
Proceedings of the 42nd IEEE 
Conference on Decision and Control 
Maui, Hawaii USA, December 2003 ThMO1-6 

Decentralized Nonlinear Model Predictive Control of Multiple Flying Robots 

David H. Shim 
Autonomously Controlled Advanced Platforms 

(ACAP LLC) 
Berkeley, C A  94709, USA 
dashim@acapsys.com 

Abstract- In this paper, we present a nonlinear model 
predictive control (NMPC) for multiple autonomous helicopters 
in a complex.environment. The NMPC provides a framework to 
solve optimal discrete control problems for a nonlinear system 
under state constraints and input saturation. Our approach 
combines stabilization of vehicle dynamics and decentralized 
trajectory generation, by including a potential function that 
reflects the state information of possibly moving obstacles 
or other vehicles to the cost function. We present various 
realistic scenarios which show that the integrated approach 
outperforms a hierarchical structure composed of a separate 
controller and a path planner based on the potential function 
method. The proposed approach is combined with an efficient 
numerical algorithm, which enables the real-time nonlinear 
model predictive control of multiple autonomous helicopters. 

I. INTRODUCTION 
Nonlinear model predictive control (NMPC) [ 11 has been 

recognized as a suitable framework for the control of non- 
linear dynamic systems subject to operating constraints. The 
inherent expandability of the NMPC, which can include 
various performance and constraints as a cost function, has 
shown promise for the control of unmanned vehicles (for ex- 
ample, see 121 and [4]). However, the computation load of the 
conventional NMPC was often prohibitive for many dynamic 
systems with a ‘fast’ response. In [3],  we applied NMPC for 
regulating rotorcraft unmanned aerial vehicles (RUAVs, see 
Fig. 1) in the presence of input and state constraints. The 
minimization problem was solved with a gradient-descent 
method as in [4], which is computationally light and fast. The 
proposed NMPC was employed as a trajectory generation and 
tracking control layer in a hierarchical flight management 
system for RUAVs, and outperformed a linear controller in 
tracking aggressive trajectories under parametric uncertainty. 

Planning a collision-free path for a robot to move from 
an initial to a final configuration has been one of the 
central problems in robotics. However, many versions of 
this complex problem have been shown PSPACE hard [5] 
even in a static environment. Also, such methods often work 
only for a discrete state space or for the special shape of 
obstacles [6].  In fact, deterministic performance guarantees 
exist only for very simplified cases (for example, see [7] for 
a two-dimensional aircraft model with constant linear speeds 
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Fig. 1. Collision avoidance experiment with autonomous helicopters 

and linear constraints using a centralized approach). Potential 
function methods [SI have dominated obstacle avoidance 
research because the idea of generating a repulsive field 
around each obstacle is intuitive and simple to implement. 
It is well-known that such approaches are prone to local 
minima. While there has been some work on so-called 
navigation functions that are free from local minima [9], 
generating a navigation function is computationally involved 
and thus not suitable for many online navigation problems. 

In this paper, we extend our previous work ( [ 3 ] )  to resolve 
the path planning and optimal control problems for multiple 
mobile robots in a complex three-dimensional environment 
by nonlinear model predictive control and potential function 
techniques. We show that our integrated approach can solve 
various realistic scenarios involving multiple RUAVs and 
obstacles in a complex three-dimensional environment. Sec- 
tion II presents the mathematical framework, and Section 111 
presents the simulation results in various realistic examples 
involving staticlmoving obstacles and multiple autonomous 
helicopters in a three-dimensional complex environment. 
Section IV concludes the paper with the discussion and future 
directions. 

11. PROBLEM FORMULATION 

This section presents a formal framework for solving 
the path planning and optimal control problem for multiple 
RUAVs in a complex three-dimensional environment, using 
the nonlinear model predictive control and the potential 
function method in an integrated manner. 
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A. Nonlinear Model Predictive Control 

