(13)

is an upper bound on the maximum number of cor-
rection steps that can be performed starting from any
ellipsoid E(0) ⊇ S, where �a�; a∈R, denotes the
minimum integer number larger than or equal to a.

Proof. It is shown in [2] that for the ith correction
step one can write

vol(E(i))6 e−i=(2N )vol(E(0)):

Since the volume of the consecutive ellipsoids tends
to zero, and since vol(S)¿ 0, there exists an iteration
number IEA such that

e−i=2N vol(E(0))6 vol(S); ∀i¿ IEA:

Therefore, we could obtain the number IEA from the
following relation:

vol(S)
vol(E(0))

¿ e−i=(2N ) ⇐ i¿ IEA:

Now, by taking the natural logarithm on both sides
one obtains

ln
vol(S)

vol(E(0))
¿− i

2N
⇐ i¿ IEA

or

i¿ 2N ln
vol(E(0))
vol(S)

⇐ i¿ IEA

Therefore, Eq. (13) is proven.

We would like to point out that usually IEA�ISIA.
This is demonstrated in the following example.

Example 4 (Comparison between the bounds IEA and
ISIA): Let us suppose that the dimension of our vector
of unknowns is 10 (i.e. N =10), and that the solution
set is a ball of radius 1:1 and center x∗ ∈R10
S= {x∈R10: ‖x − x∗‖6 1:1}:
To make a fair comparison between the SIA and the
newly proposed EAwe proceed as follows: we assume
that the initial condition x(0) for SIA is at a distance
d¿ 1:1 from the center ofS, i.e. ‖x(0)−x∗‖=d, and
that the initial ellipsoid for EA is a ball of radius d.
Since for SIA the number r in Assumption 1 should
be known, we will make several experiments with r=
{0:001; 0:01; 0:1; 1}. For these values of r, and for d=
{10; 102; 103; 104; 105} the two upper bounds IEA and
ISIA on the maximum numbers of possible correction
steps for the two algorithms were computed. Fig. 3
represents the results (note that all the three axes are

Fig. 3. Comparison between the upper bounds IEA and ISIA for
the algorithms SIA and EA.
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in logarithmic scale). Clearly, IEA�ISIA. It should be
pointed out that even if one selects the initial ellipsoid
for the EA to be a ball of radius 10d, or even 100d,
one still gets IEA�ISIA.

In the next section we present a method to obtain
an initial ellipsoid.

4. Finding an initial ellipsoid E (0)

Before the method for obtaining an initial ellipsoid
is presented, some additional notation must be intro-
duced. In addition to the solution set S and the level
sets LS(c; �), we now de5ne the local solution sets
for any 5xed �i ∈� as the level set at zero
S�i

:= LS(0; �i): (14)

Therefore, any x∗ ∈S is such that x∗ ∈ S� for all
�∈�. Also the solution set S is the intersection of
all local solution sets

S=
⋂
�i∈�

S�i :

Note also, that LS(c; �) ⊇ S� ⊇ S. Due to the con-
vexity of the functions v(x; �i) (consult Lemmas 4 and
5 in [4]), the solution set is clearly convex.
The following additional assumption needs to be

imposed.

Assumption 3. It is assumed that the level set LS(0; 0)
is a bounded set.

It must be noted that this assumption is not very
restrictive since we are anyway not interested in un-
bounded solutions because the solutions are later on
needed for controller/observer parameterization. For
instance, the optimal state-feedback gain F in Exam-
ple 1 is parameterized by any solution {X; Y} to the
LMI in Eq. (9) as F = YX−1, and thus unbounded
solutions are clearly of no interest. Whenever this
assumption does not hold, it can be enforced by intro-
ducing additional hard constraints on the entries of x.
Such constraints can be directly included into the algo-
rithm for initial ellipsoid computation that is presented
below.
The goal is to 5nd an ellipsoid containing the solu-

tion set S. For this purpose, we will make use of the

Fig. 4. The initial ellipsoid is computed by 5rst bounding the
level set LS(0; 0) with a box, and then obtaining an ellipsoid that
embraces it (not drawn on the 5gure).

fact that S is contained in any local solution set S�,
and therefore in any level set LS(c; �) for any c¿ 0
and �∈�. It is, therefore, contained in LS(0; 0), i.e.
S ⊆ LS(0; 0). The idea is then to 5nd an ellipsoid
that contains the level set LS(0; 0). To this end we
will 5rst bound the set LS(0; 0) with a rectangular
parallelepiped, and then we build an ellipsoid around
it as shown in Fig. 4, which we will use as an initial
ellipsoid to start Algorithm EA. In order to 5nd a
bounding rectangular parallelepiped, we need to 5nd
solutions to the following constrained optimization
problems:

Rxi =max
x∈X

xi subject to x∈LS(0; 0); i = 1; 2; : : : ; N;

xi =min
x∈X

xi subject to x∈LS(0; 0); i = 1; 2; : : : ; N:

These can be rewritten as LMI problems by noting that

{x∈LS(0; 0)} ≡ {x∈X: v(x; 0) = 0}

≡ {x∈X: U (x; 0)6 0}:

As a result, the following algorithm is proposed for
fast initial ellipsoid selection.
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Algorithm 3 (Initial Ellipsoid Computation):

