
On The Structural Complexity of the Motion Description Language MDLe

D. Hristu-Varsakelis∗ , M. Egerstedt† , P. S. Krishnaprasad‡
{hristu@eng.umd.edu, magnus@ece.gatech.edu, krishna@isr.umd.edu}

Abstract—As modern control theory attempts to elucidate
the complexity of systems that combine differential equations
and event-driven logic, it must overcome challenges having to
do with limited expressive power as well as practical difficulties
associated with translating control algorithms into robust and
reusable software. The Motion Description Language (MDL)
and its “extended” counterpart MDLe, have been at the center
of an ongoing effort to make progress on both of these fronts.
The goal of this paper is to define MDLe as a formal language,
thereby connecting with the vast literature on the subject, and to
stimulate experimental work. We discuss the expressive power
of MDLe and provide some examples of MDLe programs.

I. INTRODUCTION
The development of increasingly complex engineering sys-

tems, where modern control theory has to coexist with event-
driven logic, has brought to the fore the need for models
that are expressive yet conceptually and computationally
tractable. For example, knowing that a robot is controllable
(by checking the properties of the appropriate differential
equation-based model) tells us little about whether the robot
can be controlled from one location to another in any rea-
sonably complex environment. (There are holes or obstacles
along the way, etc.) At the same time, questions concerning
the complexity of a control program [9], [8] cannot easily be
answered unless one adopts “suitable abstractions” of multi-
modal systems that treat differential equation-based models
as low-level details, to be accessed only when necessary.
These abstractions are equally important when it comes to
translating algorithms into control software whose portability
approaches that of its desktop counterpart, while encapsulat-
ing the details of the control system (e.g. number of wheels,
link lengths, etc) in software objects that are transparent to
the programmer.
One attempt to address these challenges began over a

decade ago with the “Motion Description Language” (MDL)
developed in [2], [3], [4]. The idea was to provide a formal
basis for robot programming using “behaviors” (structured
collections of control primitives) while incorporating kine-
matic and dynamic models of robots in the form of differ-
ential equations. The work in [18], [19], [20] (upon which
this paper builds) extended the early ideas to a version of the

The first and third authors were supported by ODDR&E MURI01 Grant
No. DAAD19-01-1-0465, (Center for Communicating Networked Control
Systems, through Boston University), by NSF CRCD Grant No. EIA
0088081 and by AFOSR Grant No. F496200110415. The second author
was supported by NSF through the programs EHS NSF-01-161 (grant #
0207411) and ECS NSF-CAREER award (grant # 0237971).

∗ Department of Mechanical Engineering and Institute for Systems
Research, University of Maryland, College Park, MD 20742.

† Corresponding author. Department of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332.

‡ Department of Electrical and Computer Engineering and Institute for
Systems Research, University of Maryland, College Park, MD 20742.

language known as “extended MDL” or MDLe. (For other
relevant work on layered architectures for motion control see
[1], [2], [3], [5], [6], [14], [20], [22] and references therein.
For additional recent work on abstractions, see [11], [23],
[24], [7], [17].)
For this linguistic approach to control to be meaningful,

one must be able to answer system-theoretic questions at the
level of control primitives and their compositions, as opposed
to analog signals through sensors and actuators. Work along
these directions is already underway ([9], [10]), but the
connections between MDLe (and other similar constructs)
and the theory of formal languages and theoretical computer
science has remained largely unexplored. This paper, follow-
ing [13], [20], provides a précis of the discussion in [13],
gives a definition of MDLe as a formal language, (thereby
making precise some earlier statements), and discusses its
expressive power.