In this paper, we consider a system of N (possibly hetero- 
geneous) vehicles in a dynamic environment. The dynamics 
of each vehicle can be described by the following set of 
(nonlinear) controlled differential equations: 

with the initial conditions xi(O), and where q ( t )  E Xi and 
uz(t)  E Ui. Each Xi is a constraint space, subset of IRnr*, and 
each UT is the input space for the vehicle i. As we assume that 
the individual vehicle dynamics are decoupled, we introduce 
the following vector notation for the overall system: 

x = f(x) + g(x)u. ( 2 )  

where x E II,”lXz. and U E II,”,lUt. 
We are interested in solving a decentralized discrete-time 

nptinral control problem for the ith subsystem, i.e. to find 
the optimal input sequence {~ t (k )} ;=~  such that 

T 

{u:(k)}r=i = agminCqt(x(k) ,u(k))  + qij(x(T + 1)) 
k=l 

(3) 
subject to the differential equations (1) and (2) ,  and the 
terminal constraint z(T + 1) E Xf. 

Nonlinear model predictive control (NMPC) problems 
consist of the following steps; 1) solve for the optimal control 
law starting from the state x(k) at time IC, 2 )  implement the 
optimal input u*(k ) ,  . .. , u * ( ~ + T  -1) for 1 5 T 5 T’, and 
3) repeat these steps from the state x(k + T) at time k + T.  

Often a quadratic function is used for qi(x(k),u(k)) 
and qif(x(T + l)), and see [4] and [3],  for a nonlinear- 
programming algorithm using Lagrange multipliers. 

B. Model Helicopter Dynamics 

Although the techniques presented in this paper are ap- 
plicable to various types of mobile robots, autonomous 
helicopters are our main focus. The helicopter is an under- 
actuated system, whose configuration space is SE(3)  i? 
R3 x SO(3) yet only four degrees-of-freedom can be 
achieved by four inputs to the lateral cyclic pitch, longitu- 
dinal cyclic pitch, main rotor collective pitch, and tail rotor 
collective pitch (Eqn. (6))2.  

Let the superscripts S and B denote spatial and body 
coordinates, 4, 0, and II, denote roll, pitch, and yaw, and 
p ,  q, and r are the corresponding angular rates in the body 
coordinate, respectively. The overall system dynamics are 
divided into the kinematics (Eqn. (4)) and the system-specific 

‘In all examples we present, we set T = 1. 
’We exclude the rotor throttle from our definition of control inputs, since 

we assume that the rotor rpm is maintained constant hy an engine govemor. 

‘where al, and bls are longitudinal and lateral flapping 
angles, and Tfb is the feedback gyro system state. A trans- 
formation matrix between the spatial and body velocities is 
given by RB’S E S0(3), i.e. the rotational matrix of the 
body axis relative to the spatial axis, represented by Z Y X  
Euler angles [@, 0, $1. The Newton-Euler equation yields the 
differential equation ( 5 )  for xD, which is characterized by 
nonlinear functions of force and moment terms. Interested 
readers can refer to [lo] for details of the model. 

C. Trajectory Generation and Tracking under InputlState 
Constraints 

We use the following quadratic functions of state variables 
and inputs as the cost for tracking control of the ith helicopter 
at time t in Eqn. (3), 

where y i d ( - )  denotes the desired trajectory for the ith heli- 
copter. 

In order to generate the control inputs of the acceptable 
magnitude, input constraints are enforced by projecting each 
ui(k) into the constraint set. In our helicopter model, this 
corresponds to [uals, ubls, a@,, U@,] E [-I, iI4. State con- 
straints are also incorporated as an additional penalty in the 
cost function, i.e., the cost for the ith helicopter at time t, 
q i ( x ( k ) , u ( k ) )  of Eqn. (3), now includes 

n, 

qfc(xi(k)) CSil”(0, I X i , / ( k )  - z;,?t I ) 2  > (8) 
1=1 

where x i , ~ ( k )  denotes the ith state variable for the ith 
helicopter at time t ,  and Sil. and zi,l are constants. 

”or the notational simplicity, we will often drop the subscript i to denote 
the ith helicopter. 
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D. Decentralized Collision-free Trajectory Generation 

Our model-predictive path planning strategy adopts the 
idea from the potential field method [8], [5],  which has been 
popular in path planning for mobile robots. 

The cost (3) can be formulated to reflect the aspect of 
a potential function for path planning in the environment 
with stationary or moving obstacles or other agents. This 
allows the trajectory generation and vehicle stabilization to 
be combined into a single problem. In this scenario, we 
assume that each vehicle is aware of other vehicles' real-time 
location via some type of onboard sensors or inter-vehicular 
communication and solve decentralized optimization. 

