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Abstract

We discuss computational issues encountered in the de-
sign of residual generators for dynamic inversion based
fault detection filters. The two main computational
problems in determining a proper and stable residual
generator are the computation of an appropriate left-
inverse of the fault-system and the computation of co-
prime factorizations with proper and stable factors. We
discuss numerically reliable approaches for both of these
computations relying on matrix pencil approaches and
recursive pole assignment techniques for descriptor sys-
tems. The proposed computational approach to design
fault detection filters is completely general and can eas-
ily handle even unstable and/or improper systems.

1 Introduction

Consider the system described by the input-output re-
lations

y(λ) = Gp(λ)u(λ) + Gf (λ)f(λ) + Gd(λ)d(λ),

where y(λ), u(λ), f(λ), and d(λ) are transformed vec-
tors of the p-dimensional system output vector y(t),
m-dimensional plant input vector u(t), q-dimensional
fault signal vector f(t), and r-dimensional disturbance
vector d(t), respectively, and where Gp(λ), Gf (λ) and
Gd(λ) are the transfer-function matrices (TFMs) from
the plant inputs to outputs, fault signals to outputs,
and disturbances to outputs, respectively. According
to the system type, λ is either the complex variable
s appearing in the Laplace transform in the case of a
continuous-time system or the variable z appearing in
the Z-transform in the case of a discrete-time system.

One of the standard approaches to design residual gen-
erators is based on computing dynamic inversion based
fault detection filters [5, 6, 10, 12, 8, 3, 9]. It is well-
known (see for example [5, 6]) that, if: 1) Gp(λ) is
stable; 2) [ Gf (λ) Gd(λ) ] is left-invertible; 3) Gf (λ)
is minimum-phase; and 4) Gf (λ) has no infinite zeros,
then a physically realizable fault detection filter can be

determined as

r(λ) = Q(λ)(y(λ)−Gp(λ)u(λ)), (1)

where Q(λ) = G+
f (λ) is a stable proper left-inverse of

Gf (λ) and Q(λ)Gd(λ) = 0. For zero initial conditions,
this detector has the nice property that r(t) = f(t),
that is, the residual is equal to the fault signal.

In the case of an unstable or improper plant a modified
detector can be used based on a left coprime factoriza-
tion of Gp(λ) in the form

Gp(λ) = M−1
p (λ)Np(λ),

where Np(λ) and Mp(λ) are proper, stable and
mutually coprime rational matrices. Provided
[ Gf (λ) Gd(λ) ] and Gf (λ) further satisfy conditions
2), 3) and 4), and additionally Mp(λ) is biproper and
minimum phase, then we can use the residual generator
[5, 6]

r(λ) = Q(λ)(Mp(λ)y(λ)−Np(λ)u(λ)) (2)

where Q(λ) = G+
f (λ)M−1

p (λ) is a stable proper left-
inverse of Mp(λ)Gf (λ) and Q(λ)Mp(λ)Gd(λ) = 0. For
a stable plant, Mp(λ) = I and we recover the simple
case (1). Note that the conditions on Mp(λ) (minimum-
phase, biproper) are usually not satisfied, so a mod-
ification of the above detector is necessary to ensure
physical realizability.

In the most general setting, considered in this paper,
Mp(λ)Gf (λ) can have infinite zeros and/or can have
non-minimum phase. In the first case, the left-inverse
is not anymore proper, while in the second case no sta-
ble left-inverse exists. A common approach to overcome
these difficulties [10, 9] is to determine a diagonal ma-
trix M(λ) such that Q(λ) := M(λ)G+

f (λ)M−1
p (λ) is

a proper and stable TFM. With this modification, a
physically realizable residual generator of the form (2)
can be used. It is always possible to determine M(λ) to
additionally ensure (e.g., by means of a diagonal scal-
ing) that r(t) → f(t) for t →∞. Alternatively, instead
of a diagonal M(λ), we can determine from a left co-
prime factorization of G+