II. THE MOTION DESCRIPTION LANGUAGE MDLE
In this section we distill the early descriptions of MDLe

(see [3], [18], [19], [20]) into a formal language definition
that can be used for exploring the expressive power of the
syntax. We begin with a brief discussion of MDLe’s syntax.
What we have in mind is that there is an underlying physical
system (equipped with a set of limited range sensors and
actuators) for which we want to specify a motion control
program. The physical system is modeled by a so-called ki-
netic state machine (see [20]), which stands as an abstraction
between the simplest elements of a control language (yet
to be defined) and continuous-time control. A kinetic state
machine (KSM) is governed by a differential equation of the
form

ẋ = f(x) + G(x)u; y = h(x) ∈ R
p (1)

where x(·) : R
+ → R

n, u(·) : R
p × R

+ → R
m may be

an open loop command or feedback law of the type u =
u(t, h(x)), and G is a matrix whose columns gi are vector
fields in R

n.
The simplest element of MDLe is an atom, an evanescent

vector field defined on space-time. Here “space” refers to
the state-space or output space of a dynamical system. The
lifetime of an atom is at most T , for some given T > 0.
More precisely, an atom is a triple of the form σ = (u, ξ, T),
where u is as defined earlier, ξ : R

p → {0, 1} is a boolean
interrupt function defined on the space of outputs from the
p-dimensional sensory data, and T ∈ R

+ ∪ {∞} denotes
the time (measured from the time an atom is initiated) at
which the atom will “time out”. To evaluate or run the atom
σ = (u, ξ, T) means to apply the input u to the kinetic state
machine until the interrupt function ξ is “high” (logical 1)
or until T units of time elapse, whichever occurs first.

In order to manage the complexity of hybrid control tasks
and allow one to write reusable programs, a language suitable
for control should support hierarchical levels of encoding.
The idea is to let programs be put together from simpler
programs, all the way down to hardware-specific functions.
Towards that end, atoms can be composed into a string that
carries its own interrupt function and timer. Such strings are
called behaviors. For example, one could use the atoms σ1 =
(u1, ξ1, T1), σ2 = (u2, ξ2, T2) to define the behavior b =
((σ1, σ2), ξb, Tb). Evaluating b means evaluating σ1 followed
by σ2 until the interrupt function ξb returns “high” (logical
1), or Tb units of time have elapsed, or σ2 has terminated.
Behaviors themselves can be composed to form higher-level
strings, called plans, e.g. ((b, (u3, ξ3, T3)), ξp, Tp).

III. MDLE AS A FORMAL LANGUAGE

Previous work characterized MDLe loosely as a language
over the alphabet of atoms [19]. This is not entirely correct
since it ignores the grammatic rules of the language. For
example, strings that include nested structures are not con-
catenations of atoms. It is true that every execution/evaluation
trace of an MDLe program (with nested behaviors) is indeed
a string over the alphabet of atoms, however that string is
determined by the interrupt triggering sequence which is not
known a priori. This leaves open the question of generative
structures of MDLe programs and leads naturally to thinking
about MDLe as a language over an alphabet that refines
atoms, as in the definition below, following [13].
Formally, we let U be a finite subset of {u : R

p × R
+ →

R
m}, i.e. U is the finite set of possible control laws (including
the trivial unull = 0). Furthermore, B is a finite subset of
{ξ : R

p → {0, 1}}, i.e. it is a finite set of boolean functions
of p variables (including the null interrupt ξnull : R

p →
1). However, it is convenient to “absorb” an atom’s timer
into the atom’s interrupt function, by re-defining interrupts
on R

p × R
+, and writing (u, ψ) instead of (u, ξ, T), where

ψ = (ξ AND (t ≤ T)). Under this convention we will say
that an atom is made up of a control quark selected from U
and an interrupt quark from B′ which is a finite subset of
{ξ : R

p × R
+ → {0, 1}}. Now, it is clear that the sets of

control and interrupt quarks together with the special symbols
“(”, “)” and “,” define a finite alphabet over which the MDLe
strings are formed.
Definition 3.1: MDLe is the formal language generated by

the context free grammar G := (N,T, S, P), where:
N is the set of non-terminal symbols E, where E is a valid
MDLe string;
T is the set of terminal symbols, i.e. the set of symbols
that form the strings of the language. In other words, T =
U ∪ B′ ∪ {(), };
S is the set of start symbols that represent the language that
is being defined, i.e. S is the set of valid MDLe strings; and
P ⊂ N × (N ∪ T)∗ is a finite relation which consists of the
following production rules:
(P1) E → ε
(P2) E → (u, ξ), u ∈ U , ξ ∈ B′