The following potential function term is added to the cost 
function for the helicopter j, whose position at time t is 
denoted by x i .  
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E. Three-dimensional Pursuit-Evasion Game 
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where (21 ( k )  , yl ( k )  , z1 ( I C ) )  denote the position of the heli- 
copter 1 at time k ,  and constants a j ,  bj and K,I determine 
the shape of repulsive potential field and thus, the adjusted 
trajectory. We add a repulsive potential of the same form 
for the moving obstacles if the environment is dynamic. 
Thus, the information of the other helicopters or moving 
obstacles, such as their position and velocity, if known, is 
used to predict the information over the next T horizon 
and compute the cost. In fact, this aspect contributes to 
an improved performance for our approach compared with 
the conventional potential-function based method as to be 
discussed in Section III. 

Navigation in a more complicated environment can be 
resolved by extending the single-point avoidance method. 
Finding a feasible path through obstacles may be achieved by 
using a sum of ellipsoidal penalties for a set of Npt nearby 
points; 

where JF,n is the penalty on the distance from a n-th nearest 
obstacle to the i-th helicopter, similar to the one given in (9). 

We apply this method to the urban navigation problem in 
Section 111-B. The distance to the selected points from the 
RUAV is used to compute the potential function at every 
future position along the finite horizon in the optimization. 
A large value of Npt will reduce sudden jumps in the cost 
function. However, penalizing the distance to the single near- 
est point turns out to be computationally light yet effective 
enough in the examples we tried. In actual experiments, 
finding the closest point can be done by an onboard laser 
scanner or an ultrasonic sensor array. 

In this case, we consider two RUAVs in a close-range air 
operation. One UAV is in pursuit of the other UAV. The 
pursuing UAV's goal is to align its heading to the target UAV 
and reduce the distance without colliding with the target. 
The evading UAV tries to escape from the point where it 
is aligned to the heading of the pursuing UAV. This can 
be formulated as two separate objectives, which are not 
necessarily in conflict: 1) align its heading to the target vector 
XE-P and 2) avoid being aligned in the target's heading 
xg4, as illustrated in Fig. 2. For the pursuer, the deviation 
of the relative heading angle between x; e Rf?'[l, 0,  0IT 
and the relative position vector XE-P is penalized to obtain 
the best aim. For the evader, the cost as a function of ag is 
formulated to be zero when O D  = *90° and to be maximum 
at 0" and 180". In addition to these penalties on headings, 
the relative distance between the pursuer and evader is also 
included as a part of their cost function. For the pursuer, the 
distance XE-P is penalized for more effective pursuit. The 
relative distance is inversely penalized in the cost function 
of the evader for exactly the opposite reason. 

-101 ' ' ' ' ' ' 
-20 - i s  -10 -5 0 5 10 15 20 

Fig. 2. 
relative angle and an evader wants to maximize it. 

Pursuit-evasion game, where a pursuer wants to minimize the 

To summarize, the following cost functions are proposed 
for the pursuer and the evader, respectively; 

The overall cost function term for each player is now given 

4Note that the heading here is not same as the paw angle, as we are 
treating the three-dimensional dynamics. 
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Q E ( X ( k ) ,  4k)) (13) 
= q 3 x E ( w ,  %&)) + q,SC(xz(k)) 
+n,bdry(Xt(k)) + 41noa(x(k)) 
+qP(x(k ) )  + Q e ( x ( k ) )  . 

In addition to the two usual cost function terms qSt and qsc, 
qbdry, qnoa, q P  and qe are included in (13). qbdry is the cost 
function in the form given in Eqn. (IO), which enforces the 
RUAVs to stay in the predefined region. If this function is not 
included, the evading agent may fly indefinitely away in any 
direction to flee from its pursuer. qmoa is the cost function 
for preventing collision between two agents. Without this 
term, the penalty on I\x~-pll in q P  may lead the pursuer to 
collide with the other agent. The cost functions for pursuit 
and evasion may be introduced together as a sum of pursuing 
part and evading part, as in Eqn. (13). Two extreme cases are 
pure pursuit and pure evasion. A pursuer persistently follows 
the target even if it is exposed to a higher risk from the 
other agent. A pure evader only avoids being aligned along 
the pursuing agent’s line of sight. We will show the related 
examples in Section IU-C and III-D. 

