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Abstract

Degenerate gradient flows arise in the context of adap-
tive control of linear systems when the usual gradient
algorithm is used for the parameter update law. It
is well known that in general parameter convergence is
not guaranteed without further assumptions. The stan-
dard approach utilizes the notion of a persistently ex-
citing input and different authors have derived different
convergence rate estimates. In a recent paper Brockett
re-examined this issue and developed a rate estimate
using a property of symmetric matrices related to the
condition number. In this paper we compare two well-
known convergence rate estimates from the persistently
exciting point of view with Brockett’s estimate through
a semianalytical numerical study. We establish a com-
mon footing by relating the assumptions of each theo-
rem to the parameters specified under the persistently
exciting condition. Our analysis shows that for all pa-
rameter values Anderson’s result yields a tighter bound
than the other two estimates. In each case the mag-
nitude of the difference depends on the time it takes
for the uniform observability condition to hold in the
persistently exciting assumption. The shorter the time
is, the larger the difference is.

1 Introduction

Degenerate gradient flows are equations of the form

ẋ = −H(t, x)
∂V (x)

∂x
(1)

where H is a symmetric, positive semidefinite but not
positive definite matrix. Equations of this type arise
when we wish to minimize a particular function but
have only partial knowledge about its gradient at any

1This research was supported by ARO ODDR&E MURI97
Program Grant No. DAAG55-97-1-0114 (Center for Dynamics
and Control of Smart Structures through Harvard University),
ARO ODDR&E MURI01 Program Grant No. DAAD19-01-1-
0465 (Center for Communicating Networked Control Systems
through Boston University) and by NSF Learning and Intelli-
gent Systems Initiative Grant CMS9720334

given instant. Over time, however, different projections
become available and it is thus possible to construct an
effective descent procedure. In this paper we consider
convergence rates to the zero equilibrium for degener-
ate flows that arise in the adaptive control of a linear
system when the standard gradient algorithm is used
as the parameter update law. This equation has the
form

φ̇(t) = −w(t)wT (t)φ(t) (2)

where φ(t) is the parameter error and w(t) is the state
of an appropriate filter. Since w(t)wT (t) is positive
semidefinite it is clear that φT (t)φ(t) is non-increasing
but in general we cannot conclude that (2) is exponen-
tially stable. It is well known that under an assumption
of persistent excitation the equilibrium is exponentially
asymptotically stable. Two convergence rate estimates,
one by Sondhi and Mitra in 1976 [1] and one by An-
derson in 1977 [2], are based on this assumption. A
recent paper by Brockett [3] re-examined the persis-
tently exciting hypothesis, proceeding from the notion
of the conditioning time of the matrix w(t)wT (t) which
characterizes the time interval over which the condition
number (the largest eigenvalue divided by the small-
est, see, e.g. [4]) of the integral of that matrix is rela-
tively small. It is the purpose of this paper to compare
the rate estimates of Anderson, Sondhi and Mitra, and
Brockett. We begin in the following section by giving
some useful definitions and a pair of well known lem-
mas that will be used in the proof of Anderson’s rate
estimate. In section 3 we present the three estimates we
will compare. To establish the use of the persistently
exciting condition we review the proof of the Ander-
son result but for the sake of brevity we present the
other two theorems without proof, referring the reader
instead to the original papers. In section 4 we turn
to the comparison analysis and then conclude with a
discussion of the results.

2 Background

In this section we present a few standard results for
easy reference. First we need a theorem on the expo-
nential stability of a non-autonomous system.
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Theorem 2.1 (Exponential Stability) Consider
the system

ẋ = f(t, x), x ∈ IRn (3)

Let x = 0 be an equilibrium point for (3) at t = 0.
If ∃ a function v(t, x) and strictly positive constants
α1, α2, α3, and δ with α3 < α2 such that ∀ x in the
open ball of radius r centered at the origin for some
r > 0 and ∀ t > 0 we have

α1‖x‖2 ≤ v(t, x) ≤ α2‖x‖2

d

dt
v(t, x(t))

∣∣∣∣
(3)

≤ 0∫ t+δ

t

d

dτ
v(τ, x(τ))

∣∣∣∣
(3)

dτ ≤ −α3‖x(t)‖2

then
‖x(t)‖2 ≤ me−αt‖x(0)‖2 (4)

where

m =

[
α2

α1(1 − α3
α2

)

]
α =

1
δ
ln

[
1

1 − α3
α2

]
(5)

Proof See [5], Theorem 1.5.2. Note that there is an
error in the theorem statement in that reference; specif-
ically we additionally require α3 < α2. An analogous
result is given as Theorem 8.5 in [6].

Next we give a standard result on the uniform complete
observability of a linear system under output feedback,
usually known as Anderson’s Lemma.