(P3) E → EE

(P4) E → (E, ξ), ξ ∈ B′

An immediate consequence of Definition 3.1 is that MDLe
is a context free language (see for example [16], [21]).
Consequently, one can write a compiler for MDLe and in
fact we have done so (see Sec. V and [13]). However, it also
follows that MDLe does not define a regular language:
Theorem 3.1: MDLe is not a regular language

Proof: Assume that MDLe is regular. Then, by the pumping
lemma (e.g. [21]), there is a positive integer k such that for
all strings s in the language with |s| ≥ k, we can write
s = uvw with v 	= ε, |uv| ≤ k, and uvmw is in the language
for all m ≥ 0. In particular uw should be in the language
(setting m = 0). Now consider the string

s = ((. . . (((u, ξ), ψ1), ψ2), . . . , ψN−1), ψN),

formed by the repeated application of production rule P4, and
where N is much greater than k. This means that the first k
symbols in s are in fact “(”. This furthermore implies that
any prefix uv of s of length less than or equal to k is just a
string containing “(” repeatedly. Since v 	= ε, v has to contain
a positive number of left parentheses, and by pumping on v,
i.e. by forming uvmw, we get more (if m > 1) or fewer
(if m = 0) left parentheses than right parentheses. Such an
expression can never be formed from the production rules,
hence MDLe is in fact not a regular language.

Definition 3.1 is useful for discussing certain aspects of
the language (including its complexity) but is not always
convenient when it comes to writing control programs. In
practice, it is easier to compose MDLe strings bottom-up, i.e.
starting with atoms and composing behaviors, etc, as opposed
to using the top-down productions of the grammar G. In
particular,
Definition 3.2: MDLe is the collection of strings gener-

ated from the following rules:
(R1) Encapsulation: If s is a valid MDLe string then (s, ξ)

is a valid MDLe string as well for any ξ ∈ B′. We
refer to s as an encapsulated substring, and to ξ as the
interrupt associated with s;

(R2) Concatenation: If s1, . . . , sn are valid MDLe strings,
then so is s1 · · · sn; and

(R3) Looping: If s is a valid MDLe string, then so is sn, for
any n ∈ Z+.

The last rule (looping) is added for notational convenience
and does not alter the complexity or expressive power of the
language; one could add productions to Def. 3.1 in order
to include exponents or insist that repeated substrings are
explicitly written out without the use of exponents. The set
of strings constructed using R1, . . . , R3 is in fact the same
set which the production rules P1, . . . , P4 generate.
Fact 3.1: Definitions 3.2 and 3.1 define the same lan-

guage (after all loops have been expanded).
Proof: Let L be the set of strings generated by the grammar
G and L′ be the strings generated by the rules R1, R2, R3.
Now, take any s′ ∈ L′ and “expand” any loops by replacing
any substring sn

1 by n copies of itself in s′. We will construct
s′ using the production rules of the grammar G. (We will
denote this string by s.) Now, s′ was produced from simpler

strings (or quarks) by applications of R1 and R2 in a given
order. If the last operation in that order was a concatenation
(by R2) of substrings s1, ..., sn, then use P3 on s, n − 1
times. If the last operation was encapsulation (s1, ξ) (using
R1) then apply P4 to s. Now, apply the same procedure to
each of the substrings that were concatenated or encapsulated
to form s′, each time modifying s via applications of P3 or
P4. This algorithm will terminate when we reach the first
in the series of operations to construct s′, at which point
we apply P2 repeatedly in order to eliminate occurrences
of non-terminal symbols. Having done so, we have s = s′,
implying that L′ ⊂ L.
For the converse, take any s ∈ L, produced by applications

of P1 through P4. Beginning with the last production
and proceeding towards the first, we can then construct s′

using the rules R1 and R2 to build atoms which are then
concatenated by R2 or encapsulated by R1. This procedure
results in a string s′ which is identical to s, implying that
L ⊂ L′.

