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Abstraci—This paper suggests sufficient conditions for
asymptotically stable dynamical output feedback controller
design based on the circle criterion. It is shown that a dynamic
output feedback stabilization preblem with impending problems
of finite escape time, previously attacked by observer-based
design, can be successfully solved using circie criterion design.
Stability of the closed-loop system is global and robust to
parameter uncertainty.

1. INTRODUCTION

Stabilizing a nonlinear system by output feedback is often
a difficult problem. Equipped with a range of available
asymptotic (robust) stability criteria, one could try to design a
dynamica! output feedback controller so that the closed loop
system satisfies one of these stability criteria. This simple
idea sometimes leads to a problem that could be solved,
but quite often it results in a problem that is intractable.

This paper is devoted to the discussion of dynamic output

feedback and the circle criterion, as a stability test for the
closed loop system [6], [9]. One of standard initial ideas for
controlling dynamical system by output feedback is based
on the separation principle, that is, one needs to find a
stabilizing full-state feedback controller and to determine an
observer with asymptotically stable error dynamics; an output
controller is then chosen to coincide with the derived full-
state feedback coniroller where instead of the unmeasured
true states of the dynamical system, the system states are
substituted by observer states. This approach includes three
steps—design of a fill-state controller, observer design, anal-
ysis of the closed loop system—where well-known stability
criteria, like the circle criterion, could be applied to conclude
stability. Indeed, one could use this test for checking stability
of the system with a full-state feedback controller; or use it
for checking that a particular structure of an observer results
in stable error dynamics; or use this test at the final point
to verify that the closed-loop system derived via certainty
equivalence principle is stable. These arguments have been
used for checking stability via the circle criterion of error
dynamics for an observer [1], [2].

The main contribution of this paper comes from the
observation that for the large class of systems treated in {1],
[2), there is no need to introduce an explicit observer and
assumptions and arguments relevant for the certainty equiv-
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alence principle can be relaxed. Instead, a fixed structure of
an output feedback controller can be imposed, search for its
parameters and asymptotic stability can be approached by
means of the circle criterion for the closed-loop system. It
happens that for the large class of the systems considered
in [1], [2], this argument works. Thus, time-varying systems
and systems with structural uncertainties can be approached
whereas both extensions seem infeasible using the certainty
equivalence principle [1], [2].

The paper is organized as follows: Section II suggests
an illustrative example considered in details. The problem
statement, assumptions and main resuit are given in Sec, III,
a brief discussion of results being added in Sec. IV.

II. MOTIVATING EXAMPLE
Consider the following dynamical system [1]

d [ z 01 T 0
wln) - [balla)li]e-mo
¥y = I (2)

The relation between the relevant results of [1] and the

current development is discussed later. The problem is to

design a controller that renders the origin of the system (1)

asymptotically stable. Let us consider a dynamical controller

of the form
d

dt”

kA ==

= Azr1+ Ag2
AT+ Aoz + (61:61 + 632)5 3

where A;, ¢; are real constants to be defined. With such a
controller, the dynamics of the closed loop system are

d ] 0 1 0 I 0
a’z To = )\1 1 )\2 e + 1 w
Z )(3 0 )\4 Z 0
w = (c131+c32)® -2 4

One can easily check that the nonlinearity w of Eq. (4) and
the linear virtual output of the closed loop system (4)

V=T — T2 + €32
satisfies a passivity relationship for any xy, 2, 2

vew = (clil —zo + e3z}(cr11 + c3z)® — zg} >0 (3
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Introducing the matrices and the state space vector

010 000
Ag=10 1 0|, 4=110 0],

00 0 00 0

0 0 0 a0 0 0
Az=|0 0 1], A3=10 0 0|,

00 0 100

00 0 0 1
As=10 0 o, B=|1|.x=1 22|,

0 0 1 0 2

one can rewrite the closed loop system (4) as follows

d 4
v = CX=ciz;j—x2+c32

Whereas the explicit form of the nonlinearity w—in this
case given as (4)—is not important, it is important that the
passivity relation (5) be valid. By the circle criterion, the
system (6) 1s asymptotically stable provided that

