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ABSTRACT 

In this paper, we consider the design of a variable 
structure model reference adaptive control (VS- 
MRAC) for plants with relative degree one without 
the knowledge of the sign of the plant high frequency 
gain. A switching method for the control signal, based 
on an appropriate monitoring function, is proposed. 
As a result, we show that after a finite number of 
switchings, the tracking error converges to zero at 
least exponentially. Interestingly enough, if the initial 
conditions of some states of the closed-loop system 
are non-zero, we show that at most one switching is 
needed. 
Keywords Variable structure control, adaptive control, 
switching control 

1  INTRODUCTION 

The relaxation of the assumption of high 
frequency gain sign has long been an attractive topic 
in control community and can be traced back to the 
paper by Morse [3]. The most significant advance in 
this field was due to the work by Nussbaum [4], where 
an adaptive control law using the so-called Nussbaum 
gain was used for a one-dimensional linear system. 
Subsequently, the extension to MRAC for plants with 
arbitrary relative degree was solved by Mudgett and 
Morse [5]. Since then, several approaches have been 
introduced and most of them, however, are based on 
the Nussbaum-type gain. In [6], a multivariable 
MRAC using Nussbaum gain was propose. Related 
work may also be found in [7] in backstepping design. 
The main disadvantage of Nussbaum-type gain 
approaches lies in the fact that it lacks robustness to 
measurement noise. Furthermore, the transient 
behavior may be unacceptable. Hence, such 
approaches are of limited practical use [5], [9]. 
 

1Work supported by FAPERJ of Brazil (No. E-26/152.058/2001) and NSF 
of China (No.60174001). 

 

An alternative way is switching. In adaptive 
control, switching was first introduced by Martennson 
[8] and then was extended to more general cases by Fu, 
Barmish, Miller and Davison [9]-[11] with the 
objective to achieve Lyapunov stability or transient 
and steady-state performance specifications of 
tracking error with minimum prior information. The 
main idea of this kind of control is to design a 
switching law which may determine among a set of 
controller candidates when to switch from the current 
one to the next. It should be pointed out that the 
robustness to disturbance is still a problem in [8]-[10]. 
In fact, as shown in [9], [10], if a bounded input or 
output disturbance exists, the Lyapunov stability may 
not be retained again and the system states can only 
tend to some neighborhood of origin that is 
proportional to the size of the disturbance. In [11], a 
switching method was proposed so that the tracking 
error may have an arbitrarily good transient and 
steady-state performance specifications given by 
designer in advance even when the plant high 
frequency gain sign is unknown. However, the price 
of this solution is that the control signal may be very 
large. Some other switching methods called hysteresis 
switching, correction vector approach and adaptive 
control using multiple models may be found in 
[12]-[14]. 

This paper proposes a design method for variable 
structure model reference adaptive control 
(VS-MRAC) system without the knowledge of the 
sign of the plant high frequency gain. The work 
reported here is based on [1], [2] where a VS-MRAC 
approach was introduced and shown to have nice 
transient behavior, disturbance rejection, and 
performance robustness properties. The objective of 
this paper is to develop a switching method which
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does not require a priori knowledge of the high 
frequency gain sign while retaining nice transient 
performance and input disturbance rejection 
capability. 

In this paper, we first construct a monitoring 
function and then a switching scheme for the control 
signal is proposed. We show that under the 
supervision of the monitoring function, only a finite 
number of switchings is needed. The tracking error 
converges to zero at least exponentially. Interestingly 
enough, if the initial conditions of some states of the 
closed-loop system are zero, we show that at most one 
switching is needed. In comparison to those switching 
approaches presented in [8]-[10], neither the 
identification of the internal states of closed-loop 
system nor the Gramian type monitoring function is 
needed. Furthermore, the input disturbance can be 
completely rejected without affecting the tracking 
error performance. 

2  SYSTEM AND ASSUMPTIONS 

Consider the following single input/single output 
linear time invariant plant  
 ]))[()/((])[( dusdsnkdusGy pppp +=+=  (2.1) 

where y  and u  are the system output and input, 
respectively, )(sGp  is the plant transfer function with 

)(sd p  and )(sn p being polynomials of degree n  and 
m , respectively, and d  is an input disturbance. The 
objective is to design the control input u  so that y  
tracks as closely as possible the output My of a stable 
reference model given by 
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for any piecewise continuous, uniformly bounded 
reference signal r .  