f (λ)M−1
p (λ) = M−1(λ)Q(λ) a



least McMillan degree M(λ) such that Q(λ) is proper
and stable. The resulting Q(λ) has the same McMil-
lan degree as G+

f (λ)M−1
p (λ) which is in general lower

than when employing a diagonal M(λ). For the re-
sulting residual generator we can still achieve a static
decoupling (i.e., r(t) → f(t) for t → ∞) by de-
termining a constant (non-diagonal) matrix R such
that RQ(λs)Mp(λs)Gf (λs) = I, where λs = 0 for
continuous-time system and λs = 1 for a discrete-time
system. Moreover, by suitably choosing M(λ), an arbi-
trary fast dynamics of the detector can be achieved. For
example, in the discrete-time case a finite-time dead-
beat type detector filter M(z) can be determined, which
corresponds to the so-called polynomial residual gener-
ator discussed in [10].

The algorithms underlying the design of residual gen-
erators require the manipulation of rational matrices.
For low dimensional systems, this is possible to some
extent by using symbolic manipulation software as pro-
vided by tools like Maple or Mathematica. However for
large order systems, symbolic computation is not any-
more applicable because of tremendous manipulation
efforts, and therefore the usage of numerical algorithms
is the only possible option. The need to address the
numerical issues to solve computational problems en-
countered in designing fault detection and isolation fil-
ters has been already recognized in [3, page 219]. Our
main motivation for this paper was to bring into the
attention of fault detection experts some of the latest
developments in computational algorithms for manipu-
lation of rational matrices. By using recently developed
numerically reliable state space algorithms (proposed
mainly in mathematical journals), many of computa-
tional problems in the fault detection field can be ad-
dressed for high dimensional systems.

In this paper we discuss in some details the two main
computational problems encountered in determining a
residual generator, namely, the computation of a left-
inverse with special properties and the determination
of rational factorizations by using coprime factoriza-
tion techniques. The computation of the left-inverse
is based on recently developed pencil algorithms [18]
which allow to obtain the inverse by only manipulating
the matrices of a state space realization. The inverse
is obtained in a descriptor system form without any
need to invert a constant or polynomial/rational ma-
trix. Stable and proper inverses are easy to compute
when they exist. The computation of proper and stable
fractional factorizations can be done by using coprime
factorization techniques based on recursive pole assign-
ment [16]. The resulting denominator factors have least
McMillan degrees. Using the numerically reliable in-
version and factorization algorithms described in this
paper, the fault detection filter design problem can be
solved in its most general setting. Several standard
functions available in a recently developed Descriptor

System Toolbox for Matlab [17] allow a straightfor-
ward implementation of the underlying computations.

2 Computation of left-inverses

For the design of residual generators, we have to com-
pute the left-inverse G+(λ) of a full column rank ra-
tional matrix G(λ) = Mp(λ)Gf (λ) which addition-
ally must satisfy the condition G+(λ)Mp(λ)Gd(λ) = 0.
To solve this problem we form the extended TFM
Ge(λ) = Mp(λ)[ Gf (λ) Gd(λ) ] and assume Ge(λ) has
full column rank (i.e., is left-invertible). Let G+

e (λ) be a
left-inverse of Ge(λ) partitioned row-wise in accordance
with the column-wise structure of Ge(λ)

G+
e (λ) =

[
G+

f (λ)
G+

d (λ)

]
M−1

p (λ)

From G+
e (λ)Ge(λ) = Iq+r, we obtain

G+
f (λ)Gf (λ) = Iq, G+

f (λ)Gd(λ) = 0

thus the resulting G+(λ) = G+
f (λ)M−1

p (λ) fulfils the
two basic requirements formulated above. In this way,
the first step in determining the filter matrix Q(λ) can
be done by computing the left-inverse of the extended
matrix Ge(λ). The case of non-full column rank Gd(λ)
(see [6]), can be handled by simply eliminating the lin-
early dependent columns of this TFM or by computing
a more general type of inverse (a so-called (1,2)-inverse)
of Ge(λ) using the method of [18].