1) the frequency condition

4
Re{C(juls — (4o +)_NA)T'B} <0 (D)
i=1
holds for any w € IR,, the negative real notation
convention being used in the inequality (7);

4
2) the matrix (Ap + 3 M:iA;) is strictly Hurwitz,
i=1

As known, these conditions are equivalent to the fact that
there exists the 3 X 3 matrix P = P7 > 0, so that

4 4
(AO + E ’\iAi)TP + P(AO + E Az'A‘i) <0 (8)
i=1 =1
PB=-C7

Thus, development of a dynamical stabilizing controller (3)

based on the circle criterion and the choice of quadratic
constraints (3) require determination of parameters

/\1; )‘25 ’\31 /\47 €1, €3 (9)

so that all points 1)-2} are valid, or equivalently, the Bilinear
Matrix Inequality (BMI) of (8) is solvable. The routine
computations made for this example result in equivalent
statements written in terms of parameters A;, ¢;:

1)y Introduce the quantities

a = 1—-¢g
8 = cadg—Aedz+cadshs —ardf — erhi + A
¥ o= (A~ A2Az)(cpAs — c1Aa)

The validity of the frequency condition leads to the two
cases

a) if the parameters (9) are so that

B <0, (10}

'
-
"

Y

L 1
on 2] 1 11 12 13 4

Fig. 1. The red area corresponds to Ay and c3 that satisfy the constraints
{10013y while the other parameiers {3) have the nominal value {14).

then (7) is equivalent to the inequalities

¥y<0, a<0 {an
b) Otherwise, {7) is eqnivalent to the inequalities
day-82>0, a<0 (12)

4
2) The condition for the matrix {Ag + 3 X;A;) to be

=1 _ .
strictly Hurwitz is equivalent to the inequalities

A <=1, M<A, Ad>dAz (13)

The set of parameters (9) satisfying the constraints (10)-(13)
is not empty. It can be checked that the vector

(All >‘21 A31 )‘4: €1, 03) = ("51 "-27 _-71 '_31 21 1) (14)

belongs to this set. This means that for this choice of
the controller parameters (9), the corresponding BMI (8)
becomes a Linear Matrix Inequality (LMI), and it has a
solution. In fact, these values (14) have been found in [1]
via an appropriate observer design and checking the validity
of certainty equivalence principle. Below it will be shown,
what, in addition, to the asymptotic stability of the closed
loop system found in [1], could be gained from the fact that
the BMI (8) is solvable.

Firstly, the inequalities (10)—(13) have quite a rich set of
solutions, To show that the inequalities (10)-(13) suggest
the controllers that cannot be obtained by the cerrainty
equivalence principle ¢laborated in [1], let us check possible
values for the parameter cy that is postulated in {1} to
be equal to 1. Figure 1 shows approximation for a set of
parameters A; and cs that correspond to stabilizing controller
provided that the rest of (9) have the nominal value (14). To
iltustrate an advantage of the solution based on solvability of
BMI (8) vs. the design via cerrainty equivalence principle,
let us include parametric uncertainty in the system. Consider
the system (1) with uncertainty factor £ in front of the
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Fig. 2. The solution of the closed loop system (15), (3) with £ = 0.243
for the initial conditions 2y = 1, z2 = -3, z = 10.

nonlinearity in (1), i.e.

£a]- (2121 o

(16)

y=o

Suppose that the nominal value ¢ for £ is chosen as
£g = 1 and the dynamical stabilizing controller {3} with the
parameters {14) has been designed as discussed above. Then,
the closed-loop system is

d X1 0 1 0 ) 0
Ei_t. To —= -5 1 =2 I + 1 w
z -7 0 -3 z 0
w = (2z+2)°~¢-23 (17

The key passivity relation between the nonlinearity w in (17)
and the linear output v = 227 — x2 + 2 does not hold unless
£ has its nominal value. But for this case one can introduce
a new linear ountput of the system (17) such as

Unew = 2] — VE- Ty + 2.
Then, the passivity relation between w and v,,¢,, holds
Vnew "W 20, YV, T2, 2

Checking the circle criterion for this quadratic constraint
reveals some allowed bounds for €.

