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Abstract

This paper presents a method to relax Dynamic
Programming. The method makes it possible to find
suboptimal solutions with known error bounds to hard
problems. The bounds are chosen by the user, who can
then effectively trade-off between solution time and
accuracy. Several examples from different domains
where the method is highly useful are presented.

1. Introduction

For many optimal control problems, Dynamic Pro-
gramming could have been used to solve the problem
if there had been an efficient way to parameterize the
value function V*. Unfortunately, this is most often
not the case. This paper presents a way of relaxing
Dynamic Programming (DP) slightly to make it pos-
sible to find a more easily parameterized suboptimal
value function V¥ within a strict, user-defined, dis-
tance & from the optimal V*.

The paper will briefly present the method, and then
focus on a couple of optimal control problems where
it is applicable.

2. Problem formulation

Let x(n) € X be the state of some system at time
n.u(n) € U is the control decision. Given these, the
state evolves as

x(n+ 1) = f(x(n}), u(n)) )]
Given a time-additive cost function
N .
J(n)=3" p(x(k)u(k)). (2)
k=0

We would like to find an optimal policy u(n) = u(x,n),
such that the cost J is minimized from any initial
state at any initial time n. The resulting cost (value
function) from time r to NV is denoted V*(x,r). In this
setting, DP can be used to find V*(x,n) and p{x,n).

V' (x,n) = muin{ V*(f (x,u),n) + «;p(x,u)} (3)

0-7803-7516-5/02/$17.00 ©2002 |EEE

For a reference on DF, see e.g. [2].

For most problems, though, DP is not usable as the
value function cannot be parameterized or described
in an efficient manner. In this paper we focus on
problems where V* has a finite deseription which
grows rapidly {typically exponentially) is size with N.
The contribution of the paper is a simple algorithm to
find a sub-optimal value function V< which is within
a user-definable distance & from the true V*. Using
this method, some problems for which DP has been
considered hopeless can now be practically solved.

The method was introduced for a very specific problem
in [6]. This paper generalizes the idea and presents
some other types of problems where the method is
very usable.

3. Suboptimal dynamic programming

Let V*(x,n + 1) have a finite parameterization. The
V*(x,n) is calculated using (3}. Except for some spe-
cial cases (like quadratic cost and linear dynamies),
this value function at n will generally have a larger
parameterization than at n + 1.

The aim of this method is to find a more easily
parameterized V%{x,n) which fulfills

V*(x,n) £ V¥(x,n) < V¥(x,n) (4)

where V®'(x,n) corresponds to the is a slightly
“larger” step cost @ (x,u) such as e.g.

cen-{lye Or o
and .
Ve (en) =miny_ o%x(k).u(k).  (8)
k=n

From the two choices of ¢® above, having found
a V¥%=x,n), we get the following bounds on (the
unknown) V*(x,n)

%Va(x,n) < V*(x,n) < V¥(x,n} ()
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for () and
V&(x,n)— Na < V*(x,n) < V¥x,n) (8)
for (=+).

3.1 Finding V“
Assume we have a V¥{x, n) which satisfies (4). Upper
and lower bounds on V*(x,n — 1} are calculated as

Vit,n—1)= muin{V“ (f (x,u),n) + olx, u)} (®)
and
Vign—1)= mjn{Va(f(x,u), n) + (p“(x,u)}. (10)

From this, V#(x,n — 1) is calculated as a simplified
version of either V(x,n — 1) or V(x,n — 1) which
satisfies

Vir,n—1)<V¥x,n—1) < V(z.n —1) (11)
By construction, also V¥{x,n — 1) satisfies
Vi x,n—1)<VHa,n -1} < V™(a,n—-1) (12)

and thus the procedure can be repeated. Starting
from V%(x,NN) = 0 and iterating the above procedure
produces a set V¥(x,n}, n € [0, N] which satisfies (4)
by induction. . '

3.2 The role of

« and (and ¢“) is chosen by the user as a trade-off
between time- and memory constraints and the bound
on the optimal solution V*.