IV. HYBRID AUTOMATA AND MDLE
By construction, MDLe has a “sequential” syntax. This

agrees with our intuition regarding the temporal order of
some motion control tasks, but there are certainly alternative
ways to express control programs. In particular, one can
consider a kinetic state machine whose evolution is controlled
not by MDLe strings but by a hybrid automaton. This is a
widespread modeling tool for characterizing heterogeneous
models (e.g. [12]), such as multi-modal control procedures.
In this paper, we focus our attention on a particular class of
hybrid automata whose discrete states are identified with in-
dividual control quarks, while state-to-state transitions occur
in response to interrupts. An example is shown in Fig. 1.

Fig. 1. Hybrid automaton representation of a two-behavior MDLe plan:
((a, ψa)(b, ψb), ψc)σnull, where a = ((a1, ψ1) · · · (aN , ψN)), b =
((b1, ζ1) · · · (bM , ζM)), and σnull = (unull, ξnull)

A kinetic state machine executes a program defined on
such a hybrid automaton by running the control law specified
by the current discrete state until a transition to a new state

(corresp. new control law) occurs. This representation of
motion control programs may seem more expressive than
MDLe strings - after all we have not imposed any syntactical
restrictions on the transitions. However, as we will see, this is
not necessarily the case. To see this, we first require a notion
of equivalence between the two representations, and we say
that a hybrid automaton is equivalent to an MDLe string if
they both produce the same trajectories on the same kinetic
state machine, starting from the same initial conditions.
Now, we furthermore say that a MDLe string s is de-

generate if an interrupt ξ is associated with an encapsulated
substring of s′ = (s1, ξ, T) of s and with s1 or a substring of
s1. The interrupt ξ is then said to be repeated within s′. If s is
degenerate then there is an ambiguity with respect to which
atom should be executed when ξ is triggered. We will resolve
this ambiguity by always requiring that the highest-level
transition take precedence. For example, if ξ is associated
both with an atom and with a behavior b containing that
atom (but not with any other proper substring of s that
contains b), it is the behavior b that will be terminated when
ξ returns 1. We can always convert a degenerate string s
to a non-degenerate one [13]. This is done by identifying
occurrences of a repeated interrupt and replacing all but one
(that which corresponds to the highest-level substring), with
the null interrupt.
Formally, a correspondence between an MDLe string s

and an equivalent hybrid automaton can be made as follows:
Assume that we may use n control quarks, and let R

n
e =

{e1, e2, ..., en} denote the set of standard unit vectors in
R

n. Identify states of the hybrid automaton (resp. control
quarks in a MDLe string) with vectors in R

n
e , for which the

following monomials come in handy:

Π(t)
�
=

M∑
i=1

Eiξi(t). (2)

HereM is the number of distinct interrupts in a given MDLe
string, the transition matrices Ei ∈ {0, 1}n×n have columns
taken from R

n
e , and ξi(t) ∈ {0, 1} denotes the ith interrupt in

the string. If the control quark running at time t is identified
by e(t) ∈ R

n
e , and ξi is triggered at time t, then the new

control quark will be Eie(t). The evolution e(t) → Eie(t) =
e(t+) could be compared with that of a Markov chain in
which transitions always occur with probability 1.
A careful examination of the generative rules that define

valid MDLe strings (rules R1, R2, R3) reveals that transition
matrices are restricted to only three types (up to renumbering
of the atoms):

1) Atom-level If ξi is an atom-level interrupt associated
with the kth atom, then the corresponding Ei is a
matrix with all of its diagonal entries except (k, k) set
to 1, its (k + 1, k) entry set to 1 and all remaining
entries being 0.