Statement 1; Consider the nonlinear system (15) with the
dynamical controller (3) with the parameters A;, ¢; as in (14),
that designed to stabilize the system (15) with nominal value
£ = 1. If the constant parameter £ is within the interval

e € [0.243,7.26], (18)

then the closed loop system (15), (3) remains globally
asymptotically stable. In other words, the controller (3) with
the parameters };, c; as in (14) robustly stabilizes (15). m

Figures 2 and 3 show the response of the system (15), (3)
for £ = 0.243 and ¢ == 1 with the same initial conditions. It

is important to realize that this uncertainty cannot be treated
in the certainty equivalence design arguments elaborated in
[1]}: for each new value of parameter €, one need to change
the observer! Therefore, the value of & should be known
precisely. Furthermore, the interval of an allowed uncertainty
for the constant parameter ¢ derived in Statement 1, could
be approximated for any stabilizing controllers determined
by relations (10)—(13), where one could be interested in
enlarging the allowed uncertainty range (Fig. 4). Another
advantage of solution based on solvability of BMI (8) vs.
the design via certainty equivalence principle comes from the
observation that the analysis based on separation principle
does not allow to tackle system with time-dependent right-
hand side. Indeed, it is partly based on the analysis of w-limit
sets and the Barbashin-Krasovski (LaSalle) stability theorem.

At the same time, the design based on solvability of the BMI

(8) allows time dependence. To clarify this point, consider
the modified system (1}, (2) :

2] - [2 H]2] [He-aros

¥y =

where the nonlinearity now contains the time-varying factor
sin®(t). The arguments used for (1), (2) with the controller
(3), (9) could be directly applied for this modified system
and the modified dynamical controller

d
@’
U

)\3.’131 + Az
)\1.’51 + Aoz + sinz(t) . (c1m1 + ng)s

i

Indeed, this property is due to the fact that the key passiviry
relation (5) between the input .

w = sin®(t) - [(a1zy + c32)® — 3]

and the linear output v == ¢1z; — z2 + c32 remains valid.
Recently, Arcak et al. showed that controller design for
the system (1), (2) including full-state observer feedback
might lead to finite-time escape [1]. To guarantee stability,
the parameters A; and ¢; of the controller of Eq. (3) should
be non-zero. To get an additional insight into this observation,
let us consider a dynamical output controller of the form

‘,
di
u

#

Azxy + Agz

i

Mxy + Asz + (orzy + Cyz)° (19)

where z € IR™ is a vector of internal states of the controller;
Ay and ¢y are constants; and Ao—A4, C3 are matrices of
appropriate dimensions. The controlier (19) differs from (3}
by number of internal states, and they coincide when m = 1,
Again, the closed-loop system (1), (2), (19) could be analyzed
via the circle criterion with the quadratic constraint (5) where

w=(ar + Csz)’ —2d, v=ear +Ciz—12
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Fig. 3. The solution of the closed loop system (15), (3) with the nominal
value € = 1 for the initial conditions @y = 1, 29 = -3, z = 10.

Necessary conditions for BMI solvability (8) suggest intro-
duction of a reduced order observer [1].
Statement 2: Consider the nonlinear system (1), (2), (19).
The frequency condition (7) takes the form
ke~ q()‘) ~12
Re {i"w} = —=|w|* < C
o} = I3t

where & = G(jw)w, A = w?,

g(r) =
pA) =

and G(s) is the transfer function of linear past of the closed
loop system (1), (2), (19). Then, the frequency condition
holds at w — +o0 only if the inequality 1 —¢; < 0 holds. m

(1= )X 4 g A™ 4+ 1A + g

AT 4 p g AP o A+ o

HI. Mamn RESULTS
A. Problem Fermulation and Preliminary Comments
Consider a noanlinear control system of the form
d-

i Az + Bru + BaAld, t)

N].’L‘, dZ‘NQ.’E

(20)

y = 21

where z € R™ is the state vector; y € R™ is the measurable
output; d € R* is the vector of variables that serves as
input to the scalar nonlinear block A; A, By, B, Ny, N3
are matrices of appropriate dimensions. As in [2], [1], the
ponlinear block A covld be seen as a nonlinear operator
satisfying particular properties.