Lemma 2.2 (Anderson’s Lemma) Assume that ∀
δ > 0 ∃ kδ ≥ 0 such that ∀ t0 ≥ 0∫ t0+δ

t0

‖K(τ)‖2dτ ≤ kδ (6)

Let [C,A] be the system

ẋ(t) = A(t)x(t)
y(t) = C(t)x(t) (7)

and let [C,A + KC] be the system with output feedback

˙̃x(t) = (A(t) + K(t)C(t))x̃(t)
ỹ(t) = C(t)x̃(t)

(8)

Let N1(t0, t0+δ) and N2(t0, t0+δ) be the corresponding
observability grammians. That is

N1(t0, t0 + δ)

�
=

∫ t0+δ

t0

ΦT
A(τ, t0)CT (τ)C(τ)ΦA(τ, t0)dτ (9)

N2(t0, t0 + δ)

�
=

∫ t0+δ

t0

ΦT
A+KC(τ, t0)CT (τ)C(τ)ΦA+KC(τ, t0)dτ (10)

Let 1I be the identity matrix and suppose that

β21I ≥ N1(t0, t0 + δ) ≥ β11I (11)

for some constants β2 ≥ β1 > 0. Then

β′
21I ≥ N2(t0, t0 + δ) ≥ β′

11I (12)

where

β′
1 =

β1

(1 +
√

kδβ2)2
β′

2 = β2e
kδβ2 (13)

Proof See [5], Lemma 2.5.2. For a brief discussion
and additional references see [7], Section 13.4.

Finally we give the definition of a persistently exciting
input.

Definition 2.3 A function w : IR → IRn is said to be
persistently exciting if ∃ α1, α2, δ > 0 such that

α21I ≥
∫ t+δ

t

w(σ)wT (σ)dσ ≥ α11I ∀t ≥ 0 (14)

3 Convergence Rate Estimates

In this section we present the three convergence rate
estimates we will compare. We begin with a result
based on Anderson’s Lemma. The following theorem
can be found in [5]. We give the proof here to illustrate
the use of the persistently exciting condition.

Theorem 3.1 Consider equation (2). If w(t) is per-
sistently exciting then

‖φ(t)‖2 ≤ meαt‖φ(t0)‖2 (15)

where

m =
1

1 − β2
(16)

α =
1
δ
ln

(
1 − β2

)
(17)

with
β2 =

α1

(1 +
√

nα2)2
(18)

Proof Let v(φ) = 1
2φT φ. Then along trajectories of

system (2) we have

v̇ = φT φ̇ = −φT wwT φ = −(wT φ)2 ≤ 0 (19)

Since w is persistently exciting the system [wT , 0] is
uniformly completely observable. Let K(t) = −w.
The corresponding output feedback system is then
[wT ,−wwT ]. Notice that∫ t0+δ

t0

‖K(τ)‖2dτ =
∫ t0+δ

t0

wT (τ)w(τ)dτ (20)

= Tr

(∫ t0+δ

t0

w(τ)wT (τ)dτ

)
≤ nα2 (21)
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where Tr(·) is the trace operator and n is the dimension
of w. Thus by Lemma 2.2 the system [wT ,−wwT ] is
uniformly completely observable with constants

α′
1 =

α1

(1 +
√

nα2)2
α′

2 = α2e
nα2 (22)

So

α′
2‖φ(t0)‖2 ≥

∫ t0+δ

t0

|wT (τ)φ(τ)|2dτ ≥ α′
1‖φ(t0)‖2 (23)

From this we have∫ t0+δ

t0

v̇dτ = −
∫ t0+δ

t0

(wT (τ)φ(τ))2dτ ≤ −α′
1‖φ(t0)‖2

= − α1

(1 +
√

nα2)2
‖φ(t0)‖2 (24)

Using the fact that ‖φ(t)‖ is non-increasing yields∫ t0+δ

t0

v̇dτ ≤ −α1

(1 +
√

nα2)2
‖φ(t)‖2 = −β2‖φ(t)‖2 (25)

Then by Theorem 2.1 we have

‖φ(t)‖2 ≤
(

1
1 − β2

)
e
− 1

δ ln
(

1
1−β2

)
t‖φ(t0)‖2

= meαt‖φ(t0)‖2 (26)

where in the last step we used the definitions given in
the statement of the theorem.