With respect to the controlled plant, we make the 
following assumptions: 

(A1) )(sGp  is minimum phase. The parameters of 
)(sGp are unknown but belong to a known compact 

set; 
(A2) The degree n  of )(sd p  is a known constant; 

(A3) The relative degree 1* =n ; 
(A4) The sign of the high frequency gain )0(≠pk  is 
unknown; 

(A5) The disturbance d  satisfies 
 )()( tdtd ≤ , 0≥∀ t  (2.3)   

where d  is a known, piece-wise continuous and 
uniformly bounded function.  

In this paper, the control signal is assumed to be 
of the following form: 
 vs

T uu += ωθ̂  (2.4) 

where vsu is a variable structure control term that will 
be designed to ensure that the tracking error ye =:  

My−  goes to zero asymptotically, the constant vector 
nR 2ˆ ∈θ  will be defined below and ω , the regressor 

vector,  is defined as  
 nTTT Rry 2
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where 1ν  and 2ν  are generated by input/output filters 
according to  
 gygu +=+= 2211 , νΛννΛν �� ,  

 0)0(1 =ν , 0)0(2 =ν , )1()1( −×−∈ nnRΛ , 1−∈ nRg    (2.6) 

where Λ  is a Hurwitz matrix and ),( gΛ  is a 
controllable pair. It is well known [14] that under the 
above assumptions, there exits a unique constant 
vector   

 nTTT
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2
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such that, modulo exponentially decaying terms due to 
initial conditions, 
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T
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Since the plant parameters are assumed to be 
uncertain, the constant vector θ̂  in (2.4) is then 
defined as  

 θ̂ := nTTT Rk 2
201 ]ˆ,ˆ,ˆ,ˆ[ ∈θθθ   (2.9) 

which can be obtained from nominal plant and is a 
rough estimate of *θ . Therefore, the tracking error e  
can be expressed from (2.1)-(2.9) as   
 ]~[)( *
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where 
 *ˆ:~ θθθ −= , ** /1/: kkk Mp ==κ   
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3  VS CONTROL LAW DESIGN  

In this section, we consider the variable structure 
control law design for plants with 1* =n . From (2.2),  



  

1* =n  implies that  
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where λ  is a positive constant. Hence, from (2.10) 
and (3.1) we have 

 εωθλ ++++−= )~( vsf
T

p udkee�  (3.2) 

whereε is a bounded, differentiable and exponentially 
decaying real function that takes into account all 
non-zero initial conditions of the internal states of the 
VS-MRAC system other than those related to )0(e . It 
is important to point out that the discussion before 
(3.2) is based on the transfer function method which 
assumes zero initial conditions for all internal states 
of the system.  

The following lemma summarizes the main 
result when the sign of pk  is known: 

Lemma 1: Suppose the sign of pk  is known. If the VS 
control signal is defined as 
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where β  is an upper bound of θ~ , fd  is an upper 

bound of fd  and ∆  is an arbitrarily small positive 

constant, then, the tracking error e  converges to zero 
in some finite time tt = and remains zero tt ≥∀  as a 
sliding mode on the surface 0=e .  

Proof. See [1] or [2].  

Remark 3.1: Recalling that the parameters of )(sGp  
are assumed to lie within a known compact set, an 
upper bound of θ~  can be readily obtained. By 

taking (2.3) into consideration, an upper bound fd  

satisfying the inequality ff dd ≤  can also be 

obtained.                          ◆ 

We state the following corollary of Lemma 1, 
whose proof can be found in [1] or [2]. 

Corollary 1: The VS-MRAC system is stable if and 
only if the tracking error e  is uniformly bounded. 

Since, however, the sign of pk  is unknown, we 
have to redefine the VS control as 
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 (3.4) 

and design a monitoring function to decide when vsu  

would be switched from +
vsu  to −

vsu  and vice versa, 
where the sets +T and −T satisfy )[0,TT ∞=−+

�  and 
φ=−+ TT � , and as will be shown in the following 

analysis, both +T  and −T  have the form  
),[),[ 11 ++ jjkk tttt ��� . Here, kt  or jt  denotes the 

switching time for vsu  and will be defined later. The 
difference between (3.3) and (3.4) is that if the sign of 

pk  is known, we only need one control signal while if 

the sign of pk  is unknown, two control signals, say, +
vsu  

and −
vsu  are needed, where +

vsu and −
vsu  correspond to 

0)sgn( >pk and 0)sgn( <pk , respectively.  