(a) Find solutions to the LMI problems

Rxi =max
x∈X

xi; subject to U (x; 0)6 0;

i = 1; 2; : : : ; N;

xi =min
x∈X

xi; subject to U (x; 0)6 0;

i = 1; 2; : : : ; N:

(b) Take Rx = [ Rx1; : : : ; RxN ]T and x = [x1; : : : ; xN ]T, and
de5ne the box

R= {x: x6 x6 Rx} ⊇ LS(0; 0) ⊇ S:

(c) Next, 5nd an ellipsoid that encircles the box R.
This can easily be done by 5rst 5nding an ellipsoid
inside R and then stretching it to embrace R. The
ellipsoid

Ein = {x∈X: (x − xc)TP−1(x − xc)6 1}
with xc= 1

2( Rx+x) and P=diag 12 ( Rx−x)2 is inside
R. By de5ning A= P−1=2 and b=−P−1=2xc, this
ellipsoid can be equivalently represented as

Ein = {x∈X: ‖Ax + b‖226 1}:
(d) Stretching the ellipsoid Ein by 22 with 2¿ 1

results in

Eout = {x∈X: 2−2‖Ax + b‖226 1};
which we need to be such that it contains both Rx
and x. Therefore we take

2= max
x∈{ Rx;x}

‖Ax + b‖2
The initial ellipsoid can then be taken as

E0 = {x∈X: (x − xc)T(22P)−1(x − xc)6 1}:

Example 5 (Initial Ellipsoid Computation): To illus-
trate the algorithm for initial ellipsoid computation,
proposed in this section, we consider the following
system:

ẋ(t) =−x(t) + u(t) + �(t);

z(t) = x(t)

for which a constant state-feedback controller has to
be designed such that the H∞-norm of the resulting
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Fig. 5. Illustration of the algorithm for initial ellipsoid computation.

closed-loop system is less than 4 = 10−5. Using the
results in [2], this would be the case if there exist
Q∈R, R∈R, and L∈R such that



Q 0 0 0

0 2Q − L− LT 1 Q

0 1 1 0

0 Q 0 4


¿ 0:

Fig. 5 visualizes the initial ellipsoid that was generated
by Algorithm 3.

5. Experimental part

Next, we present an example illustrating the prob-
abilistic approach developed in this paper used to de-
sign a robustH2 state-feedback controller for a model,
representing a real-life diesel actuator benchmark
system, taken from [1]. A linear, continuous-time
model of the system can be written in state-space
form as

ẋ(t) =



0 −Kv

Tv
0

Kq"
Itot

−ftot+KvKq"
Itot

0

0 1
N 0


 x(t)
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+




Kv
Tv

KvKq"
Itot

0


 u(t) +



0

1
NItot

0


 �(t);

z(t) = [0; 1; 0]x(t): (15)

The values of the parameters in the state-space
model above are "∈ [0:7; 0:85]; ftot ∈ [9:85×10−3;
5:91×10−2]; Itot ∈ [2:1505×10−3; 2:9095×10−3];
Kq ∈ [0:513; 0:567]; Kv = 0:9; N = 89; 2s = 0:987,
and Tv=8:8×10−3. Note, that four of the parameters
are uncertain.
The goal is to design a robust state-feedback con-

troller for the uncertain system that achieves an up-
per bound 4UB =1 for the worst caseH2-norm of the
closed-loop system. This problem can be represented
as the following LMI feasibility problem [2]: Find ma-
trices Q=QT; R=RT, and L such that for all possible
values of the parameters 8

trace(R)¡ 1;
 R CzQ

QCTz Q


¿ 0;


−A(8)Q − QA(8)T − Bu(8)L− LTBu(8)T B�(8)

B�(8)T I




¿ 0:

Then F = LQ−1 is the desired state-feedback gain
matrix.
Application of the proposed approach resulted in

the state-feedback gain matrix

F = [− 0:81508 − 0:64339 − 3:2121×10−2]:
This solution was found by the EA method in less than
100 iterations. Starting from the same initial condi-
tions, the SIA was terminated after 500 iterations hav-
ing found no feasible solution (it was run for r=1; 0:1,
and 0.01).

6. Conclusions

In this paper, a new approach was proposed to
the probabilistic design of robust controllers (state

estimators), based on the Ellipsoid Algorithm. It
features a number of advantages over the proba-
bilistic Subgradient Iteration Algorithm, recently
proposed in [12,4]. Although the latter possessed
a number of useful properties, namely guaranteed
convergence in a 5nite number of iterations with
probability one, applicability to general uncertainty
structures and to large numbers of uncertain param-
eters, it has the strong disadvantage that the radius
of a non-empty ball contained in the solution set
must be known. This drawback is removed in the
EA approach proposed in this paper, while still re-
taining the advantages of the SIA method. Similarly
to the SIA method, at each iteration of the EA two
steps are performed. In the 5rst step a random un-
certainty sample �(i) ∈� is generated according to
the given probability density function f�(�). With
this generated uncertainty a suitably de5ned convex
function is parameterized so that at the second step of
the algorithm an ellipsoid is computed, in which the
solution set is guaranteed to lie. As a result, the EA
algorithm produces a sequence of ellipsoids with
decreasing volumes, all containing the solution set.
An ePcient method for obtaining an initial ellipsoid
is also proposed in the paper. The approach is illus-
trated by means of a case study with a real-life diesel
actuator benchmark model with four real uncertain
parameters, for which an H2 robust state-feedback
controller was designed.
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