We turn now to a result of Sondhi and Mitra [1]

Theorem 3.2 Consider equation (2) and assume w(t)
satisfies both the mixing condition

1
δ

∫ t+δ

t

w(τ)wT (τ)dτ ≥ αm1I (27)

where αm > 0 and

1
δ

∫ t+δ

t

wT (τ)w(τ)dτ ≤ L2 (28)

Then
‖φ(t)‖2 ≤ aebt‖φ(0)‖2 (29)

where
a = e−bδ b = max(b1, b2) (30)

with

b1 =
1
δ
ln(1 − s2

0) b2 =
1
δ
ln(1 − ρ) (31)

where s0 is the unique positive root of

(1 + δαm +
1
2
δ2α2

m)2(1 − s2) = (1 +
s

4
(δL2)

5
2 )2 (32)

and
ρ =

2αmδ

1 + L2δ + 1
2L4δ2

(33)

Proof See [1], Theorem 1.

Finally we give the recent result of Brockett [3].

Theorem 3.3 Consider equation (2). Let

W (t) =
∫ t

t0

w(σ)wT (σ)dσ (34)

If ∃ positive constants r, ε, and δ such that ∀t ≥ 0 we
have

W (t + δ) − W (t) ≥ ε1I (35)

and
Tr([W (t + δ) − W (t)]3) ≤ r3 (36)

then for

γ =

√
2r3

3(1 + 2ε)2
+

2ε

1 + 2ε
−

√
2r3

3(1 + 2ε)2
(37)

(with γ necessarily between 0 and 1) and for

λ =
1
δ
ln(1 − γ2) (38)

∃ a constant d such that

‖φ(t)‖2 ≤ deλt‖φ(0)‖2 (39)

Proof See [3].

4 Estimate Comparisons

4.1 Comparison of the Anderson and Brockett
estimates
We compare the estimate of Theorem 3.1 to that of
Brockett by first relating the assumptions used by
Brockett to the persistently exciting condition. As-
sume that the conditions for both theorems are met.
We have

W (t + δ) − W (t) =
∫ t+δ

t

w(σ)wT (σ)dσ ≥ α11I (40)

where the inequality comes from the persistently excit-
ing condition. Comparing this to the assumption used
by Brockett in equation (35) we take

ε = α1 (41)

For the next step we need the following lemma.

Lemma 4.1 Let M be a positive semidefinite n × n
matrix. Then

Tr(M3) ≤ [Tr(M)]3 (42)
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Proof Let the eigenvalues of M be {λ1, λ2, . . . , λn}.
Since M is positive semidefinite we have λi ≥ 0 for
every i. Then

Tr(M3) =
n∑

i=1

λ3
i ≤

(
n∑

i=1

λi

)3

= [Tr(M)]3 (43)

where the first equality follows from the spectral map-
ping theorem and the inequality follows from the fact
that the eigenvalues are nonnegative.

Applying Lemma 4.1 we have

Tr([W (t + δ)−W (t)]3) = Tr

[∫ t+δ

t

w(σ)wT (σ)dσ

]3


≤
(

Tr

[∫ t+δ

t

w(σ)wT (σ)dσ

])3

≤ n3α3
2 (44)

where the inequality again follows from the persistently
exciting condition and n is the dimension of w. Com-
paring this to the assumption used by Brockett in equa-
tion (36) gives us

r = nα2 (45)

Rewriting γ in terms of α1, α2, n yields

γ =

√
2n3α3

2

3(1 + 2α1)2
+

2α1

(1 + 2α1)
−

√
2n3α3

2

3(1 + 2α1)2
(46)

and thus

γ2 =
1

3(1 + 2α1)2
[
4n3α3

2 + 6α1 + 12α2
1

−4
√

n6α6
2 + 3n3α1α3

2 + 6n3α2
1α

3
2

]
(47)

We can now compare λ, the estimate due to Brockett,
to α, the estimate due to Anderson. Starting from
equation (38)

λ =
1
δ
ln(1 − γ2) (48)

=
1
δ
ln

(
1 − γ2

1 − β2
(1 − β2)

)
(49)

=
1
δ
ln(1 − β2) +

1
δ
ln

(
1 − γ2

1 − β2

)
(50)

= α +
1
δ
ln (K1(n, α1, α2)) (51)

where the last step follows from equation (17) and de-
fines the function K1(n, α1, α2). K1(n, α1, α2) < 1
would imply λ < α and thus Brockett’s result would
give a faster rate estimate since it is more negative. As
this expression is somewhat complicated we turn to a
numerical study. In Figures 1, 2, 3, and 4 we show
plots of K1 versus α1 for different values of α2 and for
different system dimensions n. Only even values of n
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Figure 1: K1 for n = 2 and select values of α4

0 10 20 30 40 50 60 70 80 90 100
1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

1.022

α
2
=100

α
2
=90α

2
=80

α
2
=70

α
2
=60

α
2
=50

α
2
=40

α
2
=30

α
2
=20

α
2
=10

α
1

K
1

Figure 2: K1 for n = 4 and select values of α4

are considered since in the adaptive control context w
is a filter vector with dimension twice that of the orig-
inal state. Since α1 ≤ α2, each curve extends only to
α1=α2. From the plots we see that Anderson’s result
gives a tighter estimate in all cases with the difference
being greater for small α2. As the dimension of the
system increases the difference decreases but remains
qualitatively the same. From equation (51) we see that
the actual magnitude of the difference depends on δ.

