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Abstract 
This paper deals with a controller design problem 
for time-varying nonlinear systems with nonparametric 
uncertainties. A robust adaptive tracking control for 
uncertain time-varying nonlinear systems with higher 
order relative degree will be proposed based on the 
high-gain adaptive output feedback and backstepping 
strategies. The proposed method is useful in the case 
where only the output signal is available. 

1 INTRODUCTION 
A nonlinear system is said to be OFEP (output feed- 
back exponentially passive) [l] if there exists an output 
feedback such that the resulting closed-loop system is 
exponentially passive. The sufficient conditions for the 
nonlinear system to be OFEP are that (1) the system 
be globally exponential minimum-phase, (2) the sys- 
tem has relative degree of 1 and (3) the nonlinearities 
of the system satisfy the Lipschitz condition. Under 
these conditions, there exists a static output feedback 
such that the resulting closed-loop system is exponen- 
tially passive[l]. It has also been shown that one can 
stabilize uncertain nonlinear systems with OFEP prop- 
erty by a high-gain feedback based adaptive control 
with simple structure [2], [4]. Since the control meth- 
ods utilize only the output signal in order to  design the 
controller and have strong robustness with respect to 
bounded disturbances in spite of its simple structure, 
these methods are considered powerful control tools for 
uncertain nonlinear systems. Unfortunately the OFEP 
conditions give very severe restrictions to practical ap- 
plications of the above-mentioned adaptive schemes be- 
cause most practical systems do not satisfy the OFEP 
condition. 

With this problem in mind, some alleviation methods 
to the OFEP condition have been proposed [3], [4], (61. 
The method by [3] and '[4] alleviated the OFEP condi- 
tion by introducing a parallel feedforward compensator 
(PFC) in parallel to the controlled system. Although 
this method can solve the restriction for relative degree, 
since the controller is designed for an augmented con- 
trolled system with PFC, the bias error from the PFC 
output may remain. The method by [6] is a robust 

control scheme for non-OFEP systems with nonlinear 
uncertainties but the method was for systems with rel- 
ative degree of 1. 

In this paper, we will propose a robust adaptive track- 
ing control, which is based on high-gain feedback based 
adaptive control, for a class of uncertain time-varying 
nonlinear systems with higher order relative degree. 
We extend the robust adaptive control method by [SI to 
uncertain time-varying nonlinear systems with higher 
order relative degree by utilizing a backstepping strat- 
egy. It is shown that if the upper limit of uncertain non- 
linearities can be evaluated by a function of the output 
signal then one can design an adaptive controller by 
using only the output signal without a state observer. 

2 PROBLEM STATEMENT 
We consider the following nth order time-varying non- 
linear system with relative degree of n. 

xi = fz(z, t )  + gt(t)%i+l (1 5 i 5 n - 1) 

Y = 51 (1) 
kn = fn(2, t )  + gn(t)U 

where z = [q,... ,%,IT E Rn is the state variable, 
U and y E R are the input and output, respectively. 
fi(z, t) are uncertain nonlinearities and g2(t), (1 5 i 5 
n)  are unknown time-varying functions. We assume 
that the uncertainties satisfy the following assump 
tions. 

Assumptions: (A-1) Uncertain nonlinear functions 
fi(z, t) can be evaluated for all 2 E Rn and t E R+ 
bY 

with unknown positive constants dli, doi and a known 
smooth function $i(y) which has the following property 
for any variable y1 and y2: 

(3) 
with a known smooth function $li and a function $ai 
which is bounded for all bounded y2. 
(A-2) Unknown functions gi(t) are smooth and 
bounded with bounded derivatives for any t 2 0, and. 
are positive functions such that gi(t) 2 goi > 0 with 
positive constants goi. 

Ifi(z,t)l I d1il$i(Y)I + doi (1 I i I n) (2) 

I+i(Y1+ ~ 2 1 1  5 I + ~ ~ ( Y ~ , Y ~ ) I I Y I I  + I$2i(~2)I 
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where The control objective is to achieve the goal: 

t+oo lim lu(t) - y*(t)l I 6 (4) 

under the assumptions (A-1) and (A-2) for a given 6 
and a command signal y * ( t )  such that Iv*(t)l I PO, 
\i*(t)l 5 with positive constants PO and 0 1 .  