To construct the monitoring function, we consider 
the following first-order differential equation:     
    ελξξ +−=� , 0tt ≥ , )()( 00 tet =ξ  (3.5) 
where 00 ≥t  denotes some initial time for (3.5). Now, 
if we correctly estimate the sign of pk , then by using 
the Comparison Lemma [16,Th.7] to (3.2) and (3.5), 
in view of (3.3) and noting that )()( 00 tet =ξ , the 
following inequality holds for all 0tt ≥ : 

 )()( tte ξ≤ . (3.6) 
Remark 3.2: We may also obtain the inequality (3.6) 
in an alternative way. Let ξ−= ez : , then, from (3.2) 
and (3.5), we have  
 )~( vsf

T
p udkzz +++−= ωθλ� .  

Since  )()( 00 tet =ξ , the solution is  
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The inequality (3.6) hence follows by noting that vsu  
can completely dominate the term f

T d+ωθ~  in the 
above equation and, according to the assumption, the 
sign of pk  has been correctly estimated. ◆ 

Our purpose is to construct the monitoring 
function based on (3.5). We thus consider the solution 
of (3.5). Since ε  decays exponentially, there exist 
constants 0>δ  and 0>c  which are independent of 
any 00 ≥t , such that 
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Hence, for all 0tt ≥ , 

)(exp)]([exp

)()]([exp

)(exp)]}([exp)]([exp{

)()]([exp

)()]([exp

)()]([exp)(

000

00

000

00

00

0

tttc
tett

ttttt

ctett

dt

tettt

m

t

t

δδ
λ

δλδ
δλ

λ

ζζεζλ

λξ

−−−+

−−≤

−−−−−−×

×
−

+−−≤

−−+

−−≤

∫

 (3.8) 

where  
 },min{ δλδ =m , (3.9) 

 
δλ −

= cc 20 . (3.10) 

Since a less δ  can only make the estimate of )(tε  
more conservative, we let λδ < , which implies that 
 δδ =m . (3.11) 

Therefore, (3.8) can be rewritten as  

 )exp()()](exp[)( 000 tctettt δλξ −+−−≤ , 

  0tt ≥ . (3.12) 
Now, we define the monitoring function kϕ  as 

follows: 
)exp()1()()](exp[)( tktettt kkkk δλϕ −++−−= ,  

 ),[ 1+∈ kk ttt , 0:0 =t , �,1,0=k  (3.13) 
where kt  is the switching time to be defined later, and 

kδ  is any monotonically decreasing sequence 
satisfying 

 0→kδ  as ∞→k  (3.14) 
with λδ <0 . The motivation behind the introduction 
of kϕ  is that ε  is not available for measurement. 
Comparing  (3.12) with (3.13), it is clear that we 
obtain kϕ  from (3.13) mainly by replacing both 0c  
and δ  by integers 1+k  and kδ , respectively. Note 
that the value of k  increases as the switching 
proceeds while kδ  satisfies (3.14) and therefore, we 
have )exp()exp( tt kδδ −<−  after a finite number of 
switchings. 

Remark 3.3: The term 1)( +k in (3.13) may be 
replaced by any monotonically increasing sequence 
of k .                         ◆   

Recalling that the inequality (3.6) holds if the 
sign of pk  is correctly estimated, it seems natural to 
use ξ  as a benchmark to decide whether a switching 
of vsu  is needed. However, since ε  is not available, 
we have to use kϕ  to replace ξ  and invoke the 
switching of kϕ . Note that e  is absolutely continuous 
[16], and from (3.13), we always have )()( kkk tte ϕ<  
at ktt = . Hence, the following definition about the 
switching time kt  for vsu  from −

vsu  to +
vsu (or +

vsu  to 
−
vsu ) is well-defined: 
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where 1≥k . Fig.1 illustrates the switching.  
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Fig.1. The trajectories of )(tkϕ  and )(te  intersect at 1tt = and 

therefore, a switching of vsu  from −
vsu  to +

vsu (or +
vsu  to −

vsu ) 
occurs and, at the same time, )(tkϕ  switches from )(t0ϕ to )(t1ϕ  
according to (3.13). Also note that 00 =t . 

We have the following main result. 

Theorem 1: Suppose the VS-MRAC system given by 
equations (2.1), (3.1) and (2.4) satisfies the 
assumptions (A1)-(A5). Let the control signal vsu  be 

defined by (3.4) where β  is an upper bound of θ~ , 

fd  is an upper bound of fd and ∆  is an arbitrarily 

small positive constant, and the switching time for 
vsu  from −

vsu  to +
vsu (or +

vsu  to −
vsu ) be defined by 

(3.15). Then, the switching will stop after a finite 
number of switchings and the tracking error e will 
converge to zero at least exponentially.  