2) Behavior-level If ξi is attached to an encapsulated
string, Ei will be of the form

(k + 1)st →
row

Ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · · · · 0 0
0 1 0 0
... 0

. . .
... 1

0
...
. . .

0 0
1 · · · 1 1

...
...

. . .
0 0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(k−l)...(k)thcolumns

sending states k − l, k − l + 1, ..., k to k + 1
(recall that atoms were numbered sequentially, which
will ensure that there will be no gaps in the “partial
row” of 1s).

3) Looping If ξi is the last interrupt in a loop (transi-
tioning from the kth to the (k − l)th atom, then Ei

has all of its diagonal entries except (k, k) set to 1, its
(k− l, k) entry set to 1, and all remaining entries being
0.

Because we always convert strings to their non-degenerate
form, and under the additional assumption that only one
interrupt function may change value at any given time1,
the transition (temporally) from any atom to the next will
be unambiguous. Hence, the monomial representation of an
MDLe string by means of Eq. 2 provides a convenient tool
for computing the execution trace of that string: Let e(t) be
the unit vector whose nonzero row matches the index of the
atom being executed at time t. Given the interrupt functions
ξi(t) on [0, T], we can write

e(t) = Π(tm)...Π(t2)Π(t1)e(0)
= Ei(tm)...Ei(t2)Ei(t1)e(0), t ≥ tm (3)

where i(tk), k = 1, ...,m are the indices of the interrupts
that were triggered at t1 < t2 < ... < tm. At the same time,
the state evolution of the underlying KSM can be expressed
as

x(t) = φ(tm, t, ...φi(t2)(t1, t2, φi(t1)(t0, t1, x0)))) (4)

where φi(tj , tk, x0), tj < tk is the flow of the Eq. 1 from
tj to tk, with initial condition x0 and control u determined
by the atom indicated by the nonzero entry of e(t+j).
Now, given a hybrid automaton (whose states and tran-

sitions are identified with control laws and interrupts), we
can ask whether it has an MDLe equivalent. Passing to the
monomial representation (Eq. 2) leads to the following result
whose proof can be found in [13]:

1If one insists on allowing simultaneously occurring interrupts, we will
give priority to the highest-level interrupt, i.e. if an atom-level and a
behavior-level interrupt both occur at time t, the behavior level interrupt
is evaluated first, eliminating the need to evaluate the atom-level interrupt

Theorem 4.1: Given the hybrid automaton representation
of a motion control program

Π(t)
�
=

M∑
i=1

Eiξi(t); Ei : n × n

there exists a non-degenerate MDLe string equivalent to Π if
and only if there exists a renumbering of the discrete states
in the hybrid automaton (renumbering of rows and columns
of all Ei’s) such that:
(S1) For k = 1, ..., n−1 there is a unique index i(k) such

that Ei(k) is the identity matrix modified in such a way that
its (k, k) entry is set to 0 and its (k + 1, k) entry is set to 1
(all “atom”-level transitions are present).
(S2) For all i = 1, ...,m: If the kth column of Ei is the unit
vector ej , then j ≥ k and all columns k, k + 1, ..., j of Ei

must also be ej .
(S3) If the kth

1 column of Ei1 is the unit vector ep1 and
there exists among E1, ..., Em another Ei2 , i2 	= i1 with ep2

in column k2 where k2 ≤ k1 and p2 < p1, then Ei1 must
have ep1 in columns j, ..., k2, ..., p1 where j < k1.
(S4) If Ei contains ej in its kth column with j > k then: i)
there must not be any El whose j−p, ..., j−1, j columns are
equal for p > 0, and ii)if there exists an El whose columns
q, q + 1, ..., r are equal and q ≤ j ≤ r, then j < q.
It should be clear that since we insist that repeated