4. Problem 1: Linear dynamics, piecewise
linear cost

This section will describe an optimal control problem
where the method in Section 3 can be applied. The
plant to be controlled is an LTI system, and the cost
to be minimized is piecewise linear. This makes it
possible to create more elaborate cost functions than
the usual quadratic cost. For example, it is possible to
make the cost asymmetric such that negative states
are more costly than positive,

4.1 Problem formulation
The controlled system is LTI

z(n + 1) = Ax(n) + Bu(n) (13)

where x € X, u € U and X and U are polyhedra. The
cost function is on the form {2}, with

X
¢(x.u) = maxg" [u] (14)
1

where ¢ is a vector and @ is a finite set of vectors.
@(x,u) is thus piecewise linear and convex. The goal
of the controller is to minimize the cost (2).

4.2 Value function

Assume the value function V(x,n + 1} at some time
n + 1 is on the form

= T [*
V(ie,n+1)= kerg(afnk ( 1 ] . {15)

Bellman’s equation is used to caleulate V{x,n)

Ax+ B
V(x,n)=min{ max kT [ u] +
uell | kex(n+1) 1

X
T
max u =
e’ [1]}

: T T
?gélr?eagx{Fr t+Gu+ H,.}. {16)

where R is an index set. The value function can be
rewritten as the linear program

Viz,n) =n3}nf st ' ,
F'x+Glu+H. <f VreR

where the x € X and u € U constraints have
been removed for clarity (they can easily be added).
Solving this for any initial position x yields a value
function that can again be written on the form (15).
The solution can either be found by solving a Multi-
Parametric Linear Programing (MPLP) problem (see
e.g. [3]}, or by doing explicit enumeration of the dual
extreme points as is shown below.

Introducing Lagrange multipliers A4, we rewrite it as
Vix,n)=
: T T
nl}}mfg.ox{f +§1r(F, x+Glu+H, f)}

= maxmin{ (1~ 3" 4 }f + 3" A(FTx + H)+

>0 w,
420 wf reR reéR

):A,G,Tu} (17)

reR

where the last equality is due to strong duality for
linear problems. From this we see that

M a=1 (18)
reR
> 467 =0 (19)
réR
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and
= T

Vix,n) = rilgtrEZR&r(F, x+H,) (20)
where the set L is defined by A, > 0 and (18) and
(19).
As V(x,n) is linear in A, the maximum can be found
in one of the extreme points of L. L is a |[R| — 2
dimensional set bounded by | R} hyperplanes, and thus
we can find at most |R|(|R|—2)/2 extreme points. This
can be done by selecting all pairs of {(i,j)li # j € R},
setting all other A, =0, r# i, r # j. If A; and 4;
have positive solutions in (18) and (19), the resulting
A is an extreme point in L. Note that the extreme
points do not depend on the state x.

The extreme points of L form the new set x(n), and
again the value function is on the form

= T|*
V(x,n)—krgh?(xﬂk [1] (21)

4.3 Parsimonious representation

V(x,n) can usually be represented by a much smaller
set than the x{n) obtained by the above expansion,
A set x is called a parsimonious representation, if
only the members of x{r) which are ever active
(maximum for scme state) are included. Such a set
can be cbtained from Procedure 1.

PROCEDURE 1—CO0ST PRUNING
1. Let xP(n) = {—co}.

2. Pick cne k& € x(n). Find a state x where

kT [i] >pT [i] , Vp € &P3(n).

3. If such a x exists, find the p € x(n} with
the largest reward pT [J; ] .

Add p to xP™(n).
Remove p from x(n).

4. If no such x exists, remove % from x(n).

5. Repeat from 2 until x(n) is empty.

Note that after this procedure, naturally

max kT [x ] = max k7 [x Vx. (22)
kex(n) 1 REXP™(n) 1
4.4 g-optimal value function

To be able to use the proposed suboptimal DP, we
define a discounted cost

9% (x.u) = ayp(x,u) - aq (23)

where &y < 1 and a2 > 0. Choosing a; < 1 is of
course only meaningful if ¢{x,u) > 0, Vx, u. Note that
this cost is smaller than ¢(x, y) contrary to (5).

The goal for our a-optimal algerithm is to find a
smaller set x%(r) C x¥P**(n) with corresponding value
function V¥(n) for every n, while guaranteeing that

Vix,n) 2 V¥(x,n) >
V¥*(x,n)=a:V'(x,n) — (N —n)as (24)

{note that this is (4) with opposite inequalities). The
procedure in Section 3.1 is can be used to do this.