3 ADAPTIVE CONTROLLER DESIGN 
3.1 Virtual System 
In order to design a robust adaptive controller based on 
the high-gain feedback strategy, we must first consider 
the virtual controlled system by introducing a virtual 
control input filter. 

Consider the (n  - 1)th order virtual filter: 
tif* = -Xiuf* + uf.+l (1 I i I n - 2 )  

& > O ,  ( 1 F i l n - 1 )  (5) 
Gfn-l = -Xn-luf,_l + 

The virtual system, which is obtained by considering 
ufl  given from a virtual filter as the control input, can 
be represented by the following form with appropriate 
variable transformation using filtered signals ufi .  

i ( t>  = 43, q, t> + g 1 , n ( t ) u f i  + fib, 7, t> 
ilw = 49, t )  + F ( Y ,  11, t )  ( 6 )  

where y = 2 1 ,  qT = [v2 , .  

follows: . 
,vn] and vi are given as 

v 2  = 3 2 x 2  - x 2 , 1 3 1 , 2 ~ 1  - ql (7) For n = 2; 
For n 2 3 (3 5 k 5 n - 1); 

with 

given by the following form: 
For n = 2 

a(y, q,  t )  = X2,lY + g1,2v2 

d Y i  v 2 ,  t )  = X2,2Y - h v 2  

W Y ,  v 2 ,  t )  = 8 2 f 2  - X2,181,2fi 

For n 2 3 

7,  t)=X2,2Y + gl,n% 

T= 

1-2 

31,nf i  - Xl,l-kfik+l,nfk+l 
k=O 

7J-3 ._ - 

Bn- 1 ,nfn- 1 Xn- 1 ,n- k- l gk+l  ,n f k +  
k=O 
n - I  .~ 

Bnfn - Xn,kBn-k,nfn-k  
k=l 

For the obtained virtual system, it is easy to confirm 
that q ( y , q , t )  and a ( y , q , t )  are bounded with respect 
to time t and Lipschitz with respect to y , q  so that 
there exist positive constants L 1  and Lz such that 

IlQ(Y1,rll)-Q(Y2,772)11ILl(IYl - Y21+/1~11-77211) (18) 
l~(~l,rll)-~(~2,r12)1IL2(IYl - Y2l+11rll-77211) (19) 

Further, the uncertain vector function F ( y ,  q,  t )  can be 
evaluated from assumption (A-1) by 

MZ 

IIF(Y,V,~)II 5 C P i I 4 z ( Y ) I  + P O  (20) 
2=1 
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with unknown positive constants pi and po and a known 
smooth function +i(y) which has the following property 
for any variable y1 and y2: 

I$i(Yl+~2)1 I I $ I ~ ( Y I , Y P ) I I Y ~ ~  + I ~ z ~ ( Y z ) ~  (21) 

with a known smooth function 41i and a function 42i 
which is bounded for all bounded y2. 

The obtained virtual controlled system (6) has the rel- 
ative degree of 1 and the zero-dynamics given by (12) 
or (15), which is obtained by a nominal system with 
f1 and F as disturbances, is exponentially stable so 
that from the converse theorem of Lyapunov [5], there 
exists a positive definite function W ( q )  and positive 
constants 61 to 6 4  such that 

3.2 Controller Design 
We first design a virtual input for the virtual system 
(6) through a robust adaptive output feedback control. 
The actual control input will be designed through the 
backstepping procedure as follows: 

Step 1: Defining v(t)  = y ( t )  - y * ( t )  as the tracking 
error, the virtual controlled system (6) can be rewritten 
as the following error system 

b(t) = ~ ( v  + ~ * 7  7 ,  t )  + gl,nufl + f i (v  + Y*, 17, t )  - G* 
i l(t) = q(v + Y*, 17, t )  + F ( v  + Y*7 77 t )  (23) 

We design a virtual control input a1 for the input uf l  
in this error system (23) by 

Q1 ( t )  = - [k(t)v(t) + '1LR(t)l 

k ( t )  = kr(t) + kp(t) 
b(t) = y r ~ ( t ) ~  - Orkr(t), kr(0) 2 0 

(24) 
(25) 
(26) 