appearances of an atom are identified with a distinct discrete
state in the hybrid automaton, there exist MDLe strings
that have no hybrid automata equivalent. For example,
(u1, ξ1)(u2, ξ2)(u1, ξ3) (see Fig.2-(b)) cannot be expressed
using a 3-state hybrid automaton unless one is willing to
augment the automaton with an additional variable that will
store information on the execution history of the string. The
transition functions ξi will also have to be altered (their
domain must include the additional variable). Conversely,
there are hybrid automata that cannot be translated to MDLe
strings (one can easily construct instances of Eq. 2 whose
transition matrices are not linear combinations of the three
types discussed above). Perhaps the simplest example is a
hybrid automaton that implements branching (see Fig.2-(a)),
where states s1, s2 and s3 are identified with MDLe atoms
or encapsulated substrings.

(a) (b)

Fig. 2. (a) A hybrid automaton that has no MDLe equivalent. (b) An MDLe
string that has no hybrid automata equivalent.

The hybrid automaton of Fig. 2-(a) cannot be represented
in MDLe because under the rules of the language we have
no choice but to designate either ξ12 or ξ13 as a behavior-
level interrupt; in either case we are forced to include
additional transitions (from s2 to s3 for example or vise

versa, depending on which of those atoms is in the same
behavior as s1). In fact, one can easily check that there is no
renumbering of states for which S1, . . . S4 of Theorem 4.1
are satisfied.

V. THE MDLE SOFTWARE ENGINE

Recent work [15] at the University of Maryland has
produced an implementation of MDLe, including an MDLe
compiler, user interface, and related software tools. This
software platform (dubbed the “MDLe Engine”) includes
facilities for parsing an MDLe plan and interpreting it down
to the library routines that implement the quarks. The user
is responsible for supplying the C/C++ code that imple-
ments any control and interrupt quarks used. All hardware-
dependent code resides within the quarks so that an MDLe
plan can accomplish the same task when executed on kinetic
state machines whose dynamics and transducer-suites differ
to a certain degree.
The MDLe Engine handles all CPU scheduling of atoms

as well as the sharing of CPU time by a control quark
and the corresponding interrupt(s) that must be concurrently
evaluated. Furthermore, atoms with high computational needs
can spawn additional threads to facilitate the processing of
sensor data. A typical example is that of a control law that
servos on quantities extracted from an incoming sound or
video stream. This software runs on the Linux operating
system and has been exercised extensively over the last three
years. In the following, we give an example of the kinds
of experiments that are facilitated by the current MDLe
implementation.
As an example, we consider the motion control task

performed by a mobile robot that is driven using MDLe
strings. The robot used in the experiment is a Nomadic
Technologies Super Scout II. It is differentially driven and
outfitted with an array of ultrasonic and tactile sensors, as
well as an internal odometer which keeps track of the robot’s
position and orientation with respect to an initial reference
frame. The robot accepts two inputs, namely forward and
angular velocity, denoted by uf and uθ.
An example of useful interrupt functions is given below:
• (bumper): returns 1 when the robot’s bumper tape
detects contact, 0 otherwise.

• (atIsection b), where b is a 4-bit binary number:
returns 1 when the sonar sensors detect obstacles (or
absence thereof) in 4 principle directions with respect
to the current orientation of the robot. Each digit in
b selects whether the corresponding direction should
be obstacle-free or not in the order (MSB to LSB):
front,left,back,right. Used mainly to detect arrival at
intersections.

• (wait τ): returns 1 if τ seconds have passed after an
atom has begun to run, 0 otherwise.

The plans for the experiments described in this section
were built from the following set of atoms; (Their syn-
tax is: (Atom (interrupt condition) (control
law)).)

• (Atom (wait ∞) rotate (α)): uf = 0, uθ =
k(α−θ). Causes the robot to make its orientation equal
to α with respect to its current coordinate system.

• (Atom (bumper AND atIsection(b))
go(v,ω)): uf = v, uθ = ω. Causes the robot
to move with forward speed v cm/sec and turn rate ω
rad/sec until it comes into contact with an obstacle or
it arrives at an intersection specified in b.