Assume V%(x,n + 1) satisfies (24) for n + 1. Doing
backward expansion the upper and lower bounds

max kT [J{ ] = muin{V“(f(x,u),n) + @(x, u)}.

kex(n)
(28)
and

T x _ . o a
k?:fxﬁ)k [ 1 ] = mum{V (f(xu)n)+ o (x,u)}
(26)
are calculated.

Now, the pruning of ¥(n) to k%(r) is done by replacing
the the cost pruning procedure by Procedure 2.

PrROCEDURE 2—CO0ST @@ PRUNING
1. Let x%(n) = {—oo}.

2. Pick one k € k(n). Find a state x where
kT ["] > pT ["] , Vp € k%(n).
1 1
3. If such a x exists, find the p € ¥(r) with
the largest reward p7 [ ch ] .
Add p to x%(n).
4. If no such x exists, remove & from x(n).

5. Repeat from 2 until x(n) is empty.
0

Having found the corresponding V%(x,n), the true
value function can be bounded by

Ve(x,n) < V*(x.n) < ail (Ve(x,n) + (N = n)az).
(27)

4.5 Example

In this example a controller for a linearized double
water tank process is constructed. The process (see
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Figure 1: The double tank process in the example.

Figure 2: The ¢(x) function in the example.

Figure 1) is given by

095 ©

*n+1)= [ 0.1 095

] x(n) + [;] u(n) (28)

where x; and x; is the water heights in the upper
and lower tanks, respectively, The control signal u
is limited by |z| < 1. We want the controller to
drive the state to zero while avoiding too large states
([*i| > 1). Therefore the cost function is defined by
eight hyperplanes, four that punishes states x| > 1
with slope 10, and four that punish states |x;] < 1
with slope 1. We let the time horizon N = 10.

Using DP without slack, the size |x] explodes within
a couple of time steps and is impossible to solve for
longer horizons.

Setting a1 = 0.6, a3 = 0.1, the algorithm finds
V#(x,0) while having to keep a set x(n) of size less
than 65 each time step. From this, we know the true
value function within

Vx,n) < V'{x,y} < 0—.1§(V,”(x,n)+ 1). (29)

05 e

x1

Figure 3: V%(x,0) in the example. Note that the state
space is not gridded in the solution, but only for
plotting.

The found V*(x) is shown for states [x;| < 1.2 is
shown in Figure 3.

5. Problem 2: POMDPs

The problem of Partially Observable Markov Decision
Processes (POMDPs) has been around for a long time
(see e.g. [1, 5]). Lately, it has mostly been investigated
in the Al/robotics fields, where robot navigation prob-
lems where limited sensor information is available. A
POMDP basically is a dual control problem where the
state-space X is finite, as is the control signal (or ac-
tion) space U and observation space Y.

The state x(n) is a Markov state and, and the
dynamics are specified by transition matrizx z(u),
where element %,/ denotes the probability to move
to state k if the system is currently in state [. This
probability can be controlled by u. See Figure 4 for an
illustration.

71'12([1)

7 (u) . #az(u)

kzl(u)

Figure 4: An example POMDP Markov graph with a set
of transition matrices # (1), one for each control
action u.

A specific observation y(n) € ¥ will be obtained with
probability

P(y(n} ] x(n) = k) = Qu(y(n),u{n)),  (30)

where () is the observation probability vector. Thus,
the controller never really knows exactly in which
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state the process is (if it was, the problem would be
a Markov Decision Process and easily solved). To be
able to use DP, the state is changed to the belief state
z(n): zx(n) = P(x{n) = R). Note that state space
is closed as zx(n) > 0, Yk and 3, zx(n) = 1. The
dynamics of the belief state is linear,

z(n+1) = x(u)z(n). (31)

and for each observation y € Y, our belief state is
changed according to Bayes’ rule:

zi(n | ¥(n)) = P(x(n) = k| y(n)) =
P(x(n) = kN y(n)) _

P(y(n))
P(y(n) | x(n) = k)-P(x(n) = k) _
P(y(n))
Qu(y(n), u(n))- zs(n)

P(y(n)) (32)

Thus, the expected state over all possible observations
is

. Q(y(n).u(m)2(n) _
(et }= 3 PO =5 i

ZQ(y(n),u(n))z(n) (33)

¥{n)

¥(n)

The cost in a POMDP ﬁroblem is usually replaced by
a reward, so we will stick to that. The reward J is
defined as

N N
J(n)=EY p(x(k),u(k)) = > R(u(k))z(k), (34)
k=n k=n

where R(u{k)) is a vector of rewards of using control
signal u(k) for each Markov state x(%).