4.2 Comparison of the Sondhi-Mitra and
Brockett estimates
To compare these two results we first express the pa-
rameters in Sondhi-Mitra’s result in terms of the per-
sistently exciting parameters α1, α2. Comparing the
mixing condition, equation (27), to the persistently ex-
citing condition we have

αm =
α1

δ
(52)

Now∫ t+δ

t

wT (τ)w(τ)dτ=Tr

(∫ t+δ

t

w(τ)wT (τ)dτ

)
≤ nα2 (53)

with the inequality coming from the persistently ex-
citing condition. Comparing this to equation (28) we
take

nα2 = δL2 ⇒ L2 =
nα2

δ
(54)

Plugging these into equation (32) we have that s0 is
the unique positive square root of(

1 + α1 +
1
2
α2

1

)2

(1 − s2) =
(
1 +

s

4
(nα2)

5
2

)2

(55)
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Figure 3: K1 for n = 8 and select values of α4
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Figure 4: K1 for n = 10 and select values of α4

and into equation (33) we have

ρ =
2α1

1 + nα2 + 1
2n2α2

2

(56)

Define

ξ2 = min(s2
0, ρ) (57)

Using this and starting from equation (38)

λ =
1
δ
ln(1 − γ2) (58)

=
1
δ
ln

(
1 − γ2

1 − ξ2
(1 − ξ2)

)
(59)

=
1
δ
ln(1 − ξ2) +

1
δ
ln

(
1 − γ2

1 − ξ2

)
(60)

= b +
1
δ
ln (K2(n, α1, α2)) (61)

which defines the function K2(n, α1, α2). As before,
if K2(n, α1, α2) < 1 then λ < b and Brockett’s result
gives a faster estimate than Sondhi-Mitra’s. In Figures
5, 6, 7, and 8 we show plots of K2 for the same range
of parameters as we used for K1. These plots show
Brockett’s result gives a tighter bound than Sondhi-
Mitra’s for all parameter values with the difference be-
ing greater for small α2. As the dimension of the system
grows the difference decreases. From equation (61) we
see the magnitude of the difference again depends on δ
and so can be quite large even if K2 is close to one.
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Figure 5: K2 for n = 2 and select values of α2
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Figure 6: K2 for n = 4 and select values of α2

4.3 Comparison of the Anderson and Sondhi-
Mitra results
For the sake of completeness we compare the remaining
combination. Starting from equation (17) we have

α =
1
δ
ln(1 − β2) (62)

=
1
δ
ln

(
1 − β2

1 − ξ2
(1 − ξ2)

)
(63)

=
1
δ
ln(1 − ξ2) +

1
δ
ln

(
1 − β2

1 − ξ2

)
(64)

= b +
1
δ
ln (K3(n, α1, α2)) (65)

which defines the function K3(n, α1, α2) Here, if K3 <
1 Anderson’s result gives a tighter estimate than
Sondhi-Mitra’s. In Figures 9, 10, 11, and 12 we plot K3

over the same range of parameters as in the previous
two cases. As expected we see that for all parameters
the Anderson estimate gives a faster convergence rate
than the Sondhi-Mitra result with the difference larger
for smaller α2 and a magnitude depending on δ.

5 Conclusions

In this paper we have presented a comparative study of
three different convergence rate estimates for a degen-
erate gradient flow equation common in adaptive con-
trol. We considered two well-known results, one due
to Anderson and one due to Sondhi and Mitra, and a
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Figure 7: K2 for n = 8 and select values of α2

0 10 20 30 40 50 60 70 80 90 100
0.99984

0.99988

0.99992

0.99996

1.0

α
2
=100

α
2
=90α

2
=80

α
2
=70α

2
=60

α
2
=50

α
2
=40

α
2
=30

α
2
=20

α
2
=10

α
1

K
2

Figure 8: K2 for n = 10 and select values of α2

recent result by Brockett. Our analysis shows that An-
derson’s result yields a tighter estimate than the other
two and that Brockett’s estimate is tighter than Sondhi
and Mitra’s. For small δ the difference can be quite
large; that is as the input becomes more strongly ex-
citing (mixing) the Anderson result indicates a much
faster rate of convergence than would be expected from
either Brockett’s or Sondhi and Mitra’s result.
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Figure 9: K3 for n = 2 and select values of α2
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Figure 10: K3 for n = 4 and select values of α2
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Figure 11: K3 for n = 8 and select values of α2
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Figure 12: K3 for n = 10 and select values of α2
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