111. SIMULATION RESULTS 
In this section, we evaluate the effectiveness of the 

nonlinear model predictive trajectory planning and tracking 
controller proposed in Section II in various scenarios. 

A. Collision-avoidance Planning and Control under Zn- 
put/State Constraints 

In this example, five helicopters are originally given 
straight-line desired trajectories that will lead to a mid-air 
collision as shown in Fig. 3(a). The potential function term 
shown in Eqn. (9) is added into the cost function of each 
RUAV, to resolve the confliction. In order to generate a 
plausible control input while trying to avoid the collision, 
the input saturation conditions were enforced. Also included 
in the cost function is the state constraints in the form of 
Eqn. (8), with [&at,@sat, asat,usat, wsat,Psat, qsat, ~ s a t l  = 
[.rr/6, ~/6,16.7,16.7,16.? ft/s, x / 2 ,  x / 2 ,  x / 3  rads] in order 
to contain the overall vehicle response at an acceptable range. 
Fig. 3(b) shows the resulting trajectories that each helicopter 
actually achieved. 

Fig. 4 shows that our integrated approach outperforms the 
purely potential-function method, when the potential function 
is employed as a path planning layer separate from a vehicle 
stabilization layer in a simple collision-avoidance problem. 
The helicopter heading to the left is controlled by the NMPC, 
whereas the helicopter flying to the right, assumed to have 
already stabilized linear dynamics, uses the potential function 
method as a trajectory generation layer. When the potential 
function is considered in generating the trajectory only for 
each time step, it causes abrupt change (Point A), slow 
convergence back to the desired trajectory (Point B) and 
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Fig. 3. Distributed collision avoidance: (a) initial configuration and the 
destination of each helicopter, and the corresponding desired trajectories (b) 
their trajectories executed 
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Fig. 4. Nonlinear model predictive control (dotted) vs. potential-function 
approach (solid) 

overshoot (Point C) in the vehicle response. On the other 
hand, the WPC-based method results in a smooth trajectory 
without any overshoot. 

B. Flying in a Complex Environment 
In this example, we apply the NMPC framework for a 

navigation problem in which a UAV is requested to fly 
through a space full of building-shaped obstacles. This type 
of situation often arises in an urban area, filled with buildings 
of various sizes. 

For this simulation, a realistic three-dimensional map 
filled with buildings of random width, depth, and height is 
generated as shown in Fig. 5(a). Then a RUAV is requested 
to fly from the rooftop of the building at lower-left on the 
map to the building at the diagonal side. The NMPC-based 
flight controller is only given a priori with a simple straight 
flight path that directly connects the starting and destination 
points, and this trajectory intersects with a number of build- 
ings along the path. The vehicle resolves the collision by 
maintaining a safe distance from the nearest point of nearby 
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buildings as it travels. Fig. 5(a) and (b) shows the output 
of a simulation. The short lines from the RUAV’s trajectory 
to the nearby buildings indicate the vector of the minimum 
distance obtained from the scanning process. Along the path, 
the RUAV encounters a number of buildings which are too 
close to itself. The UAV successfully reaches the destination 
by detouring the building along the given path. 

-50 

0 100 200 400 500 

-50 

0 100 200 300 400 500 

Flying in a complex 3-D environment using (a),(b): NMPC, and 
(c): potential-function approach. (b) and (c) are top-&wn views. 

Although considering Npt nearest points, not just a single 
point, should reduce sudden jumps in the cost function, 
penalizing the distance to the single nearest point turns out to 
be computationally light yet effective enough in this example. 

Fig. 5(c) shows the result when a potential function method 
was applied to the same example as in Fig. 5(b). Here, we 
assumed that a separate lower-level stabilization layer exists 
and used the potential function as a trajectory generator. 
This result confirms the well-known fact that the potential- 
function method is prone to local minima. By comparing 
Fig. 5(b) and Fig. 5(c), we can see that our approach is less 
susceptible to the local minima problem due to its predictive 
nature. 