Assumption I: The scalar nonlinearity A(d, £) is such that
there exists a k x 1 matrix ITn so that for any functions
dift), do(t) € L&, 3{t )75, tn — +00 a5 n > +o0,
such that Vn
tn

/(dl(r) — d2(T)Y Ua (A{di(7),7) = Alda(7), 7)) dT >0 (22)

[}

For asymiptotic stabilization of the origin of the system (20)
by output feedback, try a dynamicai controller of the form

= R,z + Ryy + Ra NMCyy+ Ce2,t) 23)

d
7 z=Mz+ A+ A+ A A(Cyy + Cez, 1) (24)

where z € R* is the internal state of the controller; A,
Ay, Aw. Aa, Rz, Ry, Ry, Rpa are constant matrices of
appropriate dimensions. The closed-loop system is then

d|z| A+ R,V B R, z + (05

dtlz| (Ay + AuRy) N1 (A +AR:) | | 2 h
BiRa By

Fa 22, Ald,t

[ Lot [ 2]

Assumption 2: There exists a linear transformation

Tz T‘rz In x
T { 0 T, ] ! [ Zn z (26)
with det T' # 0, and there exist matrices Ba, Ay, Aa of

such that T, B1 R + Toz (AuRp + An) = ~ToBo. m

Assumption 3: The scalar nonlinearity A(d, t} is such that
there exist a 2 x 2 matrix

Iy Typ
Ii= 27
[ Iz 0O } @n

- and there exists A/ € IR'** so that for any function d(t) €

LE: 3,313

n=1"

T Man 1T Md(r)
/ [A(d(r),r)] H[A(d(f),f)]dTZO @

0

t, — 400 as n — +o0, such that Vn

Assumptions 1, 2 and 3 enable us to rewrite the closed loop
system (20), (23), (24} in the input-output form

LAT A} ™ 4 By + Baws (29)

dt Zn Zn

with
v = Md=MNT (2, — T, T, ' 2,) (30)
v2 = 2 (ny +Ciz—d) = ECsz_lzn + @GN
+ Hz {CyN] - Nz} T;l (IEn - TEZT;IZH)
A+ RyN BiR.
A = + R : T (32)
(Ay+ AR Ny (A, + AuRy)
0 T.B

B = By=| =77 | (33
: {Tz(AuRmAa)] ? [ 0 ] 9

while uy, we are the scalar nonlinearities written in the
original coordinates x, z

wy = A(Cyy + C.2,t), w2 = Ald,t) — A(Cyy + C2,t)

4685



and v1, v are scalar passive outputs (in integral sense) of
the closed loop system (29), i.e., 3 {f,,} with t,, — +oo
as n; — 400, i =1, 2, so that

tu, - o
w17 T ar)
0/ [ wy (7) :l H{ un (1) :l dr 20, 0/ va{T)wa(T)dr 2 0

Denote
Cy

MNLT! [In, —TmT;I]

Ca

I

3 [{CyM — N} T3,
TC.TY = {CyN1 — N2} TI"ITIZT;‘]

By the circle criterion, the system (29) is asymptotically
stable provided that L

1) there exist 71 > 0, 7o > 0, 71 + 72 > 0 such that V&,
V& €@ the frequency condition

ToRe {E;CZ-A;‘} (B1& + 3252)} +

-1 *
" CrAi (Buly + B}y o
& &
holds Vw € R.'. Here A} = (julnti — A7
2) the matrix A is strictly Hurwitz.
As known, these conditions are equivalent to the fact that

(34)

there exists the (n+1) x (n +{) matrix P = PT > 0 so that

ATP+ PA+nCTIIC < 0,

.35
PB; = —riT1oCT, PBy = —%c; (33)

Thus, a circle-criterion development of a dynamical stabiliz-
ing controller requires determination of matrices

A-zr Ay, A‘LU A-ﬁr R27 Ry: RA? CZ’ Cy

so that all points 1)-3) are valid, or equivalently, that the
BMI (35} have a solution.