• (Atom (wait T) goAvoid(location)):
Causes the robot to move towards a point (r, ψ)
specified in polar coordinates in location. If there
are objects close to the robot along its desired path
then the controls are modified to steer the robot along a
safe path to the edge of the obstacle nearest the desired
path.

• (Atom (ri(t) == rj(t)) (align ri rj)): uf =
0; uθ = k(ri(t) − rj(t)). Causes the robot to rotate
until sonars i and j return equal ranges. Used to align
the robot at a given orientation with respect to walls and
other obstacles.

To illustrate the use of these atoms, three landmarks
(specified through b in the previous paragraph) were created
in order to allow the robot to safely navigate between all
three locations in a repeatable manner. The control inputs
that steer the robot between these landmarks was encoded as
a MDLe string. Two of these MDLe programs, namely one
to steer the robot from the rear of the lab (Lab 2) to the front
of the lab (Lab 1), Γlab1

lab2, and one to steer the robot from
the front of the lab to the office, Γoffice

lab1 , are shown below.

Γlab1
lab2 = { Lab2ToLab1Plan (bumper)
(Atom (atIsection 0100) (goAvoid 90 40 20))
(Atom (atIsection 0010) (go 0 0.36))
(Atom (wait ∞) align 7 9)
(Atom (atIsection 1000) (goAvoid 0 40 20))
(Atom (atIsection 0100) (go 0 0.36))
(Atom (wait ∞) align 3 5)
(Atom (wait 7) (goAvoid 270 40 20))
(Atom (atIsection 1000) (goAvoid 270 40 20))

}

Γoffice
lab = { Lab1ToOfficePlan (bumper)
(Atom (atIsection 1001) (goAvoid 90 40 20))
(Atom (atIsection 0011) (go 0 0.36))
(Atom (wait ∞) align 11 13)
(Atom (atIsection 0100) (goAvoid 180 40 20))
(Atom (wait 10) (rotate 90));

}

VI. CONCLUSIONS
Motion description languages are gaining attention as

tools for understanding multi-modal control systems. The
root of such languages may be traced to the early days
of machine tool languages. Connections between differential
equation-based control, planning, and logic can be placed

on solid ground by formalizing a necessary lowest level of
abstraction between these two modalities, and we propose
to use MDLe for that purpose. In particular, we show that
MDLe is a context free but not a regular language, suggesting
the proper setting for interesting computational questions, as
well as enables access to the vast literature on languages
and computational complexity. In particular, knowing that
MDLe is a context-free language is equivalent to knowing
that it can be defined by a push-down automaton, i.e. a finite
automaton augmented with an infinite capacity stack. This
in turn implies that the complexities associated with various
decision properties (such as emptiness, membership, etc.) are
well-studied and understood.
A comparison is furthermore made between MDLe and

a particular type of hybrid automaton for understanding
the expressiveness of the language. In this connection, the
MDLe software engine is presented. This package provides
an environment in which multi-modal control procedures can
be implemented as MDLe strings directly.

VII. ACKNOWLEDGMENTS
The authors would like to thank S. Andersson, P. Sodre,

and F. Zhang for their contributions to the collaboration [13],
and for sharing freely in the discussions leading up to the
ideas in the present paper.

VIII. REFERENCES

[1] B. M. Blumberg and T. A. Galyean. Multi-level
direction of autonomous cratures for real-time virtual
environments. In SIGGRAPH Proc., pages 47–54, 1995.

[2] R. W. Brockett. On the computer control of movement.
In Proc. of the 1988 IEEE Conf. on Robotics and
Automation, pages 534–540, April 1988.

[3] R. W. Brockett. Formal languages for motion descrip-
tion and map making. In Robotics, pages 181–93.
American Mathematical Society, 1990.

[4] R. W. Brockett. Hybrid models for motion control
systems. In H. Trentelman and J.C. Willems, edi-
tors, Perspectives in Control, pages 29–54. Birkhäuser,
Boston, 1993.