M2 

kP(t) = & J i 4 l z ( v ,  Y * ) 4 4 t > 2  (27) 

uR(t)  = 'YR?h(Y)2v(t) (28) 
z=l 

where 71, ypz7 yRand 01 are arbitrary positive con- 
stants. Here consider a positive definite function 
VO(4 17, k ) :  

1 
Vo = p o W ( ~ )  + ~ p i v ( t ) ~  + p i Q m [ k i ( t )  - PI2 (29) 

where PO and p1 are any positive constants and k* is 
an ideal feedback gain to be determined later. gm is a 
positive constant such that 0 < gm 5 g ~ , ~ .  

The time derivative of Vo(v, 17, k )  along the trajectories 
(23) and (26) yields that 

2YI 
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It follows from assumptions (A-1), (A-2) and (18) to 
(22) that we can evaluate the time derivative of VO by 

dV0 
I -P041rll12 +P0~2ll77ll~1(I~I +Po> 

(34) 

with any positive constants p1 to p5 and 

Finally the time derivative of VO can be evaluated by 
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n 

P 1 S m f f I  e2 M Z  1 ( ~ 0 6 2 ~ i ) ~  +-k +E 
i=l 4 P l g m Y p i  [ 4P3i ] * 

4 2 i M  in is a positive constant such that 142i(y*)l  I 
4 2 i M -  Since y* is bounded, such a constant exists from 
the assumption that 4 2 i ( y 2 )  is bounded for all bounded 
Y2. 

Step 2: In step 2, we consider an error system, w1- 

system, between ufi  and cq. wl-system is given from 
( 5 )  by 

W l  = - X 1 u f l  + U f 2  - (37) 
where 

For this wl-system, we design the virtual input a 2  for 
U f 2  as follows: 

2 a 2  = -c1w1 + X I U f l  - ElOV w 1  - 

where c1 ,  €10 and E I , ~  to El,$ axe any positive constants. 

Consider the following positive definite function VI for 
the obtained wl-system. 

(40) 
I4 =,w:+vo 1 

The time derivative of VI is obtained by 
Til = W l ( Z i f l  - t Y 1 )  +vi 

dal  
= w1 -Xlufl + w 2  + a 2  - -(X2,2Y + 91,n772 [ dY 

a a 1  aa, 
+fl + g l ,nu f , )  - -Y* a y *  - -[Y1V2 dkI - OrSII] 

+ V O  (41) 
where w 2  = uf2 - a2. 

Since and x 2 , 2  are bounded from assumption (A-2): 

(44) 
For this wi-1-system, the virtual input ai for uf ,  is 
designed by 
ai = -ci-1wi-1 - wi-2 

+Xi-lufz-l - 

(45) 

where ci-1 and €i-1,1 to  Ei-1,6 are any positive con- 
stants. Here we consider the following positive definite 
function &-1: 

(46)  
1 

The time derivative of K - 1  is then given by 

K-1 = 5w:-l + K--2' 

we can evaluate the time derivative of VI by applying 
cy2 given in (39) as follows: 

It follows from the structure of ai given in (45) that 
G - 1  can be evaluated as 
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I I -1  

r A f z  1 

where 

Step n: This is the final step. In step n, we design the 
actual control input as follows: 

U = an (50) 
using ai given in (39) or (45). 

In this final step, we finally consider the following pos- 
itive definite function V: 

(51) 
1 2  v = v,-1 = 2 W n - ]  + vn-2 

The time derivative of V can be evaluated by 
n-1 

v 5 - Ckw; - [pIgmk* - kO] 
k=l 

(52) 
g I  

TI 

using the same manner as in previous steps. Where 
RT = xi:,' Rk. 

Setting p1 = p2 = w, p3i = a and pb = 3 and 

considering po such as po 2 52-$$ , we have 

- p ~ g m - - ( l  - P : ) [ ~ I  - ,*I2 + RT 

n-1 

v 5 - CkWE - ~ p o W ( 1 7 )  - [plgmk* - ko] 11/12 
k = l  2K3 

(53) 
U I  

-pigm-[kI - ,*I2 + RT 
2YI 

from the fact that llq112 2 LW(7) .  Further by con- 
sidering the ideal feedback g z n  k* such that 

(54) 

it follows that 

where c, = min 2n3, UI . 