B. Sufficient Conditions for BMI Solvability (35)

Toe formulate the main resuit, we need to postulate some
additional properties of the system (20).
Assumption 4: A feedback controller

u= Ky + Kod+ Kn A(d, 1) 37

with some matrices K, K, and K renders the closed-
loop system (20), (37} asymptotically stable. Furthermore
this asymptotic stability can be verified from the circle
criterion applied to the quadratic constraint in Assumption 3
for matrices K3, K2, K such that
1) The frequency condition holds Yw € R, ie.,

MNz AL} (B1Ka + BZ)} n [MN;,A;} (?IKA + Bz)] <

0
1

A7l = (jwla ~ {A+ Bi(K1Ny + KN 7!

When the inequality degenerates atw = +o0, the strict inequality should
hold in a limit if the matrix is multiplied by a factor u?.

CuA7 (Buta + 3252)] <0

e

Fig. 4. The red area corresponds lo values of € as a function of the
parameter Az for which the asymptotic stability of the closed system
preserved, The other parameters (9) have the nominal value (14). The
largest uncertainty interval for  is attained for Jg = —1.71, and Iooks
as £ € [0.132, 31.97).

2} the matrix (A+ B (K3 N1+ KaoN3)) is strictly Hurwitz. m

For the further development it will be convenient to make
linear transformation of the system (20), choosing a matrix
.Ng such that the n X 1 matrix

Ny

Ny

N,

has full rank, i.e., det N # 0, where the matrices Ny and Ny
are from (21).and (21). In new coordinates

N =

T NCI
y | =Nrx=| N |z (38)
d N2

the system (20) takes an equivalent form

= Ajr 4+ Ay + Aisd + Bryu + B A{d,t) (39
Y = Aoyr + Asoy + Anzd + Boju 4+ BoaA(d,t) (40)
d = Agr+ Agpy + Azsd + Baju+ BaaA(d, t) (41)

Assumption 5: Bia, Bap are zero matrices. m

Assumption 6: There exists a mairix ® such that A3; =
$As; and such that the system

dite= (Asz — ® Azg)e + Baz(A(d, t) — A(d — e, t))

is asymptotically stable for any function d € L., its stability
being verified by the circle criterion applied to the constraint
in Assumption 1. Namely

(42)

1) The next frequency condition holds Yw € IR

Re {na(ijk — (A33 - @Azg))—lB:g?} <0 (CX))]

2) The matrix (Azz — $Ag3) is strictly Hurwitz. g
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Theorem I: Consider the system (39)-(41). Suppose As-
sumptions 1-6 hold. Take an output feedback controller as

u=Kiy+ Kod + K Ald 1), (44)

where mf.rices K., K 2, K satsfy Assumption 4; the
variable d is defined as d = z 4+ $y with the matrix ¢ from
Assumption 6 and 2 defined as a solution to
dz
= [(Asp — P Az2) + (Azs — PA23) By
+ (Ass — PAy)z

- (B31 — @Bm)u -+ ngé(z + <IJy, t) (45)

Then, the closed-loop system (20)-(21), (44)—(45) is globally
asymptotically stable. m

Theorem 2: Consider the system (29)-(31). Suppose As-
sumptions 1-6 hold, then the BMIs (35) are solvable, one
solution being

A, = Anp—-04n, C, = I,

Ay = By —PBn, Ap B3,

R, = K, R, = K1+ K@, (46)
RA = Ka, Cy == @,

Ay = (Az—PAz)+(Az3—PA)®

IV, DISCUSSION

1. In Sec. III is shown that stabilization of nonlinear systems
by dynamical output feedback via the Circle Criterion could
be reformulated as a problem of solvability of Bilinear Ma-
trix Inegualities (BMI) of particular type. In general, finding
gven one solution for BMI could be a difficult problem, while
for low dimensional system, all solutions could be found,
and the result is written in the form of finite number of
inequalities for the parameters of the controller.