Proof. The proof is obtained by contradiction. 
Suppose vsu  switches between +

vsu  and −
vsu  without 

stopping. Since 0c  and δ  (see (3.10) and (3.7), 



  

respectively) are constants, and from (3.4), vsu  only 
has two choices, +

vsu  or −
vsu , then after a finite number 

of k-th switchings, vsu  must have a correct sign, i.e., 
+= vsvs uu  if 0>pk  or −= vsvs uu  if 0<pk and, at the 

same time,  

 1)(20 +<
−

= kcc
δλ

, )exp()exp( tt kδδ −<− , ktt >∀  

  (3.16) 
where kδ  is defined by (3.14). This, together with 
(3.12) and replacing 0t  by kt , implies that 

 )()( tt kϕξ < , ktt >∀ . (3.17) 

Since, however, for a correct choice of the sign of pk , 
e  satisfies (3.6), the above inequality implies that  

 )()( tte kϕ< , ktt >∀ . (3.18) 

Hence, from (3.15), no switching will occur again, a 
contradiction. Note that kϕ  given by (3.13) is well- 
defined because as shown in [2], all the closed-loop 
signals are in eL∞  if the control signal vsu is of the 
form given by (3.4), or in other words, no finite time 
escape occurs in the system signals. Now, since kϕ  
converges to zero exponentially, (3.18) shows that e  
will converge to zero at least exponentially. Finally, 
by invoking the Corollary 1, the system is stable.     ■ 

The following corollary shows a more 
interesting (probably surprising) fact for the relative 
degree one VS-MRAC system. 

Corollary 2: if 0=ε , then at most one switching is 
needed. 

Proof. 0=ε  implies (3.8) as well as (3.12) can be 
rewritten as 

 )()]([)( kk tettt −−≤ λξ exp , ktt ≥∀  (3.19) 
where 0t  is replaced by kt . Then, (3.13) and (3.19) 
show that the inequality )()( ktt ϕξ < , ktt >∀  holds 
for any finite k  if the sign of pk  has been correctly 
estimated at  ktt =  which, from (3.6), implies that the 
following inequality holds also: 

 )()( ktte ϕ< ktt >∀ . (3.20)   

Hence, if we correctly estimate the sign of pk  at 
00 =t , by taking (3.15) into consideration, the above 

inequality shows that no switching occurs; whereas, 
one switching is enough.                         ■ 

4  SIMULATION RESULTS 
In this section, an illustrative example is given to 

show the effectiveness of the switching VS-MRAC 
scheme. The simulation was done by using a Matlab / 
Simulink software package.  

Example. We consider the following relative degree 
one plant:  
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ssG p        (4.1)  

with different initial conditions: 
 TT xx 10][10,(0),[0,0](0) ==  (4.2) 

where x  is the state of the controllable canonical 
form of the plant. Note that in this example, 

0)sgn( <pk . The reference model is  
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Since the parameters of the plant are assumed to be 
uncertain, θ̂  is obtained according to the nominal 
plant )1/()2.0(2)(ˆ 2 −+= sssG p . The parameters of 
the input/output filters are 2−=Λ  and 1=g .  The 
monitoring function kϕ  is obtained from (3.14) in 
which, kδ  is chosen as )11/( += kkδ . The control 
signal defined by (3.4) is chosen at 0=t  to be +

vsu . 
That is, an incorrect control signal is given at the 
beginning of the simulation. The reference signal r is 
a square wave with its amplitude being 1 and 
frequency being 5Hz. The disturbance )5.0sin()( ttd = . 
The simulation results under the two different initial 
conditions are shown in Fig.2 and Fig.3, respectively. 
Monitoring functions show that for the case of zero 
initial conditions, the switching number is one while 
for the case of non-zero initial conditions, three 
switchings of vsu are observed. 
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Fig.2-1. Tracking error with zero initial conditions. 
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Fig.2-2. Monitoring function with zero initial conditions. 
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Fig.3-1. Tracking error with non-zero initial conditions. 
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Fig.3-2. Monitoring function with non-zero initial conditions. 

5  CONCLUSION 

In this paper, we have introduced a switching 
methodology for the controller design of a VS-MRAC 
system without the knowledge of the high frequency 
gain sign. The main idea is to construct a monitoring 
function to supervise the behavior of the tracking 
error and then, a switching scheme is proposed. We 
have shown that for plants with relative degree one, 
our scheme guarantees the tracking error to converge 
to zero at least exponentially. Another interesting 
result of the paper is that if some of the initial 
conditions of the states of the closed-loop system are 

zero, we have shown that at most one switching is 
needed. Generalization to plants of higher relative 
degree is being developed by the authors. 
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