C. Three-dimensional Pursuit-Evasion Game 

This example considers two RUAVs in a close-range 
operation. Suppose that one RUAV is in pursuit of the other 
RUAV. As explained in Section 11-E, the pursuing RUAV’s 
goal is to align its heading to the target UAV and reduce 

the distance without colliding with the target. The evading 
RUAV’s goal is to stay out of the line of sight of the pursuer. 

In Fig. 6, trajectories and snapshots from a six-second 
interval during a pursuit-evasion game between two full- 
time opposite-trait agents are shown. The pursuer attempts 
to shorten the distance and align its heading to the direction 
where the other agent is located simultaneously. The evader, 
on the other hand, moves away from the pursuer while 
keeping its nose or tail out of the pursuing agents’ direct 
line of sight. 

-*a 

Fig. 6. Pursuit-evasion in a three-dimensional environment: lines between 
the pursuer and the evader represent the corresponding positions at each 
time instant. 

D. Pursuit-Evasion Game in a Conjiied Space with Urban 
Obstacles 

This example, shown in Fig. 7, combined obstacle- 
avoidance and pursuit-evasion feature as well as the con- 
straints on the magnitude of state variables and inputs. The 
UAVs in this environment are performing both pursuit and 
evasion as the cost function in Eqn. (13) dictates, while 
avoiding collision into the buildings in the confined area. As 
is in the scenario in Section 111-B, the UAVs are successfully 
confined in the pre-specified region by JbdrV. 

E. Implementation 
The horizon length N ,  and the number of iterations during 

optimization, as well as the weighting matrices PO, Q, and 
R, are important design parameters related to the simulation 
speed and closed-loop stability. Step-size Ak should be 
carefully chosen to consistently reduce the cost during the 
iteration. We selected I\- = 25 - 30, and Ak = 0.0001 - 
0.001 for the simulations presented in this paper. 

Our NMPC algorithm is written in CMEX format for en- 
hanced computation speed in MATLAB. Table I summarizes 
the computation time for the examples shown in Sections III- 
A - 111-D. All the simulations were run in a decentralized 
manner for each helicopter but on a single Windows-XP 
computer with a Pentium III-M 1 GHz processor to generate 
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Fig. 7. Overhead view during a symmetric pursuit-evasion game in 
a complex three-dimensional environment: both players are pursuing and 
evading at the same time, and each line shows 30 seconds of trajectory. 

(sec) 

C 206 168 2 
D 200 173 

TABLE I 
COMPUTATION TIME FOR T I E  EXAMPLES SHOWN IN  SECTION 111, RUN 

ON A si&? COMPUTER WITH A PENTlUM 1JI-M 1 GHZ PROCESSOR 

control inputs at 50 Hz. Therefore, all the examples presented 
here run significantly faster than real-time, and the proposed 
NMPC algorithm is promising for the RUAV flight control 
systems where the host vehicle must operate in a complicated 
environment. 

Deliberation of the optimality over the time horizon T 
renders our NMPC-based approach less prone to the local 
minima than purely potential-function-based methods, and 
for this effect, we would need T to be large enough to 
foresee over the local minima. Since the computation time 
proportionally depends on T ,  it would be more efficient 
to combine some high-level switching logic to determine a 
sutable value for T depending on the type of operation, rather 
than blindly increasing T.  

IV. CONCLUSION AND FUTURE WORK 

In this paper, we formulated a nonlinear model predictive 
control (NMPC) framework to control multiple autonomous 
vehicles in a complex three-dimensional space. Our approach 
combines the stabilization and trajectory generation prob- 
lems, by including the potential function in the cost function. 
We implemented the proposed NMPC algorithm as an online 
decentralized optimization controller and evaluated in various 

realistic scenarios. In these examples, the state constraints 
were included into the cost, and the input saturation condi- 
tions were enforced to show the viability of our approach 
to control multiple RUAVs. Although there exists no formaI 
guarantee of the uniqueness of the minima, we observed that 
our approach is less prone to the local minima than the 
conventional potential-function methods due to the longer- 
term preview. The effect of tuning these parameters and 
adjustment of the potential function to also reflect the type, 
speed or heading of objects require further investigation. 
The computational load of our NMPC formulation using 
the gradient-descent or conjugate gradient method is low 
enough to be used for controlling RUAVs under hard real- 
time constraints. Some hardware experiments are currently 
being performed [l 11 and will be reported in the near future. 
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