2. This approach allows not only to find a set of all soluticns
{dynamical stabilizing controllers of particular structure for
low dimensional systems), but also to analyze and quantify
a robustness of the closed-loop system in case of uncertainty
and parameter variation.

3. To compare the results with related ones in [1], one
should realize that methods in [1] are devoted to stabilization
of more general time-invariant dynamical systems, than the
equations (20)-(21) represent. This generality reduces the
ability to find a variety of stabilizing controllers, and only a
few controllers was found in [1].

4. If Assumption 5 is omitted, then Theorem 1 is still
true, that is, the closed loop system (20)+(21), (44)-(45)
is globally asymptotically stable. In fact, this is the result
of [1, Theorem 1, p.677] whereas the main resuit—i.e.,
solvability of the particular BMI stated in Theorem 2—
is not. The reason is that convergence of any closed loop
~ system solution to the origin can be proven in this case by
a particular choice of a Lyapunov-type function, designed

only for this particular sclution, while for different solutions
these Lyapunov functions are different. In turn, the solvability
of the BMI implies existence of only one positive definite
quadratic form that provides exponental convergence of any
closed-loop solution to the origin,

5. The 2 x 2 quadratic form IT in Assumption 3 has a par-
ticularly simple structure for use in the example. In general,
one might consider any integral quadratic constraint, {71,
[8), that leads to a design.of stabilizing controller when all
state variables are available. In turn, the nonlinearity A(d, t)
should not be scalar, but it seems that such generality wouid
obscure the main contribution of the paper.

6. The computational algorithms for solving nonconvex prob-
lems (35) are still at a developing stage [5].

V. CONCLUSIONS

In this paper, it was shown that a dynamic output feedback
stabilization problem with impending problems of finite es-
cape time, previously attacked by observer-based design, can
be successfully solved using circle criterion design. Stability
of the closed-loop system is global and robust to paramelter
uncertainty.

VI. REFERENCES

{11 Arcak M. A Global Separation Theorem for a New Class
of Nonlinear Observers, Proc. 41st IEEE Conf. Decision &
Control, Las Vegas, NV, pp. 676681, 2002

[2} Arcak M. and P. Kokotovi¢. Nonlinear Observers: A Cir-
cle Criterion Design and Robustness Analysis, Automatica,
37:1923-1930, 2001,

{3} Johansson R. and A. Robertsson. Observer-based Strict Posi-
tive Real (SPR) Feedback Control System Design, Automatica,
38:1557-1564, 2002.

14] Shiriaev A. 5. Some Remarks ont System Analysis via Inte-
gral Quadratic Constraints, JEEE Trans. Automatic Cantrol,
45(8):1527-1532, 2000.

[5] Tuan H. D. and P. Apkarian. Low Nonconvexity-rank Bilinear
Matrix Inequalities: Algorithms and Applications in Robust
Controller and Structure Design, JEEE Trans. Automatic Con-
trol, 45(11): 2111-2117, 2000.

6] Yakubovich V. A.. Frequency Conditions of Absolute Stability
of Control Systems Having Hysteresis Nonlinearities, Dokl
Acad. Nauk SSSR, 149%(2), 1963.

[71 Yakubovich V. A Frequency Conditions for Absolute Stability
of Control Systems with Several Nonlinear or Linear Non-
stationary Blocks, Automatica i Telemekhanica, 6:5-29, 1967.
(English transl. in Auromation and Remote Control, pp. 857-
880, 1963)

181 Yakubovich V. A. Necessity in Quadratic Criterion for Abso-
lute Stability, Inr. J. Robust & Nonlinear Control, 10:899-907,
2000.

[9] Zames G. On the Input-Output Stabjlity of Time-varying
Nonlinear Systems—DPart II: Conditions Involving Circles in
the Frequency Plane and Sector Nonlinearities, IEEE Trans.
Automatic Control, 11(3):465-476, 1966.

ACKNOWLEDGEMENTS

The work has been supported by the Danish Technical
Research Council, Grant 26-01-0164. R, Johansson and A.
Robertsson are grateful for financial support from the EC
project NACO? and the Vinnova project LUCAS.

4687