For each time step, the controller has to make a
control decision u(n) based on the current belief state
z(n). After the control decision, an chservation y(n)
based on z(n) and u(n) is obtained. We would like
to find an optimal control policy u = u(z,n) which
maximizes the reward J{n) for any initial state z(n).
As it turns out, the value function V(z,n) is of the
form

V(z,n) = max sz(k), (35)

kex(n)

where x(r) is a finite set and % is a vector. Thus the
value function is piecewise linear in the state z.

If the value function V(z,n+ 1) is known and in the
form (35), we can calculate the value V(z,n) from

Bellman's equation:

V(z,n) =
mfxE{V(ﬂ(u)z,n-i- 1) + tp(x,u)} =

maxE kﬁﬁil)(kjﬂx(u) + R(z)T)z(n | y(n))} =

T T Q —
muaxyeykerﬁ%fl)(k #(u) + R(u)")Q(y,u)z

T
;Pe]»?if)k 2(n) (386)

Note that the “raw” size of x(n) is significantly larger
than x(n + 1) (actually |x(n)| = |x(n)|¥|U|, where
|U) denotes the number of elements in U/).

5.1 Parsimonious representation

Just like for the control problem problem in Sec-
tion 4.3, the set x(n) is often unnecessarily large and
may be pruned without changing the value of V(x,n).
Procedure 1 can be used without modification to ob-
tain a parsimonious representation.

5.2 a-optimal value function

Analogous to Section 4.4, a modified pruning proce-
dure can be used to obtain an o-optimal value func-
tion. The modified cost p®(x,u) can be chosen as

% (x,u) = p(x,y) — a. (37)

5.3 Example

There is a wide variety of reference POMDP problems
defined in literature. In this section we focus on the
4x3 Maze problem found in [4], which is a modified
version from [7]. The state x is a position in a
square 4x3 Maze where one state is inaccessible, and
therefore the state space X has size 11 (z is 11-
dimensional}. ¥ consists of six observations, and there
are four actions in U. The immediate reward is

+1 if x = good
Plx)y =< -1 ifx=bad . (38)
—0.04 otherwise

After reaching the “good” or “bad” state, the state is
reset. The problem is solved over an infinite horizon
using value iteration with a discount factor 1 = 0.95.

Running POMDP-SOLVE from [4] with incremental
pruning and ¢ = 0 fails to return a soluticn within a
reasonable time as the set x grows too fast.

Setting @ = 0.01, the algorithm keeps an set x* of size
about 150 after reaching steady state. The algorithm
was run with a finite horizon of 50 time steps, and the
resulting average value {for random initial states) is
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~ 1.7. Using cur o and the discount facter A, we can
bound the optimal value V*(x) by

Va(z) < V*(x) < V“(x)+§jzfa = V%(x)+02 (39)
i=0

A smaller o produces a larger search and a tighter
bound, and vice versa.

6. Other problems

Two problems where the pruning method is highly
useful has been presented in the previous sections.
There are many more problem where the method is
applicable, and some will be briefly mentioned here.

6.1 Linear Quadratic Switching

In [6], a control problem with linear switched dynam-
ics and quadratic immediate cost

T
qa{x,u):{z] Q[z]- (40)
Using the relaxed
o(ruw) =aplnu) (4D

with ¢ > 1, many problems can be practically solved.

6.2 Verification

The problem Section 4 may be immediately inter-
preted as a verification problem. By defining the safe
set Q by

Q= {x| V(N = max Pn)" <0} (42)

and using a step cost ¢(x) = 0 and ¢“%(x) = —o for
o > 0, we can obtain upper and lower bounds on the
set of states from which we can reach the safe set.

7. Conclusions

This paper has presented a method to relax Dy-
namic Programming to find suboptimal solutions with
known error bounds to hard problems. The bounds are
chosen by the user, who can then effectively trade-off
between solution time and accuracy. Several examples
where the methed is useful have been presented.
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