Finally, the time derivative of V can be evaluated by 

where av = min [2cl, . . - ,2c,-1, cm]. 

It is apparent from (56) that all the signals in 
the closed-loop system with the controller (50) are 
bounded. We also obtain from (56) that 

P- I 
VI -a,v + RT (56) 

From the fact that 1vI2 I2V/p1,  it follows that 

t+oo lim 5 2 R ~ / o ~ p 1  (58) 

Thus the control objective (4) is achieved for b such 
that d2 2 2&/0!,p1 and it is also easy to confirm 
that an appropriate choice of po, p1 and p4 and design 
parameters 71, yPi, YR, €10 and Q,I to ~i ,6(1  5 i 5 n-1) 
ensure the control objective for any positive constant 
b. As a conclusion we have the following theorem. 

Theorem: Under assumptions (A-1) and (A-2) on the 
controlled system ( l ) ,  all the signals in the resulting 
closed-loop system with controller (50) designed ac- 
cording to each step with adaptive adjusting law (25) to 
(27) and the robust control term (28) are bounded and 
there exist appropriate design parameters 71, YR, 
€10 and E ~ , I  to ~ i , s ( l  I i 5 n-1) such that the tracking 
error v(t)  converges to any given bound Iv(t)l 5 6 as 
t - m .  

4 NUMERICAL SIMULATION 

Here the effectiveness of the proposed method will be 
confirmed through a numerical simulation for a model 
of a DC motor. The model considered here is given as 
follows: 

Kb R(t) 1 
L( t )  L( t )  L( t )  

252 = --21 - -22 + -U 

Y = 2 1  (59) 
z1 is the rotational velocity of the motor and z 2  is the 
armature current. R(t) and L( t )  are the resistance of 
armature winding and the self-inductance, respectively, 
which are assumed to be timevarying related to €em- 
perature in the motor. Kb, Kt, T( t )  and J are the 
back-emf parameter, the torque motor parameter, the 
load torque and the rotor inertia, respectively. F(z1) 
is the friction given in the following form [7]. 

F(zi) = Fo(zi) + 8x1 (60) 

FO(Z1) = Fcsgn(z1)  + (Fs - F,)exP{-(IC')2}sgn(sl). 
vs 
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Table.1 Motor and friction model p a  
I Symbol I Values I units 
I J I  0.2 I kgm’ 

0.306 
3.15 
0.4 

0.001 
1 

1.5 

NmjA 
Vsjrad 
Ns/m 
rad/s 
Nm 
Nm 

meters. 

The parameters of the DC motor and the friction model 
are shown in Table.1. In this simulation we assumed 
that R(t) and L ( t )  are varied as shown in Fig.1 and 
T ( t )  is given as shown in Fig.2. 

In order to apply the proposed method, we consider 
the following nonsingular transformation: 

z1 = 21 

so that the system (59) can be represented by 

21 = f l ( Z 1 , t )  +g1za 
22 = f 2 ( Z l ,  t )  + 92(t)7J 

y = z1 (62) 
where 

(63) 
Kt 1 

91 = -3 g 2 ( t )  = -. J L( t )  
Since the transformed system (62) satisfies the assump 
tions (A-1) and (A-2) with known functions as +1(y) 
= @2(y)  = y ,  we can design the controller for the DC 
motor according to  the proposed procedure. 

Figs 3 and 4 show the simulation results. A good con- 
trol result is obtained in spite of the controlled sys- 
tem having unknown nonlinearities and time-varying 
unknown coefficients in control input term. 

5 CONCLUSIONS 
In this paper, we proposed a robust adaptive tracking 
control, which is based on high-gain feedback based 
adaptive control, for a class of uncertain time-varying 

Figure 1: Resistance: R(t) and inductance: L( t )  
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Figure 3: Output and reference signals 
10 

1.3 

nonlinear systems with higher order relative degree. 
The effectiveness of the proposed method was con- 
firmed through a numerical simulation for a model of 
a DC motor. 
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