In what follows, we only discuss the computation of a
left-inverse of a left-invertible p × q TFM G(λ) with a
minimal descriptor realization

Eλx(t) = Ax(t) + Bν(t)
ξ(t) = Cx(t) + Dν(t) (3)

satisfying

G(λ) = C(λE −A)−1B + D (4)

According to the system type, λ also represents ei-
ther the differential operator λx(t) = ẋ(t) in the case
of a continuous-time system or the advance operator
λx(t) = x(t + 1) in the case of a discrete-time sys-
tem. Note that for most practical applications G(λ) is
a proper TFM, thus we can always choose a realization
such that E = I. However, for the sake of general-
ity, we will keep E in our system descriptions, and we
only assume that the pencil A− λE is regular. In this
way, we will cover also the case of singular systems ad-
dressed, for example in [22]. Throughout the paper,
we will use the bold-notation G to denote a descriptor
system (A− λE,B, C, D) having the TFM G(λ).

Let S(λ) be the system pencil associated to the system
G

S(λ) =
[

A− λE B
C D

]
.



Provided G(λ) has full-column rank, a left-inverse
G+(λ) can be computed using the following straight-
forward formula

G+(λ) =
[

0 Iq

]
S+(λ)

[
0
Ip

]
, (5)

where S+(λ) is a left-inverse of S(λ). By using this
formula, the computation of the left-inverse of G(λ)
can be accomplished by computing the left-inverse of
the associated full-column rank system pencil S(λ).

We will need the following result to compute left-
inverses (see e.g., [1]):

Lemma 1 Let R(λ) be a rational matrix of full column
rank k and let P a permutation matrix such that

PR(λ) =
[

R1(λ)
R2(λ)

]

where rankR1(λ) = k. Then, a left-inverse of R(λ) is

R+(λ) =
[

R−1
1 (λ) 0

]
P.

The computation of S+(λ) can be done by reducing
S(λ) to an appropriate Kronecker-like form from which
a full row regular sub-pencil can be easily separated.
Let Q and Z be orthogonal matrices to reduce S(λ) to
the particular Kronecker-like form [15]

S(λ) := QS(λ)Z =
[

S1(λ)
S2

]
=

=




Areg − λEreg ∗
0 Al − λEl

0 Cl




where the regular part Areg − λEreg contains the finite
and infinite system zeros, and the pair (Cl, Al−λEl) is
observable with El nonsingular. Since

rankS(λ) = rank S1(λ),

by applying Lemma 1 with R(λ) = S(λ), k = n + q
and P = In+q, we obtain a left-inverse of G(λ) with a
descriptor system representation

G+ := (A− λE, B, C, 0),

where

A− λE := S1(λ),
[

B
D

]
:= Q

[
0
Ip

]

C := [ 0 − Iq ]Z

The eigenvalues of the inverse are

Λ(A,E) = Λfixed ∪ Λspurious,

where Λfixed = Λ(Areg, Ereg) are the eigenvalues of
the regular part an thus contains the system zeros, and
Λspurious = Λ(Al, El) are the finite ”spurious” zeros
originating from the row singularity of G(λ).

While the system zeros are always among the poles of
the inverse, the spurious poles can be arbitrarily modi-
fied. To show this, consider the transformation matrix
U of the form

U =




I O O
0 I K
O O I




Then the transformed system pencil is given by

Ŝ(λ) := US(λ) =

[
Ŝ1(λ)

Ŝ2

]

=




Areg − λEreg ∗
0 Al + KCl − λEl

0 Cl




.

The left-inverse is defined now by

G+ := (Â− λÊ, B̂, Ĉ, 0), (6)

where
Â− λÊ := Ŝ(λ),[

B̂

D̂

]
:= UQ

[
0
Ip

]
,

Ĉ := [ 0 − Iq ]Z.