[5] R. A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automa-
tion, 2(1):14–23, 1986.

[6] R. A. Brooks. Intelligence without reason. Technical
Report A.I. Memo No. 1293, MIT, 1991.

[7] P. E. Caines and Y-J Wei. Hierarchical hybrid systems:
A lattice theoretic formulation. IEEE Trans. on Auto-
matic Control, 43(4):1–8, Apr. 1998.

[8] M. Egerstedt. Some complexity aspects of the control
of mobile robots. In Proc. of the American Control
Conf., May 2002.

[9] M. Egerstedt and R. Brockett. Feedback can reduce
the specification complexity of motor programs. IEEE
Trans. Robotics and Automation, to appear.

[10] M. Egerstedt and D. Hristu-Varsakelis. Observability
and policy optimization for mobile robots. In Proc. of
the 41st IEEE Conf. on Decision and Control, pages
3596–3601, Dec. 2002.

[11] M. Egerstedt and C.F. Martin. Conflict resolution
for autonomous vehicles: A case study in hierarchical
control design. Int’l Journal of Hybrid Systems, to
appear, 2003.

[12] T. A. Henzinger. The theory of hybrid automata. In
Proc. of the 11th Annual Symposium on Logic in Com-
puter Science (LICS), pages 278–292,. IEEE Computer
Society Press, 1996.

[13] D. Hristu-Varsakelis, S. Andersson, F. Zhang, P. Sodre,
and P.S. Krishnaprasad. A motion description language
for hybrid system programming. submitted to IEEE
Trans. Robotics and Automation.

[14] D. Hristu-Varsakelis and R. W. Brockett. Experimenting
with hybrid control. IEEE Control Systems Magazine,
22(1):82–95, Feb. 2002.

[15] D. Hristu-Varsakelis, P.S. Krishnaprasad, S. Andersson,
F. Zhang, P. Sodre, and L. D’Anna. The MDLe engine:
a software tool for hybrid motion control. Technical
Report TR2000-54, Institute for Systems Research, Oct.
2000.

[16] R. Motwani J.E. Hopcroft and J.D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation
(2nd Edition). Addison Wesley, Reading, MA, 2000.

[17] E. Lemch and P. E. Caines. Hierarchical hybrid sys-
tems; partition deformations and applications to the
acrobot system. In T. A. Henzinger and S. Sastry, ed-
itors, Int’l Workshop on Hybrid Systems: Computation
and Control, LNCIS 1386, pages 237–252, NYC, 1998.
Springer.

[18] V. Manikonda, J. Hendler, and P. S. Krishnaprasad.
Formalizing behavior-based planning for nonholonomic
robots. In Proc. 1995 International Joint Conf. on
Artificial Intelligence, volume 1, pages 142–9, August
1995.

[19] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. A
motion description language and a hybrid architecture
for motion plannning with nonholonomic robots. In
Proc. 1995 IEEE International Conf. on Robotics and
Automation, volume 2, pages 2021–8, May 1995.

[20] V. Manikonda, P. S. Krishnaprasad, and J. Hendler.
Languages, behaviors, hybrid architectures and motion
control. In J.C. Willems J. Baillieul, editor, Mathemat-
ical Control Theory, pages 199–226. Springer, 1998.

[21] A. Meduna. Automata and Languages. Springer,
London, U.K., 2000.

[22] R. M. Murray, D. C. Deno, K. S. J. Pister, and S. S.
Sastry. Control primitives for robot systems. IEEE
Trans. on Systems, Man and Cybernetics, 22:183–193,
1 1992.

[23] G. Pappas and S. Simic. Consistent hierarchies of
nonlinear abstractions. In Proc. of 39th IEEE Conf.
on Decision and Control, Dec. 2000.

[24] G.J. Pappas, G. Lafferriere, and S. Sastry. Hierar-
chically consistent control systems. IEEE Trans. on
Automatic Control, 45(6):1144–1160, June 2000.