When using the transformed pencil Ŝ(λ), the spurious
poles of the left-inverse are

Λspurious = Λ(Al + KCl, El).

To obtain a left-inverse which requires fewer manipu-
lation later, we can assign the spurious poles to lie in
a ”good” domain |Cg of the complex plane, by choos-
ing K such that Λ(Al + KCl, El) ⊂ |Cg. For example,
we can choose |Cg = |C−, where |C− is the appropriate
stability domain for poles (i.e., the open left half com-
plex plane in the case of a continuous-time system or
the interior of the unit circle in the case of a discrete-
time system.) However, in the discrete-time case, we
can also choose |Cg = {0}, thus assigning all spurious
poles in the origin. This is convenient when we want
to design generator filters with a dead-beat behavior.
To assign the spurious poles, the pole assignment al-
gorithm for descriptor systems based on a generalized
Schur method can be employed [14].

The main properties of the computed left-inverse G+(λ)
can be deduced from the Kronecker-structure of the
system matrix S(λ). The left-inverse will be proper if
no infinite zeros are present, that is, all infinite eigen-
values of the matrix pair (Areg, Ereg) are simple (i.e.,



non-dynamical). Additionally, a stable left-inverse can
be determined if the system is minimum-phase, that
is, the pair (Areg, Ereg) has all finite generalized eigen-
values in |C−. The dynamical order (i.e., the McMillan
degree) of the resulting left-inverse is the sum of the
number of zeros nz (finite and infinite) and the number
ns of spurious poles.

While nz is fixed, ns depends generally on the proce-
dure used to construct the left-inverse. Thus, an inter-
esting aspect is the computation of left-inverses with
least McMillan degree. This aspect can be addressed
by our approach in the following way. We can choose K
to make some of spurious poles of G+(λ) uncontrollable
or unobservable. For example, choosing K̂ := [ 0 KT ]T

such that a maximum number of spurious poles cor-
responding to the pair (Â + K̂Ĉ − λÊ, B̂) becomes
uncontrollable is essentially a descriptor system gen-
eralization of the dual problem of finding an (A,B)-
invariant subspace of least dimension which contains a
given subspace [11]. Finding K̂ and L̂ such that the
pair (Â + K̂Ĉ − λÊ, Ĉ + L̂Ŝ2) has a maximum number
of unobservable poles is the dual of the descriptor for-
mulation of the minimum cover design problem of [11].
For both these computations reliable algorithms need
to be developed. Although the least-order inverses are
possibly unstable, still they could be useful by leading
to lower dynamical complexity of residual generators. A
much more difficult problem is to compute least McMil-
lan degree inverses with the additional constraint that
the spurious poles lie in a given domain |Cg. As far as
we know, there is no complete solution of this problem,
this being equivalent to the difficult question of stabi-
lizing a linear system via constant gain output feedback
(see also [20]).

3 Computation of fractional representations

The second main computational problem in designing
residual generators is the computation of a fractional
representations with proper and stable factors of a given
rational matrix G(λ), which is possibly unstable (i.e.,
with some poles in |C+) and/or improper (i.e., with some
poles at infinity). Here G(λ) stays either for Gp(λ), the
TFM of the plant, or for the product G+

f (λ)M−1
p (λ)

(see Section 1). The computational problem is to de-
termine a left coprime factorization (LCF) of G(λ) as

G(λ) = M−1(λ)N(λ) (7)

where M(λ) and N(λ) are stable and proper TFMs.
An important aspect in designing lower complexity de-
tectors is the computation of a factorization with least
McMillan degree for M(λ). A second problem which
we address is how to compute a fractional representa-
tion of form (7) by employing a diagonal M(λ) of least
McMillan degree.

To compute a proper coprime factorization for a given
TFM G(λ), numerical algorithms have been proposed
in [16]. Specifically, the dual of Algorithm PRRCF2
of [16] computes an M(λ) with least McMillan degree
such that M(λ)G(λ) is proper and has poles in a given
”good” domain |Cg. This algorithm is based on a de-
scriptor realization of G(λ) as in (3) satisfying (4). If
G(λ) is proper (e.g., E = I), the resulting order of
the denominator M(λ) is the number of unstable poles
of G(λ). By using an appropriate state feedback, all
unstable poles are moved to arbitrary positions in |Cg,
while the rest of poles of G(λ) (lying in |Cg) are pre-
served in N(λ). The pole assignment for finite poles is
done recursively using the generalized real Schur form
of the pair (A,E) (the real Schur form of A if E = I). In
the case of poles at infinity, a preliminary state feedback
is used to move them to finite positions. In this case, a
preliminary spectral separation of the eigenvalues of the
pencil A−λE (finite-infinite, |Cg-stable-|Cg-unstable) by
orthogonal reordering of the generalized Schur form of
the pair (A,E) (see Algorithm 2 in [16]), is performed.
The McMillan degree of the resulting M(λ) is the sum
of numbers of poles at infinity and poles lying outside
|Cg. An advantage of using Algorithm PRRCF2 of [16]
is that the original descriptor realization needs not be
impulse-observable (i.e., can have unobservable poles at
infinity) and |Cg-detectable (i.e., can have finite unob-
servable |Cg-unstable poles) (see [4] for precise defini-
tions of these concepts).

The above approach can also be used to determine a
fractional representation of form (7) with proper and
stable factors, and with M(λ) diagonal. This can be
done by solving q independent LCF problems for single-
output systems corresponding to each of q rows of G(λ).
Assuming Gi(λ) is the i-th row of G(λ), we can compute
the LCF

Gi(λ) =
Ni(λ)
mi(λ)

where both mi(λ) and Ni(λ) are proper, stable and
mutually coprime. The scalar transfer-function mi(λ)
and the resulting Ni(λ) are the i-th diagonal element
of M(λ) and the i-th row of N(λ), respectively. One
distinctive feature of these single-output factorization
problems is that each Gi(λ), arising form the overall
descriptor realization of G(λ), is generally described by
a non-minimal (usually non-observable) descriptor re-
alization. This aspect is handled automatically when
employing the Algorithm PRRCF2 of [16]. Since each
of resulting mi(λ) has least order McMillan degree, the
resulting diagonal matrix M(λ) has least order McMil-
lan degree as well. Note however, that in general, the
least achievable McMillan degree for a diagonal M(λ)
is greater than the least achievable McMillan degree for
a non-diagonal denominator.

One final aspect to be discussed is the computation
of a minimal realization of N(λ) = M(λ)G(λ) from



given M(λ) and G(λ). This problem arises, for exam-
ple, when determining a diagonal M(λ), with the diag-
onal entries resulting from independent LCFs of single-
output systems. Since the resulting N(λ) is proper and
|Cg-stable, it has a standard state-space representation
with only |Cg-stable eigenvalues. This minimal realiza-
tion can be constructed in two ways. For example,
we can compute an irreducible descriptor representa-
tion of M(λ)G(λ) by forming explicitly the realization
of the product M(λ)G(λ) and applying the orthogonal
staircase algorithms of [13] to remove successively the
uncontrollable infinite and |Cg-unstable parts. Alterna-
tively, we can assume that both realizations of M(λ)
and G(λ) have state-space matrices in real Schur form
or generalized real Schur form. Thus we can construct
the descriptor realization of M(λ)G(λ) with the de-
scriptor pair in a generalized real Schur form too. Since
all infinite and |Cg-unstable eigenvalues are uncontrol-
lable, they can be removed by just reordering the gen-
eralized real Schur form such that all these eigenvalues
are in the trailing positions on the diagonal. By apply-
ing the orthogonal transformation matrices to the input
and output matrices, the rows of the input matrix cor-
responding to the trailing eigenvalues must necessarily
be zero. Thus the descriptor system is in a Kalman-
like controllability form where the minimal part can be
easily recovered.

4 Designing minimal order detectors

One interesting aspect for practical applications is the
computation of minimal order detectors. The detector
(2) is implemented as a system with inputs u(t) and
y(t), and output r(t), and has the TFM

R(λ) = Q(λ)[ Mp(λ) −Np(λ) ]

So, it is often the case that the order of the detector is
at least the order of the system. This is however not
always true, as revealed by the following simple example
[7]:

Gp(s) =




1
s + 1

1
(s + 1)2


 , Gf (s) =

[
0
1

]
, Gd = 0

(8)
A minimal order left-inverse of Gf (s) is Q(s) = [ 0 1 ],
which leads to a second order detector

R(s) =
[

0 1 − 1
(s + 1)2

]

However, by choosing a first order left-inverse

Q(s) =
[
− 1

s + 1
1

]

the corresponding detector is of first order

R(s) =
[
− 1

s + 1
1 0

]

One possibility to determine a least order R(λ) is to
solve the following minimal design problem: find a least
McMillan degree solution R(λ) of the linear equation

R(λ)
[

Gf (λ) Gd(λ) Gp(λ)
O O Im

]
=

[
Iq O O

]

(9)
This equation arises by imposing for a detector of the
general form

r(λ) = R(λ)
[

y(λ)
u(λ)

]
(10)

the condition that r(t) = f(t) for all d(t) and u(t) for
zero initial conditions. To solve the above equation, the
minimum degree algorithm of [19] can be considered as
basis for a possible numerical approach using polyno-
mial techniques. Alternatively, we can try to use a state
space based approach by computing a least order stable
left-inverse G+(λ) of

G(λ) =
[

Gf (λ) Gd(λ) Gp(λ)
O O Im

]

and determine R(λ) as the first q rows of G+(λ). In
fact, determining a least order R(λ) is part of the com-
putation of the left-inverse G+(λ), and can be explicitly
addressed by the dual output-nulling algorithm men-
tioned in Section 2. If the resulting R(λ) is not proper
or is unstable, the factorization techniques of previous
section can be employed to determine a modified detec-
tor.

For the above example, we have

G(s) =




0
1

s + 1
1

1
(s + 1)2

0 1




and by employing the pencil algorithm of Section 2 we
determine a first order stable left-inverse of least McMil-
lan degree

G+(λ) =


 − s + 3

2(s + 1)
1

1
2(s + 1)

0 0 1




Thus, a least order stable detector for the system (8)
has the TFM

R(s) =
[
− s + 3

2(s + 1)
1

1
2(s + 1)

]

5 Conclusions

We presented numerically reliable algorithms to solve
two basic computational problems encountered in the



design of fault detection and isolation filters: the com-
putation of left-inverses of rational matrices and the
computation of stable proper coprime factorizations.
Using these algorithms, the fault detection and isola-
tion problem with disturbance rejection can be solved
in the most general setting. One problem which still
needs a satisfactory numerical solution is the computa-
tion of minimal order detectors. This problem has been
also addressed in [7] via minimal polynomial basis solu-
tions, but without providing a complete solution to the
fault detection and isolation problem. We have shown
that a least McMillan degree detector can be computed
by solving a minimum degree design problem. We also
indicated (without a proof) that a possible solution to
this problem is to compute a left-inverse of least McMil-
lan degree of a certain rational matrix.

For the proposed computational approach to design
residual generators, all basic numerical software is avail-
able in the Descriptor Toolbox for Matlab [17], as for
example, computation of left-inverses with prescribed
spectrum for spurious poles, computation of poles and
zeros of descriptor systems, reduction to Kronecker-like
forms, determination of minimal realizations, proper
coprime factorization, etc. The basic computational
tools in this toolbox are several mex -files, representing
Matlab interfaces to powerful and numerically robust
Fortran subroutines available in the control and systems
library SLICOT [2].

Acknowledgment. The author thanks Professor
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